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Abstract: Phishing is one of the most dangerous attacks targeting individuals, organizations, and
nations. Although many traditional methods for email phishing detection exist, there is a need to
improve accuracy and reduce false-positive rates. Our work investigates one-dimensional CNN-based
models (1D-CNNPD) to detect phishing emails in order to address these challenges. Additionally,
further improvement is achieved with the augmentation of the base 1D-CNNPD model with recurrent
layers, namely, LSTM, Bi-LSTM, GRU, and Bi-GRU, and experimented with the four resulting models.
Two benchmark datasets were used to evaluate the performance of our models: Phishing Corpus and
Spam Assassin. Our results indicate that, in general, the augmentations improve the performance
of the 1D-CNNPD base model. Specifically, the 1D-CNNPD with Bi-GRU yields the best results.
Overall, the performance of our models is comparable to the state of the art of CNN-based phishing
email detection. The Advanced 1D-CNNPD with Leaky ReLU and Bi-GRU achieved 100% precision,
99.68% accuracy, an F1 score of 99.66%, and a recall of 99.32%. We observe that increasing model
depth typically leads to an initial performance improvement, succeeded by a decline. In conclusion,
this study highlights the effectiveness of augmented 1D-CNNPD models in detecting phishing emails
with improved accuracy. The reported performance measure values indicate the potential of these
models in advancing the implementation of cybersecurity solutions to combat email phishing attacks.

Keywords: email phishing; deep learning; convolutional neural networks (CNN); LSTM; BiLSTM;
BiGRU

1. Introduction

Phishing is a highly dangerous attack that targets individuals, organizations, and even
nations. It involves social engineering tactics, where attackers impersonate legitimate
entities to trick victims into disclosing sensitive information. According to the report
released by the Anti-Phishing Working Group (APWG) [1], a staggering 1,286,208 phishing
attacks were recorded in the second quarter of 2023. The report shows that 23.5% of all
phishing attacks target the financial sector, making it the most attacked sector overall.
Social engineering threats and attacks are the top concern for individuals and the second
concern for many organizations [2]. Attackers use various deceptive techniques to gain
access to sensitive information, such as login credentials, credit card details, or personal
information. Social engineering is often the initial step in a cybercriminal’s attack plan,
and in approximately 82% of cases, the spread of malware within a network begins with
a phishing message [2]. Various communication methods are used by phishers to carry
out their attacks, with the most common methods being email messages, social network
messages, text messages, and phone calls.
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Email phishing is a general term that refers to emails with malicious intent. A well-known
example of an email phishing attack occurred in 2018 during the FIFA World Cup. Attackers
targeted football fans by sending phishing emails promising recipients free tickets to
Moscow, the hosting city of the 2018 FIFA World Cup. By tricking individuals into opening
these phishing emails and clicking on embedded links, criminals successfully gained access
to personal data from unsuspecting users.

Detecting phishing emails is essential to combating this type of attack and preventing
cybercrime. Many organizations focus on strengthening their email security measures using
a combination of methods. One way is the implementation of subdomain controls, which
involves creating a separate domain specifically dedicated to email security to better protect
against email-based attacks. In addition to this, user education and analysis of the history
of phishing attacks are crucial for ensuring the security of individuals and organizations.

In the literature, classical approaches for phishing detection fall into two categories:
blacklists and signature-based techniques [3]. Blacklisting is the act of making a list of
suspicious resources used in previous phishing attacks. New suspicious contents can
be checked against blacklists to confirm their validity. Unfortunately, due to the short
lifespan of phishing links and the rapid creation of new ones, managing blacklists becomes
difficult. Additionally, a single character change in the URL causes the website to be
unrecognized by the blacklist. On the other hand, the signature-based approach focuses on
utilizing features associated with the phishing act gathered from email addresses, links,
URLs, and webpages in combination with rule setting to detect phishing attacks. Features of
a newly accessed source are compared with with known phishing features identified from
previous experiences. Although this approach is more efficient than list-based approaches
and more effective in detecting zero-day attacks, it suffers from high false-positive rates.

Looking into the literature, we identify the following research gap. Traditional
phishing detection approaches rely on human effort to analyze phishing email features,
such as the sender, subject line, and contents. However, as the complexity of phishing
attacks increases, these approaches are no longer adequate. Recently, approaches based on
deep learning (DL) and machine learning (ML) have demonstrated the ability to overcome
the limitations of traditional phishing detection methods [4]. ML algorithms can be used to
train models that can detect phishing emails. Such models can learn phishing patterns and
characteristics from large phishing datasets. Prior to training, important features related
to phishing activity need to be first identified. This usually requires field expertise and a
careful selection of essential features that result in efficient detection algorithms.

In contrast to ML algorithms, DL is capable of automatically extracting important
features directly from raw data. Currently, deep neural networks are being used efficiently
in several domains due to their state-of-the-art performance. In cybersecurity, researchers
have demonstrated the potential of DL in tackling many cybersecurity problems [5].
However, more work is required to examine the robustness of deep neural networks
for detecting email phishing [6]. DL algorithms, particularly convolutional neural networks
(CNNs), long short-term memory (LSTM), and gated recurrent unit (GRU) models, showed
promising results on different classification tasks including question classification, text
categorization, and sentiment analysis and classification [7], among many others.

The problem context of the current study is phishing detection in emails. The problem
is framed as a document binary classification task, treating every email as one document.
Our goal is to classify emails into either phishing or legitimate. Our research question is
how effective are deep learning models in detecting email phishing compared to existing
methods? In particular, how effective is augmenting a CNN with recurrent layers in
improving phishing detection performance? In order to achieve our goal, the objective
of this study is to utilize DL architectures, including CNNs, LSTM, GRU, and and their
variations. We define and measure the success of phishing email detection models in
terms of improved performance in terms of standard metrics (precision, recall, accuracy,
and area under the ROC curve). In this study, first, eight one-dimensional CNN models
of various depths were trained using Spam Assassin [8] and Phishing Corpus [9] datasets.
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These models are collectively referred to as 1D-CNNPD models. Second, we augmented
our base 1D-CNNPD model with LSTM and a GRU (and their variations) to train four
additional models with the goal of improved performance. We call our augmented models
Advanced 1D-CNNPD. LSTMs and GRUs are designed for sequential data and capturing
temporal dependencies. Recent research suggests that augmenting a CNN with recurrent
layers improves the phishing detection performance [10]. Deep neural networks are
expected to enhance phishing email detection as they have superior abilities in terms
of capturing hierarchical representations of features, considering both low-level and
high-level abstractions. The performance of the twelve models for phishing detection
was evaluated and compared with that of other similar models in the literature. In general,
the performance of our models is comparable to state-of-the-art models. The 1D-CNNPD
augmented with Bi-GRU outperformed advanced deep learning and machine learning
phishing detection algorithms, achieving 100% precision, 99.68% accuracy, an F1 score of
99.66%, and a recall of 99.32%.

The main aim of this study was to investigate the potential of using deep learning for
email phishing detection. In addition, we wished to examine the issue of deep learning
model complexity in contrast with performance. Very deep models for natural language
processing are complex and require vast resources and long training times to achieve
excellent results, however, we hypothesize that such is not required for phishing detection.
As such, we wish to study the effect of increasing model complexity, i.e., depth, for the
problem of phishing detection. The contributions of this work are as follows: (1) we assessed
the effects of varying the convolutional neural network depth on model performance in the
context of phishing detection, (2) we developed a lightweight model that achieves excellent
results, and (3) we recommend various interesting areas for future research.

The proposed models can assist companies in providing a higher level of security
against various types of email phishing attacks by detecting distinct features of such
incidents and subsequently minimizing the occurrence of data breaches. Our models
can be installed on the Edge Network Operation (ENO) of email. As shown in Figure 1,
the framework receives a group of emails to evaluate and dispatches them to the email client.

           Training Dataset

       1D-CNNPD

Advanced 1D CNNPD

Model Training

Cleaning (@ ! . HTML)

Emails’ body and subject

Preprocessing

            Tokenization

     Borderline-SMOTE

Phishing

Legitimate

Phishing 
Detection Model 

New Emails

Figure 1. Email phishing classification system.

The rest of the paper is organized as follows: In Section 2, we review the related
literature on email phishing detection. Section 3 discusses the details of our 1D-CNNPD
and Advanced 1D-CNNPD models. Then, we present experimental settings and results in
Section 4. The impact and findings of this study are discussed in Section 5. Finally, Section 6
concludes the paper.

2. Related Work

Phishing detection continues to be a challenge for individuals and organizations.
A high percentage of phishing attacks in recent years has driven the information security
community to devise ways to detect and prevent the dangers of these attacks. According
to the literature [11], anti-phishing solutions are grouped into software anti-phishing
solutions and user awareness. Artificial intelligence approaches, such as machine learning,
deep learning, and hybrid approaches, are widely integrated into software anti-phishing
solutions [12]. In this section, we review the use of machine learning and deep learning to
mitigate the risks of phishing attacks.
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2.1. Machine Learning Approaches

Machine learning methods are widely used for the detection of phishing attacks [13].
Usually, the task is formulated into classification, clustering, or anomaly detection problems.
In the case of classification, features relevant to the identification task are extracted from
available datasets, and a machine learning model is trained.

In many studies, traditional machine learning algorithms, such as the C4.5 [14], Bayes
Net [15], random forest [16], and SVM [17] algorithms, were used to accurately detect
phishing attacks. One example of early work is the model presented by Ozarkar et al. [18]
to classify spam emails. The authors used random forest and partial decision tree (PART)
algorithms. Various feature selection techniques were used, such as chi-square and
information gain. An accuracy of 96.181% was obtained in the study. Form et al. [19] used
an SVM to categorize emails utilizing a collection of nine structure- and behavior-based
features. The model had an accuracy of 97.25%. The main shortcoming of this work was the
very small training set of 1000 emails. Han and Shen [20] adopted a semisupervised learning
approach using a K-nearest neighbor attribute graph to detect spear phishing attacks. Four
profiling features were used: origin, text, attachment, and recipient features. A dataset
from Symantec’s enterprise email scanning service was used for training, with 1467 spear
phishing emails and 4043 legitimate emails. Experimental results showed an F1 score of
90% and an FPR detection rate of 0.1 for known campaigns.

Other studies investigated the suitability of ensemble machine learning methods in
the detection of phishing attacks. Hota et al. [21] proposed an ensemble machine learning
based model with the remove replace feature selection technique (RRFST). Their aim was
to limit the number of email phishing features to enhance machine learning performance.
RRFST works by selecting a random feature from the set of feature space then replacing or
keeping the feature based on the accuracy resulted from the ensemble of C4.5 and CART.
After examining all features, the reduced feature set is fed into the ensemble, and the final
accuracy is calculated. The result of its evaluation showed an increase in accuracy at 99.27%
as compared to C4.5 and CART alone.

Yadav and Panda [22] trained three machine learning classification algorithms, decision
trees (J48), random forest, and logistic regression, for the prediction of phishing emails.
A total of 1000 emails from the Spam Assassin corpus were used to train the models, while
500 emails were used for testing and validation. Results showed that the best classification
performance was obtained by the random forest algorithm, with a precision value of a
99%. With 15 feature sets, the reported accuracy of training and validation is 95.6% and
99.4%, respectively.

Machine learning has been combined with natural language processing (NLP) to
effectively detect phishing emails. Contextual features [23], syntax features [15], and semantic
features [24] have been applied in this field. Sahingoz et al. [4] investigated the potential of
using several NLP-based word vectors and hybrid features with different machine learning
algorithms in the detection of phishing webpages. NLP-based features used in this work
are comparable to URL-based features used in other research works. Hybrid features
used were a composition of NLP features and word vector features. The result of their
investigation showed that random forest with NLP-based features achieved the highest
accuracy, equal to 97.98%.

Recent work by Ghosh and Senthilrajan [25] classifies spam emails using machine
learning classifiers and evaluates the performance of these classifiers. The authors implemented
thirteen machine learning classifiers: the adaptive booster, artificial neural network, bootstrap
aggregating, decision table, decision tree, J48, K-nearest neighbor, linear regression, logistic
regression, naïve Bayes, random forest (RF), sequential minimal optimization, and SVM
methods. According to the comparison of the accuracy of these models on the selected
datasets, the RF outperformed other classifiers, as it achieved 99.91% for the Spam Corpus
and 99.93% for the Spambase datasets. The naïve Bayes classifier achieved an accuracy of
87.63% for the Spam Corpus and 79.53% for the Spambase datasets.
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Other recent work by Moutafis et al. [26] classified email messages as benevolent
(“ham”) and malevolent (spam) by training ten machine learning models: the SVM,
k-nearest neighbor, naïve Bayes, neural network, recurrent neural network, AdaBoost,
random forest, gradient boosting, logistic regression, and decision tree methods. The testing
was conducted on two datasets: Spam Assassin and Enron1. For the first dataset, the best
performance was 99.51%, achieved by the NN, while the SVM achieved 99.38% for the
second dataset.

While machine learning methods produce favorable results in phishing detection, they
require carefully hand-crafted features. Most ML algorithms in the literature were applied
to small datasets, which raised the question of scalability. In addition, they are vulnerable
to zero-day phishing attacks that have unseen features for the classifier. An overview
of machine learning algorithms used for phishing detection, along with their respective
performance metrics, is shown in Table 1.

Table 1. Summary of machine learning algorithms for phishing detection.

Ref. Algorithm Dataset Evaluation

[14] C4.5 WestPac emails Acc: 99%
[15] Bayes Net Phishing Corpus and SpamAssassin Acc: 92%
[16] RF Phishing Corpus and SpamAssassin Acc: 97%, FP 0.60%
[17] SVM Phishery and 2007 TREC Corpus Acc: 98.2%
[18] RF Enron Acc: 96.18%
[18] PART Enron Acc: 95.09%
[19] SVM Phishing Corpus and SpamAssassin Acc: 97.25%
[26] NN Spam Assassin Acc: 99.51%
[26] SVM Enron1 Acc: 99.38%
[20] KNN Symantec’s enterprise emails F1: 90%, FPR: 0.1
[21] Ensemble (C4.5 and CART) Khonji’s anti-phishing website Acc: 99.27%
[4] RF and NLP Phishing webpages Acc: 97.98%
[25] RF Spam Corpus Acc: 99.91%

2.2. Deep Learning Approaches

Deep learning algorithms have demonstrated success in various fields, including
computer vision [27], machine translation [28], and text categorization [29]. This success
of deep learning algorithms encouraged cybersecurity researchers to use deep learning in
many cybersecurity problems, including phishing detection. Deep learning techniques can
automatically extract effective features from emails, eliminating the need for labor-intensive
email feature extraction. Thus, they are able to capture a more thorough and comprehensive
representation of information within the email text. Ra et al. [30] used word embedding and
Neural Bag-of-Ngrams with deep learning methods to detect phishing emails. The authors
experimented with various architectures, including CNN, RNN, LSTM, and MLP. The best
accuracy value of 97.9% was obtained in the case of Neural Bag-of-Ngrams and MLP.

Fang et al. [10] proposed a phishing detection model based on recurrent convolutional
neural networks (RCNNs). The proposed framework, THEMIS, combines an RCNN with
multilevel embedding. The dataset used consisted of emails from the Enron Dataset, Spam
Assassin, and First Security and Privacy Analytics Anti-Phishing Shared Task. The reported
results showed that THEMIS outperforms LSTM and a CNN.

Alhogail and Alshabih [31] proposed a solution based on a graph convolutional
network (GCN) and natural language processing of email body text. The introduced
phishing email classifier was tested using the fraud dataset [32] which contains 3685 phishing
emails and 4894 legitimate emails. Experimental results indicate that the model has an
accuracy rate of 98.2% and a low false-positive rate of 0.015.

Doshi et al. [33] utilized features from email body and content to detect both spam
and phishing emails. An ANN, RNN, and CNN were incorporated into a dual-layer
architecture. The first layer classifies the phishing class, while the second classifies the
spam class. Experiments were conducted on a total of 8218 emails from Phishing Corpus
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and Spam Assassin. Results show an accuracy, recall, precision, and F1 score of 99.51%,
99.68%, 99.5%, and 99.52%, respectively.

Dewis and Viana [34] used LSTM and MLP to to detect spam and phishing emails.
Models were trained using Spam Assassin and and the Email Spam Classification dataset
from Kaggle [35]. The proposed models obtained 99% average accuracy for the text-based
datasets using LSTM and 94% for numerical-based datasets using MLP.

Alshingiti et al. [36] proposed a phishing detection system that combines CNN, LSTM,
and LSTM-CNN networks. The authors collected a real-world dataset of phishing and
legitimate emails and trained and evaluated their model on this dataset. The proposed
system achieved a high accuracy and F1 score, demonstrating the effectiveness of the
proposed approach.

Muralidharan and Nissim [37] introduced an approach for identifying malicious
emails taking into account the entire email content, including the header, body, and attachments.
An ensemble learning approach of various deep learning models was adopted. Various
architectures were used, each for a specific email segment: a custom CNN and transfer
learning model of BERT for the header, transfer learning of BERT for the body, and a custom
CNN for attachments. Experimental evaluations were conducted on a set of emails from
VirusTotal (20,037 benign and 12,639 malicious). Results show an AUC of 0.993, TPR of
0.9473, and FPR of 0.03.

Overall, the literature suggests the effectiveness of deep learning-based models,
particularly the CNN, LSTM, LSTM-CNN, as well as the GRU [38], in phishing email
detection. These models can potentially improve the accuracy and efficiency of phishing
email detection systems, which can help prevent cyberattacks and protect sensitive information.
An overview of deep learning algorithms used for phishing detection, along with their
respective performance metrics, is shown in Table 2.

Table 2. Summary of deep learning algorithms for phishing detection.

Ref. Algorithm Dataset Evaluation

[30] N-grams and MLP IWSPA-AP 2018 dataset Acc: 97.9%
[10] RCNN Enron, SpamAssassin Acc: 99.84% F1: 99.33%
[31] GCN Fraud dataset Acc: 98.2%, FPR: 0.015
[33] ANN, RNN, CNN Phishing Corpus and Spam Assassin Acc: 99.51%, F1: 99.52%
[34] LSTM Spam Assassin and Kaggle Acc: 99%
[36] LSTM-CNN URL 2016 Dataset Acc: 97.6, F1: 97.6
[37] CNN and BERT VirusTotal AUC: 0.993, TPR: 0.9473

3. Materials and Methods

Our study focuses on using deep learning methods for the task of identifying phishing
attacks. In particular, we are interested in the model design most suitable for email phishing
detection. We also wish to answer the following question: are deeper (i.e., more complex
models) needed for email phishing detection, or can simpler, more streamlined models
perform detection suitably? In this section, we provide a detailed description of our dataset,
the pre-processing steps, and the trained models that were chosen to perform our task.

3.1. Dataset Descriptions and Preprocessing

To create the proposed model, two publicly available datasets were used:

• The Phishing Corpus [9] is a widely used dataset for email phishing, comprising
approximately 7315 phishing emails collected over a period of time.

• The Spam Assassin dataset [8] consists of legitimate and spam emails gathered by the
Spam Assassin scheme. There are approximately 6047 email samples, in which there
are 1897 spam emails and 4150 legitimate emails.

We selected these datasets as they are the most commonly used datasets in the
literature [39]. More recent datasets, e.g., [40], offer no clear advantages over the more
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commonly used datasets, as they suffer from severe imbalance, as well as limited representation
of more recent phishing attacks. Emails usually contain sensitive information, making
collecting phishing email datasets difficult. Due to this limitation, publicly available
datasets are also restricted, and only about 2278 phishing emails from the Phishing Corpus
dataset were found in a public repository (Github). To train our models, we used a total
of 6428 emails, consisting of 2278 phishing emails and 4150 legitimate emails. The email
classification task classifies an email into one of two categories, either phishing or legitimate.

The emails in the dataset are in email archive storage format, containing HTML tags,
email header information, encoded images and files, text, and URLs. Figure 2 shows an
example of an email message in the general format of the dataset. During preprocessing,
the subject and body of the email were extracted, eliminating HTML tags, punctuation,
encoded attachments, images, unnecessary spaces, IP addresses, email addresses, and stop
words. Finally, URLs starting with http were replaced with [http].

The email text was then tokenized into individual words. A list of most common
words in the dataset, defined as words that occur three times or more, was created. This
list contains 22,105 words, from a total of 63,025 words in the dataset. This list was then
used to further preprocess the emails, removing any words that are not in the list. Since
our dataset was imbalanced, Borderline-SMOTE oversampling [41] was used to balance
the dataset. The Borderline-SMOTE oversampling technique increases the smaller sample
towards the class’s borderline and the closest neighbors in the same category. Research
suggests that the efficiency of Borderline-SMOTE among many oversampling approaches
has been verified [42].

Figure 2. Sample email snippet.
3.2. Proposed Models

In this study, we used CNN-based models for email phishing attack detection. CNNs
are among the best learning algorithms as they have superior abilities in terms of capturing
hierarchical representations of features, considering both low-level and high-level abstractions.
CNNs have demonstrated success in many cybersecurity problems, including phishing
detection [36]. Compared to other deep learning models, a CNN requires fewer parameters,
which reduces the complexity of the model and improves the learning process. In this
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study, we wish to create a simple lightweight model that can perform well in the phishing
detection task. The model must have a relatively small number of parameters, short training
times, and fast inference capabilities. We do this by building the simplest model possible,
which we call 1D-CNNPD. This model is described in the next section. Next, we increase
model size in a stepwise fashion, while calculating the performance of each, in order to
find the best yet smallest model possible. Finally, we enhanced our best 1D-CNNPD model
by incorporating LSTM and a GRU, along with their bidirectional variations. LSTMs and
GRUs are specifically able to handle sequential data, allowing them to capture temporal
dependencies effectively. Here, we provide a detailed description of our models.

3.2.1. 1D-CNNPD Model

CNNs are capable of extracting essential features in tokens or sequences of tokens
regardless of the slight positional variations across diverse textual context. We view
the phishing detection problem as a document classification task and adopted the CNN
architecture for this task. Each email message was regarded as a single document. The CNN
was trained to take a 1D input (email message) and output a document class (either
phishing or legitimate). Our proposed architecture is illustrated in Figure 3. It consists
of an embedding layer, convolutional layer, pooling layer, and a fully connected layer.
The details of each layer are as follows:

Figure 3. Document classification based on CNN.

Input layer: The input is a list of tokens representing each email. As emails have
differing lengths, shorter emails are padded with zeros to a fixed maximum length, that of
the longest email in the dataset.

Embedding layer: The embedding layer accepts the padded sequences of tokens and
transforms them into real-valued vectors represented in a lower dimensional space. In this
work, we used pretrained GloVe embeddings [43], as GloVe is able to capture both global
and local statistics of a corpus. The embedding size used was 100.

1D-CNN layer: The word embedding vector matrix is then passed into a convolution
layer, which extracts resilient features identifying a phishing email. These features are
captured by convolutional filters. In our model, we studied various combinations of
hyperparameters and architectures, see Table 3. As previously stated, we wish to study the
effect of model size on model performance. A smaller model is faster and less expensive to
train, as well as having a faster inference time. On the other hand, a model must be able to
detect phishing accurately, otherwise its utility is reduced. Selecting hyperparameters for
the model is another issue that must be dealt with. In order to find the best hyperparameters
possible, we varied the filter size (1, 5, and 10), the number of filters used (100, 300, and 600),
and the activation function tested (ReLU, Tanh, and Linear). For architectures, we varied the
number of convolutional layers as shown in Table 3. We used batch normalization between
layers to speed up the training process and avoid overfitting. The batch normalization
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layer was placed between the convolution layers and the pooling layer.

Table 3. The different CNN architectures used in our experiments.

Arch. Network Structure

1 emb–conv–maxPool–FC
2 emb–conv–conv–maxPool–FC
3 emb–conv–conv–conv–maxPool–FC
4 emb–conv–maxPool–conv–maxPool–FC
5 emb–conv–conv–maxPool–conv–maxPool–FC
6 emb–conv–conv–conv–maxPool–conv–maxPool–FC
7 emb–conv–conv–conv–maxPool–conv–conv–maxPool–FC
8 emb–conv–conv–conv–maxPool–conv–conv–conv–maxPool–FC

Max-pooling layer: In the next stage, max-pooling is applied to the output of the CNN
layer. Max-pooling chooses the highest score among a matrix of features in the feature
map. The pool size was set to 2. The major role of this layer is to reduce the volume of
output vectors, and as a result, the output matrix is much smaller. In this study, we tested
architectures with one or two pooling layers, as shown in Table 3.

Fully connected layer (FC layer): The output of the max-pooling layer is a matrix of
consisting of 1D filters. The matrix is flattened then input into the following layer, which
is a fully connected (FC) layer. The FC layer employs the sigmoid function, as shown in
Equation (1):

hθ(x) =
1

1 + e−θT x
(1)

Output layer: The output layer produces the email’s class, either phishing or legitimate,
using the FC layer’s sigmoid activation function, since it has been shown to be effective
among other test functions when used in the last layer for the text classification task [44].

Hyperparameter tuning: As mentioned in the previous sections, we studied various
combinations of hyperparameters in order to select the optimal ones. The hyperparameters
studied were selected based on the work of Zhang and Wallace [45]. The study suggested
that the word embedding technique, kernel size, number of filters, and activation function
used are the most important hyperparameters to consider while developing a CNN model
for a document classification problem similar to that in this study. The kernel size was set
to 1, 5, or 10, whereas the filter value was set to 100, 300, or 600, and finally, the activation
functions ReLU, Tanh, and Linear were used. As the neural network training process is
stochastic, outcomes might differ depending on the random weight initializers. To tackle
the problem of randomness, we set the seed parameter value to a fixed value. Finally,
we applied the early stopping regularization approach to stop the training process if the
performance began to degrade. This also helps to minimize overfitting. Table 4 shows a
summary of the hyperparameters.

Table 4. Summary of hyperparameters.

Hyperparameter Value

Seed 42
Loss Binary_crossentropy
Number of Layers 1, 2, 3, 4, 5, or 6
Kernel Size 1, 5, or 10
Filters 100, 300, or 600
Activation Function ReLU, Tanh, or Linear
FC layer Activation Function Sigmoid
Optimizer Adam optimizer, learning rate of 0.001
Early Stopping monitor = ‘val_loss’, patience = 2
Batch Size 32
Epochs 100
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3.2.2. Advanced 1D-CNNPD

To further enhance the performance of phishing detection, we augmented the best
performing model of the 1D-CNNPD with LSTM and a GRU. In this section, we describe
the modifications to the 1D-CNNPD model (the best performing model was base model 1
in Table 3). First, we discarded the fully connected layer and then added a ReLU layer
with Dropout. Next, we experimented with four augmentations: adding an LSTM layer,
a Bi-LSTM layer, a GRU layer, and a Bi-GRU layer. Figure 4 shows the Bi-GRU model.
The details of our models are as follows:

Figure 4. Advanced CNN with Bi-GRU and Leaky ReLU.

Leaky ReLU layer: The Leaky ReLU layer with leak correction is a variation on the
classic ReLU activation function. The function’s output has a small gradient toward the
negative input. The main difference between the Leaky ReLU and classical ReLU is shown
in Figure 5: the Leaky ReLU can be a negative value instead of a zero value, as shown in
Equation (2).

Leaky− ReLU(x) =
{

αx x < 0
x x ≥ 0

(2)

where α is usually set as a small positive value, e.g., α = 1e− 2. The motivation for using
this Leaky ReLU layer derives from its ability to handle negative input datasets.

Long short-term memory (LSTM) layer: LSTM is a type of RNN architecture that
uses a number of gates and cell states to either remember or forget information over long
sequences, enabling it to capture long-term dependencies in data. It helps to address
the vanishing and exploding gradient problems that may occur in RNNs. Bidirectional
long short-term memory (BiLSTM) is an extension of the LSTM architecture. It processes
input sequences in both forward and backward directions, combining the output to create
a comprehensive representation. This allows the network to capture information from
past and future contexts simultaneously, enhancing its ability to model dependencies in
sequential data.

(a) (b)
Figure 5. The main difference between Leaky ReLU and classical ReLU. (a) ReLU = max(0, x) ;
(b) Leaky ReLU = max(αx, x).
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Gated recurrent unit (GRU) layer: The GRU model preserves the original long
short-time memory (LSTM) effect with a more straightforward structure, fewer parameters,
and better accuracy. It has two gates, one for updating and one for resetting. The forward
gate determines how much the previous hidden layer’s output affects the current layer: the
more significant the value, the greater the influence. The reset gate controls how much of
the previously hidden layer information is ignored. The bidirectional gated recurrent unit
(Bi-GRU) is divided into two unidirectional GRUs: the first is an output of the hidden layer
state forward→, as shown in Equation (3), and the second← is the backward hidden layer
state shown in Equation (4).

h→t = GRUFWD(xt, ht−1) (3)

h←t = GRUBWD(xt, ht+1) (4)

where h→t is the forward GRU state, and h←t is the backward GRU state and signifies the
operation of concatenating two vectors. We included the Bi-GRU rather than the Bi-LSTM
for two reasons: First, the Bi-GRU has two gates, which is appropriate for the size of our
small dataset. Second, we fit fewer parameters for our small dataset and save time.

It is important to note that the incorporation of machine learning models into real
email security systems goes beyond software application embedding. In the real world,
the process needs to be continuously monitored and fine-tuned to ensure that the model
can manage the volume of user requests while producing results that are impartial and
unambiguous. The deployment of a model involves numerous teams, tools, and components,
making it a complicated task. Data scientists, MLOps engineers, and developers work
together on this task. The deployment strategy must include real-time unstructured data
extraction and processing; storage requirements identification; API, tool, and software
environment setup; prediction timeframe estimation; hardware or cloud requirements to
meet computational demands; and pipeline setup for ongoing training and parameter tuning.

4. Results
4.1. Experimental Settings

The proposed models were implemented using Tensorflow, an open source machine
learning library, utilizing Keras. The Talos hyperparameter tuning library [46] was used to
select the best performing model. Experiments were carried out using GPUs running on
the Google Colab environment. To evaluate our models, we split the dataset into 70% for
training and 30% for testing. The training set was further split into 70% for training and
30% for validation.

4.2. Performance Measures

To evaluate our phishing email classification models, we calculated accuracy, recall,
precision, and F1 score. Furthermore, since our dataset was originally imbalanced, we
calculated the ROC AUC to test the effectiveness of the oversampling method used.
The definition and calculation used for each measure is detailed as follows:

• Accuracy measure: the percentage of correctly classified emails.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

• Recall: the fraction of phishing emails correctly classified as phishing out of the total
number of phishing emails.

Recall =
TP

TP + FN
(6)

• Precision: the fraction of phishing emails correctly classified as phishing out of all the
samples predicted as phishing emails.

Precision =
TP

TP + FP
(7)
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• F1 score: the harmonic mean of precision and recall.

F-Score =
2× Precision× Recall

Precision + Recall
(8)

where TP (true positives) is the total number of emails that are correctly classified as
phishing emails, FP (false positives) represents the total number of emails that have been
incorrectly classified as phishing emails, FN (false negatives) represents the total number of
emails that have been incorrectly classified as non-phishing, and finally TN (true negatives)
represents the total number of emails that have been correctly classified as non-phishing.

Finally, the receiver operating characteristic area under the curve (ROC AUC) score is
the probability of scores achieved by the classifier to rank a randomly chosen phishing
email higher than a randomly chosen legitimate email. This measure can be calculated by
computing the area under the ROC curve.

4.3. Experimental Results

The purpose of our experiments was to evaluate the ability of CNN-based models to
detect phishing emails. We experimented with standalone CNN models, the 1D-CNNPD,
and a CNN model augmented with LSTM and a GRU, the Advanced 1D-CNNPD. We
utilized two benchmark datasets, Phishing Corpus [9] and Spam Assassin [8], to train
our models. The performance results were compared with results of traditional machine
learning approaches in the literature and also with similar deep learning models.

4.3.1. 1D-CNNPD Models

To find the best performing model among the different network architectures under
study, the Talos scan function was used to perform 216 permutations over different
architectures of CNNs. The models were trained on the training set and evaluated on the
validation set to select the best hyperparameters for the different CNN architectures. Table 5
shows the results of the best hyperparameters for the different network architectures that
were under study. The reported hyperparameters were chosen based on the best validation
accuracy achieved during the tuning process.

Next, in Table 6, we report the mean values of the evaluation measures for the
test set based on 30 rounds of running each model in order to minimize bias in results.
Among the eight trained models, the best results were achieved by the first model in
terms of accuracy, precision, recall, and F1. We observe that model 4, which includes two
convolutional layers, has comparable performance to model 1. Both of these models also
have a small standard deviation for the F1 score, indicating stable performance. Arch. 1 has
one convolutional layer that requires 100× 300 + 300 = 30,300 trainable parameters, while
Arch. 4 has two convolutional layers requiring 100× 600 + 600 = 60,600 parameters for
the first layer, and 600× 600 + 600 = 360,600 parameters for the second layer, for a total of
421,200 parameters. The minuscule amount of trainable parameters for our selected model,
Arch. 1, shows that it is indeed a lightweight model.

Table 5. Results of hyperparameter optimization.

1D-CNNPD Activation Kernel Size Filters

Arch. 1 ReLU 1 300
Arch. 2 Tanh 1 600
Arch. 3 Linear 1 600
Arch. 4 ReLU 5 100
Arch. 5 Linear 1 100
Arch. 6 Linear 1 300
Arch. 7 Linear 5 100
Arch. 8 Linear 5 300

Our results highlight the widely debated topic of whether deeper models can produce
more precise outcomes. In our experiments, we observe that increasing the number of



Sensors 2024, 24, 2077 13 of 19

convolutional layers in the network (greater than 2) produces a negative effect on the model
performance as it encourages overfitting, as seen from the ROC AUC measurement.

Table 6. Experimental results for each architecture of our base model, 1D-CNNPD.

1D-CNNPD Accuracy Precision Recall F1 STD F1 ROC AUC

Arch. 1 98.87% 97.19% 99.59% 98.38% 0.09% 99.85%
Arch. 2 79.67% 77.64% 89.30% 77.91% 18.28% 82.02%
Arch. 3 70.86% 68.96% 82.25% 67.42% 22.41% 73.64%
Arch. 4 98.73% 97.16% 99.20% 98.17% 0.13% 99.76%
Arch. 5 90.01% 88.48% 92.08% 87.76% 13.95% 92.11%
Arch. 6 65.04% 67.96% 81.42% 62.34% 24% 69.16%
Arch. 7 96.14% 95.19% 94.41% 93.90% 10.73% 96.50%
Arch. 8 34.42% 34.35% 100% 51.14% 0 50.08%

Next, to further verify the effectiveness of our model, we compared our best performing
model (base model 1) with traditional ML models tackling the same problem. Specifically,
we compared our model with models that have also used the Spam Assassin and Phishing
Corpus email phishing datasets. Table 7 presents the results of our best model (model 1)
compared with previous traditional ML models results in the literature. We can see that
our model shows comparable results to other ML approaches. This shows that a CNN with
convolutional filters is capable of extracting resilient phishing features without the need
for a manual feature extraction process. It is also observed from the table that machine
learning algorithms can exhibit high performance when trained using a wide range of
handcrafted features. According to the literature, the most effective handcrafted features
for email phishing detection can be grouped into external features, body-based features,
URL-based features, header-based features, and sender-based features [47]. Despite the
high performance, handcrafting features is a laborious process that can be very time-consuming
and error-prone.

Although in this study we focus on an email’s body and subject, high performance is
observed, indicating that there is room for improvement with the inclusion of more email
information. In addition, handcrafting features is not required.

Table 7. The performance of the proposed model compared with related machine learning work,
where ML is machine learning, P is phishing, L is legitimate and S is spam.

ML Algorithm Dataset (P, L, S) Feature Count Results

C4.5 [14] 46,525/613,048 7 Acc. 99%
J48 and SVM [17] 5000/5000 30 Acc. 99.7%
C5.0 [48] 4563/4202/1895 22 Acc. 97%
Bayes Net [15] 4594 total 7 Acc. 92%
Random forest [16] 4116/4150 47 Acc. 97% FP 0.60%
PLSA [49] 400,000 total 200 topics Acc. 97.7%
ECM and ECMc [50] 4300/6000 21 Acc. 98%
SVM, AdaBoost, [51] N/A 21 Acc. 97% FP 2%
and naïve Bayes [51] FN 9%
Neural networks and 4559/4559 50 Acc. 98.6%
reinforcement learning [52] F1 98.64%

1D-CNNPD 2279/4150 Auto Acc. 98.87% F1 98.38%

4.3.2. Advanced 1D-CNNPD

Our next experiment was designed to study whether the performance of our best
performing 1D-CNNPD model (base model 1) can be improved when augmented with
LSTM and a GRU, and their bidirectional counterparts. In Table 8, we show the performance
measures of our proposed augmentations, the 1D-CNNPD base model, and other similar
models in the literature. First, we observe that, in general, the augmentations improve the
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performance of the 1D-CNNPD base model. In particular, the 1D-CNNPD with Bi-GRU
yields the best results. It is also observed that augmentations with bidirectional LSTM and
a GRU have improved performance over their unidirectional variations as they are able to
capture long-range dependencies.

Second, we compared our results to DeepAnti-PhishNet [30], which also uses LSTM
and THEMIS [10] and is based on an RCNN. Our choice of deep learning models for
comparison is based on studies that share a similar problem formulation to ours. Our
dataset is smaller than the DeepAnti-PhishNet dataset, and the LSTM layer typically
performs better with larger datasets. It is important to note that DeepAnti-PhishNet
is biased towards the classification of legitimate emails, since it was trained using an
imbalanced corpus. Results indicate that the 1D-CNNPD with Bi-GRU augmentations
performs better than both DeepAnti-PhishNet and THEMIS. We additionally contrast our
most effective model with the dual-layer architecture introduced by [33] and the CNN
model with Continuous Bag of Words (CBOW) word embedding [6]. The dual-layer
design utilizes both email content and body. Each layer incorporates a pre-trained model
responsible for classifying data instances into their respective classes. The CNN model with
CBOW is a simple model with two convolutional layers and two max-pooling layers. The
results in Table 8 show the improved performance of our lightweight model, 1D-CNNPD
with Bi-GRU, over the other two models.

Table 8. The progress of the proposed model compared with deep learning approaches.

Deep Learning Algorithms Dataset
(Phishing/Legitimate/Spam) Feature Counts

Results

Acc. F1

DeepAnti-PhishNet [30] 612/5088 train 4300 test Body 99.1% -
THEMIS [10] 4999/7781 Body and header 99.84% 99.33%
Dual-layer CNN [33] 2664/5554 Body and content 99.51% 99.52%
CNN [6] 14,950/ 3416 Body 96.34% -

1D-CNNPD 2279/4150 Body and subject 98.87% 98.38%
1D-CNNPD with LSTM 2279/4150 Body and subject 99.23% 99.20%
1D-CNNPD with Bi-LSTM 2279/4150 Body and subject 99.34% 99.31%
1D-CNNPD with GRU 2279/4150 Body and subject 99.01% 99.66%
1D-CNNPD with Bi-GRU 2279/4150 Body and subject 99.68% 99.66%

5. Discussion

The main goal of this study was to investigate how email phishing detection could
be improved using DL-based approaches. Email phishing detection using deep learning
is rapidly evolving. This stems from the potential of deep learning to overcome the
limitations of traditional methods and enhance the accuracy of detection. CNN, LSTM,
and GRU architectures are capable of analyzing the contents and structure of phishing
emails, as demonstrated in various studies [3]. However, a major success measure for
any phishing detection model is the ability to detect zero-day phishing attacks with low
false-positive rates.

A total of twelve CNN-based models were trained to detect phishing emails. Our
problem is formulated as a binary classification problem of documents, where it is required
to classify each email (document) as being a phishing or legitimate email. Our results
demonstrate that 1D-CNNPD models are very robust in extracting features of resilient
phishing without using any hand-engineering feature extraction method. Experimenting
with various depths brought to our attention the widely discussed issue of whether deeper
models can yield more accurate results. Our findings show that performance degrades as
the number of convolutional layers increases. This could be the result of model overfitting.
We note that in our experiments, some deeper models exhibit excellent performance;
nevertheless, they display a higher standard deviation score, suggesting that their efficacy
may not be consistent across various iterations. Our observation aligns with findings in the
literature, indicating that increasing model depth tends to exhibit an initial improvement
in performance followed by degradation [53,54].
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Historically, traditional machine learning algorithms have been extensively employed
to address phishing detection and continue to be in use today. Despite being categorized as
shallow learners, they proved to be effective in certain settings. This research illustrates
the superiority of deep learning over traditional shallow learning in the realm of phishing
detection. The intricate architectures of deep learning models allow automatic extraction
of features and contribute to a more effective learning process compared to their shallow
counterparts. Two well-known datasets were used to train our models: Spam Assassin and
Phishing Corpus datasets. Despite being collected between 2004 and 2007, they remain
the most widely used in the literature [39]. Recently, there have been efforts to collect
phishing datasets that mimic the evolution of phishing attacks. The dataset compiled
by Bountakas and Xenakis [40] contains 35,511 emails. However, only 3460 are phishing
emails, of which 1472 were collected between 2015 and 2020. Although it is a more recently
published dataset, it is severely imbalanced, and the phishing emails were not recent.
As such, it provides no clear advantages for us over the more commonly used datasets.
The lack of representative datasets in the field of phishing emails is still an ongoing concern
for researchers.

Our results indicate that the 1D-CNNPD with Bi-GRU augmentations outperforms
DeepAnti-PhishNet in terms of accuracy. It is crucial to highlight that DeepAnti-PhishNet
exhibits a bias toward classifying legitimate emails due to training on an imbalanced corpus.
In comparison to THEMIS, the 1D-CNNPD with Bi-GRU combination demonstrates a
higher F1 score. For highly concealed phishing emails, where the email body exhibits an
extremely high similarity to legitimate emails, the attention mechanism in THEMIS assigns
a higher weight to the email header than to the email body. During THEMIS training, email
header information from an open-source dataset was utilized, which could be the reason
for the improved accuracy.

In practice, the implementation of email phishing detection can be tailored to the
specific requirements and constraints of the system. Two common deployment scenarios
are at the email server or at the edge of the network. Implementing the detection component
directly on the email server enables real-time analysis and the immediate identification
of potential phishing emails. Alternatively, deploying it at the network’s edge provides
an added layer of security, with all incoming emails passing through the edge device for
analysis before being forwarded to the email server or the recipient’s mailbox.

The phishing detection technologies that are now in use have a number of practical
limitations. Zero-day attacks present a serious problem as they can continuously introduce
new phishing patterns that the system has never seen before. Another challenge is spear
phishing, which involves highly targeted and customized attacks that do not match
known phishing patterns. Social engineering techniques are becoming more common,
which further complicates things by taking advantage of human vulnerabilities and
making it harder for automated systems to detect malicious intent based only on technical
factors. Although AI-based systems have demonstrated tremendous success in many fields,
an important challenge that remains to be addressed is algorithmic bias resulting from
limited datasets. In the context of phishing detection, training datasets are inherently
limited, exhibiting an imbalanced class distribution. Malicious and phishing emails
are typically underrepresented, and this imbalance may lead to biased predictions with
potentially unwanted consequences.

Despite all developments in deep learning, research shows that it has not been
extensively studied in the context of phishing detection. One area to investigate is the
effect of hyperparameter fine-tuning algorithms to ensure the robustness of deep learning
architectures for phishing detection. Many optimization algorithms, such as random search,
grid search, and Bayesian optimization, could be explored. Another requirement for future
phishing detection models is to have representative datasets, as class-imbalanced datasets
can lead to poor and biased detection performance. Although many class-imbalanced
algorithms exist, obtaining reliable and precise results is still challenging. This is particularly
challenging in the case of multi-label and multi-class phishing detection. Thus, future
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research needs to focus on adapting class-imbalanced algorithms to the ever-evolving
nature of phishing patterns. Emerging technologies pose more challenges in the detection of
cyberthreats, including phishing attacks. Cybercriminals are utilizing AI technologies, such
as generative AI, to create content that resembles a known contact’s tone and style, making
it more difficult for phishing detection solutions to recognize. Additionally, phishing
attacks can become more targeted as a result of the growing amount of behavioral data
being collected. Attackers can track user activity and execute customized attacks through
AI automation. Finally, deep learning is sometimes thought of as a “black box”, which
means that it might be difficult to analyze or comprehend the inner workings of the model
and the particular features that influence its predictions. However, AI explainability is an
emerging research topic and there is ongoing work to explore the explainability of deep
learning methods in the context of phishing detection, a topic that is worth investigation.

Phishing attacks present implications on various levels, including theoretical, managerial,
and social. Many theoretical frameworks have been proposed to predict phishing susceptibility.
Research suggests that individual characteristics like age, gender, and technological proficiency
do not correlate with a person’s susceptibility to phishing. Rather, training and anti-phishing
education can help control a user’s response to a phishing attack. Institutional and business
IT managers should be mindful of the harmful aspects of phishing attacks to organizations
that would result in sensitive data breaches, loss of data and intellectual property, reputation
damage, customer churn, and monetary losses. Protecting organizations from phishing
attacks requires a combination of countermeasures, including employee education, technical
solutions, and compliance with policies and relevant laws. Phishing attacks have far-reaching
societal effects since they diminish society’s trust in using technology, making people less
confident in conducting critical transactions online or assisting others.

6. Conclusions

Although phishing attacks were introduced two decades ago, they are still used to gain
personal information, user credentials, and credit card details. In this work, we addressed
email phishing because emails are the most common entry point for phishers to initiate
attacks. We present a total of twelve DL models based on a CNN for phishing detection.
Our results indicate that the combination of a CNN with Bi-GRU is able to accurately detect
phishing emails. Bi-GRU is used to save time without sacrificing performance. The result
of the Advanced 1D-CNNPD with Leaky ReLU and Bi-GRU achieved 100 % precision,
99.68% accuracy, an F1 score of 99.66%, and a recall of 99.32%. A huge number of solutions
have been proposed to encounter phishing attacks. However, phishers always succeed in
discovering new vulnerabilities in the developed solution. This battle between software
developers and phishers has no end. Our work can be extended in many ways. We suggest
using Generative Adversarial Networks as a solution by applying Bi-GRU as the generator
layers and 1D-CNN as the discriminator layers. In addition, more information could be
used in model training, such as email headers, to further improve performance. Due to the
lack of real phishing datasets, it is important to investigate dataset expansion approaches,
such as text augmentation approaches.
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The following abbreviations are used in this manuscript:

1D-CNNPD One-Dimensional Convolutional Neural Network for Phishing Detection
AUC Area Under the Curve
CNN Convolutional Neural Network
GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
ROC Receiver Operating Characteristic
SMOTE Synthetic Minority Oversampling Technique
SVM Support Vector Machine
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