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Abstract: The network intrusion detection system (NIDS) plays a crucial role as a security measure
in addressing the increasing number of network threats. The majority of current research relies
on feature-ready datasets that heavily depend on feature engineering. Conversely, the increasing
complexity of network traffic and the ongoing evolution of attack techniques lead to a diminishing
distinction between benign and malicious network behaviors. In this paper, we propose a novel
end-to-end intrusion detection framework based on a contrastive learning approach. We design
a hierarchical Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) model to
facilitate the automated extraction of spatiotemporal features from raw traffic data. The integration
of contrastive learning amplifies the distinction between benign and malicious network traffic in the
representation space. The proposed method exhibits enhanced detection capabilities for unknown
attacks in comparison to the approaches trained using the cross-entropy loss function. Experiments
are carried out on the public datasets CIC-IDS2017 and CSE-CIC-IDS2018, demonstrating that our
method can attain a detection accuracy of 99.9% for known attacks, thus achieving state-of-the-art
performance. For unknown attacks, a weighted recall rate of 95% can be achieved.

Keywords: network intrusion detection; contrastive learning; CNN; GRU; end-to-end

1. Introduction

The past two decades have witnessed the rapid development of network technology.
Especially in recent years, the application of 5G technology has landed, making it possible
to connect everything. In 2020, the number of active Internet of Things (IoT) devices
worldwide reached 15.1 billion, and this number is expected to grow to 29.42 billion
by 2030 (https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-
worldwide/, accessed on 21 March 2024). Accordingly, cyber threats are becoming more
serious. The network intrusion detection system (NIDS) is one of the most important
types of security devices in cyberspace and has been widely used in safeguarding various
information systems. A NIDS continuously monitors incoming and outgoing network
traffic, analyzing it to detect cyberattacks [1].

In general, network intrusion detection methods can be broadly classified into two
main categories: signature-based IDS and anomaly-based IDS [2–5]. Signature-based IDS
involves the generation of signatures for known attacks, which are then compared against
incoming data instances [6–8]. These methods offer the advantages of high detection
precision and a low false alarm rate; however, they may be limited in their ability to detect
novel attacks. On the other hand, anomaly-based IDS focuses on detecting deviations
from expected behaviors by constructing models to assess benign behavior and issuing
warnings when a given instance deviates significantly from typical behavior beyond a
predefined threshold.
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Anomaly-based methods have garnered increased attention due to their superior
capabilities in detecting unknown attacks. A significant trend in anomaly-based IDS is the
utilization of machine learning for its robust representation capabilities. As network traffic
becomes increasingly complex, a primary challenge lies in designing a general and stable
representation model that can effectively distinguish anomalies from benign traffic.

Firstly, relying on feature-ready datasets limits the generalizability and feasibility of
machine learning-based approaches, which often require feature engineering for typical
attacks. Traditional machine learning models, such as support vector machines, decision
trees, and K-nearest neighbors, are trained to acquire detection capabilities using these
features [9–11]. Deep learning has also been applied to construct IDSs in recent years.
However, many methods still depend on feature-ready datasets [5,12–14]. The advantages
of building models for feature-ready data are semantically interpretable and easy to train.
However, the cost of feature engineering also significantly increases with the number of
attack types. The designed features also lose some information. Therefore, some methods
attempt to construct automatic feature extraction models [15,16] for the raw traffic. We
prefer automatically extracting features from raw traffic because such methods can fully
leverage the powerful feature extraction capabilities of deep learning and are more feasible
for new types of attacks.

Secondly, the boundary between benign and malicious traffic is becoming increas-
ingly difficult to determine. Attackers are continuously upgrading malware to alter their
communication behaviors in order to bypass detection. New attack variants will likely
be challenging to detect using previous features, necessitating new feature engineering.
Deep learning-based approaches also encounter the issue of adversarial samples. Attackers
can treat NIDS as a black-box system and continuously query and adjust the attack traffic
features based on feedback until they successfully bypass the NIDS [17,18]. In order to en-
hance the capability of IDS to differentiate between benign and malicious traffic, it is crucial
to develop models that accentuate the distinction between benign and malicious samples.

In this paper, we propose CHCG, a contrastive learning-based end-to-end intrusion
detection framework with hierarchical Convolutional Neural Networks (CNN) and Gate
Recurrent Unit (GRU) networks to extract features from raw traffic. CHCG has the capabil-
ity to directly process network traffic PCAP data, eliminating the need for supplementary
feature engineering. The raw bytes in the packet sequence are used as the input. The bytes
of a single packet are converted into a two-dimensional matrix, from which the spatial
feature vector is then extracted using CNN. The spatial feature vectors of all packets in the
sequence are composed into a vector sequence. The temporal features are subsequently
extracted using GRU to produce a representation that encompasses both spatial and tem-
poral features. Contrastive learning encourages the model to encode benign traffic into
a compact cluster within the representation space and amplifies the distinction between
benign and malicious representations. This, in turn, helps widen the margin of the decision
boundary. Finally, the cosine similarity between the representations of the testing and
benign traffic is used as the basis for detection. Experiments show that the proposed
method exhibits state-of-the-art performance and high accuracy against unknown attacks.
Our main contributions are summarized as follows:

1. We design a hierarchical model that combines CNN and GRU networks for the au-
tonomous extraction of spatiotemporal features from raw traffic data. Furthermore, an
embedding layer is integrated to enhance the representation dimension of the protocol
header bytes, which contain more important information.

2. We propose an intrusion detection framework based on contrastive learning. Con-
trastive loss can offer a wider decision boundary margin compared to cross-entropy
loss. Using cosine similarity with benign traffic representations as the basis of detec-
tion can lead to higher accuracy and a lower false alarm rate. Moreover, unknown
attacks can be detected.

3. We introduce the granularity of IP pairs for packet collection. Compared with
flow-level, IP pair granularity can present inter-flow characteristics, which has ad-
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vantages for discovering attack traffic that looks normal in a single flow, such as
Dos and PortScan.

4. The proposed framework undergoes evaluation using widely utilized datasets, namely,
CIC-IDS2017 [19] and CSE-CIC-IDS2018 [20]. The results demonstrate that our ap-
proach can attain a detection accuracy of 99.9% for known attacks, thus achieving
state-of-the-art performance. For unknown attacks, a weighted recall rate of 95% can
be achieved.

The rest of paper is organized as follows: Section 2 introduces related works. Section 3
describes the methodology used in our research. Section 4 demonstrates the experiments
using CIC-IDS2017 and CSE-CIC-IDS2018 datasets. Section 5 concludes this paper.

2. Related Work

This section presents the related works on intrusion detection in recent years and
mainly focuses on deep learning methods.

Some studies have concentrated on the development of novel features or algorithms
for feature selection. Mirsky et al. proposed Kitsune, an online network IDS [21]. Kitsune
utilizes a set of autoencoder neural networks with unsupervised learning to differentiate
between benign and malicious network traffic. When packets are captured, Kitsune extracts
their statistical features and reconstructs them with several auto-encoders. The reconstruc-
tion error distinguishes between normal and malicious traffic patterns. Similarly, Li et al.
proposed an autoencoder-based IDS and applied feature selection and feature grouping
algorithms [12]. The reconstruction error of autoencoders was used to detect anomalies.
However, they only considered the CSE-CIC-IDS2018 dataset, so the evaluation was insuf-
ficient. Xu et al. proposed an IDS with GRU networks, multilayer perception (MLP), and
softmax module, achieving an overall detection rate 99.42% on the KDD 99 dataset and
99.31% on the NSL-KDD dataset [22]. Alzubi et al. combined CNN and LSTM to identify
hidden patterns of data, achieving improved accuracy on the CSE-CIC-IDS2018 dataset [14].
Wang et al. designed a feature selection approach and generated 143 features for encrypted
traffic. They also proposed a detection framework with long short-term memory (LSTM),
ResNet, and XGBoost [23]. The quality of features dramatically influences the performance
of the aforementioned methods, indicating that new attacks may be difficult to detect.

End-to-end methods are becoming a hotspot for fully leveraging deep neural networks,
which directly learn features from raw traffic data. Wang et al. proposed an encrypted
classification method using one-dimensional CNN [24]. The raw bytes of a session or flow
are input into the network for automatic feature extraction. They validated the method
using the ISCX VPN-nonVPN dataset and demonstrated its effectiveness. Their other work
combines CNN and LSTM to learn the packet-level spatial features and the flow-level
temporal features [15]. The hierarchical spatiotemporal features have better performance
in characterizing network traffic behaviors. This network structure is also utilized in other
studies. Lin et al. proposed TSCRNN, an encrypted traffic classification scheme that extracts
abstract spatial features using CNN and temporal features using stacked bidirectional
LSTM [25]. Differently, they divided all raw bytes by 255 for normalization, which is
more efficient than the one-hot encoding in Wang et al.’s work. Shapira et al. proposed
FlowPic [26], transforming packet sizes into grayscale images and utilizing CNN for
classification. FlowPic has an advantage in processing speed, but the amount of information
extracted from the packet is insufficient for handling complex traffic. PBCNN [16] also
adopts a hierarchical structure that utilizes CNN to extract abstract features of individual
packets and packets within a flow. Generally, a hierarchical feature extraction structure is
considered an appropriate choice for representing raw traffic data.

In recent years, contrastive learning has led to significant advances in self-supervised
representational learning [27–29]. The basic idea is to pull the anchor closer to positive
samples in the embedding space and push it away from negative samples. The positive
samples are typically data augmentations of the anchor, while the negative samples are
randomly selected samples from the minibatch, excluding the anchor and its augmentations.
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The lack of labels may cause samples of the same class in the minibatch to be incorrectly
regarded as negative pairs. Consequently, supervised contrastive learning [30] redefines
positive samples as those from the same class and performs better than cross-entropy
loss-based methods. In this paper, we apply supervised contrastive learning to develop a
representation model for network traffic using labels. Some works have also proposed IDSs
based on contrastive learning. FeCo [31] is a federated-contrastive-learning framework that
aims to address users’ privacy concerns and develop an accurate model for the benign class.
Lopez-Martin et al. [32] represented features and labels within the same vector space. The
study aimed to minimize the distance between each label prototype and its sample-class
samples. However, the two methods are not end-to-end, and the tested datasets are feature-
ready. Yue et al. [33] proposed a heuristic method to generate traffic augmentations and
combined contrastive loss and cross-entropy loss to enhance the model training. However,
they only tested the performance on raw traffic using a private dataset and still relied on
statistical features from public datasets.

Table 1 provides a summary of the related works discussed in the paper. The pro-
posed method can be executed in an end-to-end manner, eliminating the need for feature
engineering. An additional benefit is the ability to detect unknown attacks.

Table 1. Summary of the related works.

Methods End-to-End Unknown Attack Detection

Signature-based Preconfigured Rules or Signatures [6,7] No No

Anomaly-based

Traditional machine
learning

SVM [9], DT [10],
KNN [11] No No

Deep Learning

HELAD [13,23] No No

[12],
Kitsune [21,31,32] No Yes

HAST-IDS [15],
PBCNN [16],

FlowPic [24,33,34]
Yes No

The proposed CHCG Yes Yes

3. Methodology

This paper proposes a network intrusion detection framework based on contrastive learning
and a hierarchical representation model. The framework aims to solve the following problems:

• How can we automate the extraction of general effective features from raw traffic
data without the need for complex feature engineering?
Extracting useful features from raw traffic is challenging because network behavior
typically involves numerous packets, some of which may be encrypted. Considering
the intra- and inter-features of packets, we design a hierarchical structure. We utilize
CNN to learn the spatial features of a single packet and GRU networks to learn the
temporal features of sequential packets.

• How can a network intrusion detection model be trained to ensure a significant
margin between the decision boundary and the training points?
It has been shown that cross-entropy loss results in a much smaller margin between the
decision boundary and the training points than optimal. As a result, the trained IDS is
sensitive to noisy labels, susceptible to adversarial sample attacks, and challenging to
detect unknown attack traffic. In this paper, we employ contrastive loss to represent
benign traffic more compactly in the embedding space and separate attack traffic from
benign traffic, thereby widening the margin of the decision boundary of the trained
model. As a result, the trained model becomes more robust in the presence of noisy
labels and adversarial samples, enabling the detection of unknown attacks.
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3.1. Framework

Most machine learning-based IDS methods detect network anomalies by utilizing
features extracted from flows, even though some flows may persist for a considerable
duration. Therefore, these methods are more suitable for offline detection. In order to
detect malicious traffic at an early stage, we aim to identify a specific number of packets as
soon as they are captured. CHCG automates the extraction of raw traffic data features using
CNN and GRU models without the need to wait for the flow to finish. This strategy avoids
the cost of waiting for the end of a TCP connection and extracting statistical features. The
framework of CHCG is shown in Figure 1, including data processing, feature extraction,
training, and detection.

• Data processing. Upon the arrival of network traffic packets, it is necessary to trans-
form them into a compatible format that can be readily utilized by deep learning
models. The packets are grouped either at the flow level or IP pair level and then or-
ganized in a sequential order according to their respective arrival times. Subsequently,
the raw bytes of the packets are extracted for use as input.

• Feature extraction. Taking into account the spatial features of an individual packet and
the temporal relationships between packets, we design a hierarchical model based on
CNN and GRU for automated feature extraction. In the case of protocol header bytes,
an embedding layer is incorporated to enhance the dimension of data representation,
rather than solely relying on numerical values.

• Training. Contrastive loss is used to promote the formation of a compact cluster
for the representation vectors of benign traffic, while simultaneously ensuring a
significant separation from the representation vectors of malicious traffic. As a result,
the distinction between benign and malicious traffic is magnified in the representation
space, leading to increased robustness.

• Detection. The core of the benign clusters is determined by calculating the average
of the representations of benign flows in the training set. The anomaly score is
determined by calculating the cosine similarity between the test representation and
the core vector. Consequently, unknown attacks can be identified based on their low
similarity to benign traffic.
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Figure 1. The framework of CHCG.
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3.2. Data Processing
3.2.1. Capture Packets

Data formats and feature distributions vary significantly across different granularities
of network flows. Dainotti et al. [35] summarized five common granularities of network
flows, including TCP connections, flows, bidirectional flows, services, and hosts. A flow
is typically characterized by the same 5-tuple (source IP, source port, destination IP, des-
tination port, and transport layer protocol) over a period of time. A bidirectional flow is
one in which the source and destination of the 5-tuple are interchangeable, and it is also
known as a session. Flows and sessions are the most common granularities for network
traffic analysis and are typically selected in most studies. The method proposed in this
paper uses sessions as one of the detection granularities.

Another granularity used in this paper is IP pairs, also known as host pairs. Dain-
otti et al. [35] classified host granularity as the predominant traffic generated by a host,
under the assumption that bidirectional traffic to and from the host can be observed. We
refine this granularity by using the IP address pairs of both communicating parties as
the analysis granularity, where source and destination IPs can be exchanged. Thus, it is
more relevant than using one host’s IP as the object of detection. Another advantage is
that the granularity of IP pairs contains multiple sessions, which can reflect inter-flow
characteristics. Especially for PortScan and DoS attacks, their intra-flow characteristics are
closer to normal traffic, but the inter-flow characteristics exhibit clear anomalies.

Figure 2 illustrates the benefits of IP pair granularity in detecting PortScan attacks.
Looking at just a single flow, such characteristics may also appear in benign traffic. When
analyzing multiple flows together, anomalies can be detected immediately. Therefore,
IP pair granularity can serve as a complement to flow and session granularity. It offers
advantages in detecting attacks with distinct inter-flow characteristics.

SYN RST

SYN ACK RST

54987 443

54989 80

SYN ACK RST 21

SYN ACK RST 22

54995

57676

32786 705SYN RST

flow 1

flow 2

flow 3

flow 4

flow 5

IP 1 IP 2

SYN SYN SYN ACK RST SYN RSTIP Pair ···

IP 1 IP 2

Figure 2. The packets generated by the PortScan attack are displayed at the granularity of flow and IP
pair, respectively. Each flow starts with a TCP SYN packet and then receives an ACK or RST, which
can also occur in benign flows. However, at the IP pair granularity, a large number of consecutive
SYN packets appear within a short period of time, indicating a clear anomaly.
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For both granularities, the captured packets are organized sequentially, and the time
interval between packets should not be too long. If no new data packets are received
within a certain period, such as 2 min, the packet collection process of a session or an IP
pair should be halted, and the cache should be cleared to avoid unnecessary occupation
of storage. It is reasonable to infer that prolonged waiting signifies the termination of
previous communication. Assuming there are n collected packets from the same 5-tuple
or IP pair, where pi represents the i-th packet, the packet sequence is represented as
P = [p1, p2, . . . , pi, . . . , pn].

3.2.2. Segment Packets According to a Fixed Window Size

Now, the collected packets are segmented based on a fixed window size, denoted as w.
The objective of segmentation is twofold: to timely identify incoming traffic for alleviating
storage constraints and to align the input for the deep learning model. For the session
granularity, we select the first w packets within a session.

For the IP pair granularity, the detection window slide over the packet sequence. The
sequence within a window can be denoted as P(w) = [pi, pi+1, . . . , pi+w]. When the
sequence has been processed, the window slides to the next position. We define s as the
slide step and typically set its value to half of the window size. Before generating a new
sequence, we check whether the number of remaining packets is more than s. If not, it
is believed that the remaining data packets are too small to warrant further detection. If
the number is greater than s, a new window sequence is generated, and empty packets
are used to make up the shortfall when the remaining packets are insufficient to form a
window. Then we obtain the new sequence P(w)′ .

P(w)′ = [pi+s, pi+s+1, . . . , pi+s+w] (1)

3.2.3. Extract Packet Data

Raw traffic data usually refers to all the bytes contained in a packet. For PCAP-
formatted traffic, the bytes in each packet can be easily separated. These bytes contain
the protocol headers and payloads for each layer of the network protocol and cover all
communication information. Many studies have selected raw packet data as inputs and
demonstrated satisfactory performance [15,25,36]. The advantages include lower costs for
feature engineering and faster data processing speed. To minimize distractions, we remove
the bytes associated with the MAC address and IP address. It is evident that such private
information typically varies with each attack; otherwise, an address filter can effectively
block the attack. Moreover, most artificial datasets have a predetermined attack trace or are
anonymized due to privacy concerns.

Therefore, our approach takes the first l bytes from the packet, excluding the MAC and
IP addresses, as the input for feature learning. If the packet has insufficient bytes, it will be
padded with 0 × 00. Finally, we obtain the processed result, denoted as P(w)

l . We sampled
approximately 2% of the PCAPs from CSE-CIC-IDS2018 and analyzed the distribution of
packet lengths, as illustrated in Figure 3. All the packets are within 1500 bytes, which is the
Maximum Transmission Unit (MTU) of Ethernet. The percentage of 1500 bytes is 23.75%.
Therefore, we set l as 1480 after removing IP and MAC addresses.

3.3. Feature Extraction

In this part, we aim to learn the representation of spatiotemporal features of the packet
sequence. We first utilize CNN to learn the spatial features of each packet and obtain a
feature vector. The output vectors of packets in the detection window form a sequence of
vectors, serving as the input for GRU networks to learn temporal features. The output of
the representation model is an m-dimensional vector, denoted as v.
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Figure 3. CSE-CIC-IDS2018 packet length distribution ( 2% random sampling). The x-axis coordinates
represent intervals with packet lengths ranging up to 50. Each packet number bar contains the
minimum value of the interval, not the maximum value.

3.3.1. Inputs

After data processing, we obtain P(w)
l , the object of feature extraction. It can be formalized as:

P(w)
l = [a1, a2, · · · , ai, · · · , aw] (2)

where
ai = [b1, b2, · · · , bj, · · · , bl] (3)

ai represents the trimmed bytes in packet pi and bj represents j-th byte in ai.

3.3.2. Normalization

Prior to being fed into the model, it is essential to normalize all data. One-hot encoding
is utilized in some studies [15,16]. One byte is encoded into a 256-dimensional vector, and
its effectiveness is empirically validated. Nevertheless, the increase in data dimensionality
also incurs additional computational expenses. Some works [16,33] just treat a byte as a
numerical value within the range of [0, 255] and normalize it by dividing it by 255. The
packet header bytes contain important flags, lengths, or other information and are not
always expressed in exactly one byte. For example, in the IPv4 protocol, two bytes are
used for total length, and in the TCP protocol, two bytes are used for port numbers. Thus,
simply considering one byte as a number within the range of [0, 255] poses challenges in
learning the representative packet features.

Here, we employ a more fine-grained approach to normalization by integrating an
embedding layer to encode the header bytes into a higher-dimensional space and dividing
the other bytes by 255. Then, we concatenate the two parts. The embedding dimension can
be selected from 1 to 256, and we choose 16 as a compromise. For a TCP packet, the header
bytes typically include 14 bytes for the Ethernet protocol, 20 bytes for the IPv4 protocol,
and 20 bytes for the TCP protocol. Therefore, the dimension of the embedding vector for
the head bytes is 544 ((54 − 20)× 16). We concatenate all normalized values and reshape
them into a 45 × 45 matrix, padding with some zeros.

Finally, the dimension of ai is adjusted to 45 × 45, i.e., ai ∈ R45×45.

3.3.3. Model Structures

We use 2D-CNN and GRU-based RNN to learn the spatiotemporal representation of P(w)
l .

The hierarchical model structure is shown in Figure 4. In this paper, we utilize three CNN
models: a basic model with only two convolutional layers, a relatively deeper model with
four convolutional layers, and ResNet18, a classic model in the field of computer vision.
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CNN converts the raw data of a single packet into a vector, and a vector sequence can be
formed after all packets in the window have been processed. The sequence is input into
the two-layer GRU networks. The output of the entire model is a 128-dimensional vector
representing the spatiotemporal features of the packets in the detection window.

Packet Raw Matrix

(45×45)
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Embedding(256, 16) Dividing by 255
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LayerNorm
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Packet Bytes 

②
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Figure 4. The hierarchical model structure of CHCG.

3.3.4. Packet Spatial Feature Extraction

CNN has demonstrated outstanding performance in the field of computer vision
and has subsequently been expanded to various domains. In comparison to deep neural
networks (DNN), CNN decreases the quantity of weights and computational complexity,
thereby enhancing the efficiency of training and prediction. We utilize CNN for the
extraction of packet spatial features. To evaluate the impact of the depth of CNN, three
CNN models are employed. The first model consists of two standard convolutional blocks,
which include convolution, batch normalization, rectified linear unit (ReLU), and max-
pooling operations. The second model exhibits increased depth by incorporating four
convolutional blocks and eliminating two maxpool layers. The third model utilized in
this study is the classical ResNet18 model, which has been adapted to meet the specific
requirements by modifying its input and fully connected layers. Subsequently, the vector
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generated by the CNN will be flattened and its dimensionality reduced to 256 through a
linear layer.

3.3.5. Temporal Feature Extraction

RNN plays an important role in learning temporal features. LSTM [37] and GRU [38]
are the most commonly used RNN units. Compared to LSTM, GRU has a simpler structure,
resulting in lower computational costs. However, GRU can achieve performance as good
as LSTM most of the time. Two GRU blocks are used in our model, each consisting of a
256-unit GRU layer and a dropout layer.

After learning the temporal feature, we add a flatten layer to normalize and reshape the
feature. Afterward, we utilize another linear layer to decrease the dimension to 128. Finally,
we obtain the spatiotemporal feature vector v ∈ R128 of the windowed packet sequence.

3.4. Training and Detecting
3.4.1. Contrastive Loss

Our goal is to train a representation model so that the representation vectors of the
same class traffic fall into a compact cluster, while the representation vectors of different
class traffic are far from each other. We assume that the training dataset has been split
into minibatches with the size of N, and each instance in the batch has been projected to a
feature vector vi ∈ R128. The corresponding label is yi ∈ 0, 1, where 0 indicates a benign
traffic instance and 1 indicates an attack instance. The supervised contrastive loss function
used in our method is shown as Equation (4).

Lij = − log
1
(
yi = yj

)
exp

(
vT

i vj/τ
)

exp
(
vT

i vj/τ
)
+ ∑N

k=1 1(yi ̸= yk) exp
(
vT

i vk/τ
)

L =
1

N(N − 1)

N

∑
i=1

N

∑
j ̸=i

Lij

(4)

Here, τ ∈ R+ represents a scalar temperature parameter, and Lij is the loss of the
positive pair (vi, vj). 1(.) is the indicator function, and it equals 1 if the condition is satisfied.
A positive pair is defined as a vector pair with the same label. Then, we sum up all positive
pairs to calculate the batch loss L. By minimizing the loss function, we aim to maximize
the similarity among representations of the same class and minimize the similarity among
representations from different classes.

3.4.2. Detecting

The idea is to calculate the similarity between the representation of the test in-
stance vtest and the average vector v of benign representations to determine whether
the test instance is benign or not.

First, we generate all the benign representations. Then, we use density-based spatial
clustering of applications with noise (DBSCAN) algorithm to remove outliers. Although
most benign traffic representations are in a small cluster, some instances are still close to
the boundary of intrusion traffic. It is reasonable to remove outliers for higher precision.
DBSCAN is widely used in many real-world applications due to its simplicity, efficiency,
and robustness [39]. For the rest of the vectors, we calculate the average vector v by
Equation (5).

v =
1
n ∑

i

(
vi

∥vi∥2

)
(5)

where ∥ · ∥2 denotes the L2-norm function. The cosine similarity estimator is employed to
quantify the similarity between the test vector and the average benign vector.

sim =
vTvtest

∥v∥2 × ∥vtest ∥2
(6)
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The similarity sim ranges from 0 to 1, and a value close to 1 indicates high similarity.
Finally, we can use a threshold t to determine the category of the test instance. t needs
to be manually selected according to specific requirements. A higher threshold leads to
more precise detection results, but it also allows more malicious traffic to bypass detection.
Conversely, a lower threshold increases the recall rate but also results in a higher false
positive rate (FPR).

4. Experiments
4.1. Dataset and Experimental Setup

We implemented CHCG on the PyTorch platform [40]. We ran all the experiments on
a computer with an Intel(R) Xeon(R) Gold 6248R CPU, a NVIDIA GeForce RTX 3090 GPU
and Windows 10 OS. The datasets used in the experiments include CIC-IDS2017 [19] and
CSE-CIC-IDS2018 [20], which are relatively lately published and have been frequently used
by recent works.

The CIC-IDS2017 dataset was created by the Canadian Institute of Cybersecurity in
2017 and introduced by Sharafaldin et al. [19]. They tried to generate realistic background
traffic and used B-Profile system to profile the abstract behavior of human interactions. The
naturalistic benign traffic provides a better assessment of the performance in the real world.
They implemented several common attacks including BruteForce FTP, BruteForce SSH,
DoS, Heartbleed, WebAttack, Infiltration, Botnet, and DDoS. CSE-CIC-IDS2018 was created
with a similar method but in a more complicated network topology. The two datasets both
provide raw PCAP data, up to 48.8 GB and 444.5 GB, respectively.

Liu et al. analyzed the errors [41] present in both datasets. They analyzed the inconsistency
of the dataset labels with the actual attack behavior and provided a modified dataset. However,
what they provide is still feature-ready data that cannot be directly used in the experiments. In fact,
we split and labeled the PCAP data based on the attack paths, attack times, and other information
from official documents, rather than the CSV files provided. According to our analysis, we found
some issues that are consistent with the findings of Liu (2022) [41]. For example, in CSE-CIC-
IDS2018, the execution description of BruteForce FTP can not be matched with the PCAP
data, so we removed it from the attack list. Infiltration was divided into two steps: first,
the attacker compromises an internal host, and then uses that host to launch a network
scanning attack. We extracted the traffic from the latter part as Infiltration. Liu et al. also
raises the issue of empty payloads, which we did not distinguish and categorized them
all as attacks.

Overall, the dataset we generated by extracting from the original PCAP file eliminates
most of the problems in the feature-ready CSV dataset. While both datasets still suffer from
the problem that some of the traffic does not exactly match the real attack process, it is
reasonable to use them to evaluate our method.

The details of the CIC-IDS2017 and CSE-CIC-IDS2018 datasets at the IP pair granularity
are summarized in Tables 2 and 3, including the numbers of total, train, and test samples.
Obviously, there is a significant imbalance in both CIC-IDS2017 and CSE-CIC-IDS2018,
which is consistent with the real world. The proportion of malicious traffic is much smaller
than that of benign traffic, and the proportion of different types of malicious traffic also
varies significantly.

It is reasonable to assume that we collected a mass of benign traffic and several
categories of malicious traffic. The collected traffic was then labeled to train the model. In
the experiments, we divided the attacks into known and unknown attacks based on the
volume of their sample numbers. For CIC-IDS2017, we split the benign samples and known
attack samples into the training and testing sets with a 1:1 ratio. The known attacks include
BruteForce-FTP, BruteForce-SSH, PortScan, DDoS LOIC, DoS Hulk, and DoS GoldenEye.
Other attacks were considered unknown and were only used during the testing phase.
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Table 2. Details of windowed sequences in CIC-IDS2017 for w = 20.

Traffic Category Total Train Test

K
no

w
n

Benign 1,073,124 536,562 536,562
DDoS LOIC 128,060 64,030 64,030
DoS Hulk 124,695 62,348 62,348
PortScan 32,406 16,203 16,203

BruteForce-SSH 14,025 7013 7013
BruteForce-FTP 11,159 5580 5580
DoS GoldenEye 10,561 5281 5281

U
nk

no
w

n

Infiltration 7445 0 7445
DoS Slowloris 4757 0 4757

DoS Slowhttptest 3966 0 3966
WebAttack-
BruteForce 3026 0 3026

Botnet 1304 0 1304
WebAttack-XSS 963 0 963
WebAttack-SQL

Injection 31 0 31

All 1,415,522 697,015 718,507

Table 3. Details of windowed sequences in CSE-CIC-IDS2018 for w = 20.

Traffic Category
w = 10 w = 20 w = 30

Train Test Total Train Test Total Train Test Total

K
no

w
n

Benign 205,769,000 1,000,000 1,000,000 92,834,300 1,000,000 1,000,000 68,091,800 1,000,000 1,000,000
DDoS-LOIC-UDP 9,852,201 100,000 100,000 4,926,098 100,000 100,000 3,284,063 100,000 100,000

DoS-Hulk 4,069,009 100,000 100,000 2,034,504 100,000 100,000 1,356,335 100,000 100,000
SSH-BruteForce 862,013 100,000 100,000 431,006 100,000 100,000 287,337 100,000 100,000

Botnet 734,252 100,000 100,000 367,126 100,000 100,000 244,746 100,000 100,000
DDoS LOIC-HTTP 664,234 100,000 100,000 332,118 100,000 100,000 221,402 100,000 100,000

DDOS-HOIC 241,474 100,000 100,000 120,736 60,368 60,368 80,485 40,243 40,242
Infiltration 79,443 39,722 39,721 39,756 19,878 19,878 26,363 13,182 13,181

U
nk

no
w

n

DoS-GoldenEye 51,828 0 51,828 25,917 0 25,917 17,272 0 17,272
DoS-SlowHTTPTest 42,219 0 42,219 21,109 0 21,109 14,073 0 14,073

DoS-Slowloris 21,386 0 21,386 10,693 0 10,693 7128 0 7128
Brute Force-XSS 13,648 0 13,648 6823 0 6823 4549 0 4549
Brute Force-Web 12,433 0 12,433 6216 0 6216 4143 0 4143

SQL Injection 65 0 65 33 0 33 19 0 19

All 222,413,205 1,639,722 1,781,300 101,156,435 1,580,246 1,651,037 73,639,715 1,553,424 1,600,607

For CSE-CIC-IDS2018, the number of samples for benign and certain attacks is ex-
cessive, and it was unnecessary to use all the samples. The ratio of division between
the training set and testing set is also 1:1. However, in the training and test sets, only
1,000,000 benign samples were randomly selected, and the maximum number of sam-
ples per attack was limited to 100,000. The known attacks include DDoS-HOIC, DDoS
LOIC-HTTP, Botnet, SSH-BruteForce, DoS-Hulk, DDoS-LOIC-UDP, and Infiltration.

To evaluate the performance of the proposed CHCG, we used accuracy (AC), precision
(PR), recall (RC), and F1-score (F1) as the metrics. Concerning intrusion detection tasks, all
results correspond to the following four outcomes: (1) TP (true positive): malicious samples
correctly identified as malicious; (2) TN (true negative): benign samples correctly identified
as benign; (3) FP (false positive): benign samples incorrectly identified as malicious; (4) FN
(false negative): malicious samples incorrectly identified as benign. Therefore, the formulas
for the above metrics are defined as follows.

precision =
TP

TP + FP
. (7)
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recall =
TP

TP + FN
. (8)

accuracy =
TP + TN

TP + TN + FP + FN
. (9)

F1-score =
2 × Precision × Recall

Precision + Recall
. (10)

These metrics are heavily influenced by data imbalances. Due to the high proportion
of benign traffic, even with high accuracy, a significant number of benign samples may be
incorrectly classified as malicious, which results in low precision. For attacks involving
a small number of samples, they have little impact on the overall metrics. Therefore,
macro-averages and weighted-averages of the above metrics were used to evaluate the
overall detection performance. Unknown-averages were used to evaluate the detection
effectiveness of unknown attacks.

Taking precision as an example, assuming there are nm types of attacks and nu types
of unknown attacks, and each type of attack has Mi samples, macro-average precision,
weighted-average precision, and unknown-average precision are calculated as follows:

Macro_PR =
1

nm

nm

∑
i=1

PRi (11)

Weighted_PR =
1

∑nm
i=1 Mi

nm

∑
i=1

(PRi × Mi) (12)

Unknown_PR =
1

∑nu
i=1 Mi

nu

∑
i=1

(PRi × Mi) (13)

Each attack contributes equally to macro-averages and is not affected by the sample
size, so classes with low scores have a greater impact. Weighted-averages increase the
impact of sample size, while unknown-averages are similar but only for unknown attacks.

4.2. Detection Results on Different Datasets

We trained and tested the three models (different in the CNN module) separately
on CIC-IDS2017 and CSE-CIC-IDS2018. We segmented the PCAP data at the IP pair
granularity, and each sequence has 20 packets. In addition, detecting unknown attacks is a
key challenge. We evaluated the method’s ability to detect unknown attacks by evaluating
its effectiveness in detecting attack classes that were not part of the training set.

The detection results for the CIC-IDS2017 dataset are presented in Table 4. We present
the recall, accuracy, and F1-score. Recall reflects CHCG’s detection ability for each at-
tack category, accuracy measures the detection effect on all samples, and the F1-score
combines precision and recall. The proposed method demonstrates an improved over-
all detection effect on CIC-IDS2017, achieving recall and accuracy rates above 99% for
most categories. Specifically, CHCG exhibits high F1-scores for unknown attacks such as
WebAttack-BruteForce, WebAttack-XSS, and WebAttack-SQL Injection, but it performs
poorly in detecting Infiltration and Botnet. We find that the infiltration contains only
39 flows, each with a long duration and a high volume of packets. This increases the diffi-
culty of distinguishing benign streams after the detection window is split. The utilization
of ResNet18 drastically improved the detection of Infiltration and Botnet, achieving recall
rates of 88.67% and 91.85%. This indicates that deeper CNN modules can augment the
feature extraction ability and improve the accuracy of detection.
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Table 4. Results using CIC-IDS2017.

Category
2-Layer CNN 4-Layer CNN ResNet18

RC AC F1 RC AC F1 RC AC F1

K
no

w
n

DDoS LOIC 1.0000 0.9991 0.9958 1.0000 0.9988 0.9945 1.0000 0.9985 0.9932
DoS Hulk 1.0000 0.9991 0.9957 1.0000 0.9988 0.9944 1.0000 0.9985 0.9930
PortScan 1.0000 0.9990 0.9836 1.0000 0.9987 0.9786 1.0000 0.9984 0.9737

BruteForce-SSH 0.9999 0.9990 0.9629 1.0000 0.9987 0.9520 1.0000 0.9983 0.9413
BruteForce-FTP 1.0000 0.9990 0.9538 1.0000 0.9987 0.9404 1.0000 0.9983 0.9273
DoS GoldenEye 1.0000 0.9990 0.9514 1.0000 0.9987 0.9373 1.0000 0.9983 0.9235

U
nk

no
w

n

Infiltration 0.0930 0.9862 0.1596 0.2836 0.9885 0.4115 0.8867 0.9967 0.8848
DoS Slowloris 1.0000 0.9990 0.9463 1.0000 0.9986 0.9308 1.0000 0.9983 0.9158

DoS Slowhttptest 1.0000 0.9990 0.9362 1.0000 0.9986 0.9181 1.0000 0.9983 0.9006
WebAttack-BruteForce 1.0000 0.9990 0.9181 1.0000 0.9986 0.8954 1.0000 0.9983 0.8736

Botnet 0.2864 0.9976 0.3119 0.8675 0.9984 0.6703 0.9185 0.9982 0.6536
WebAttack-XSS 1.0000 0.9990 0.7808 1.0000 0.9986 0.7313 1.0000 0.9983 0.6874

WebAttack-SQL Injection 1.0000 0.9990 0.0391 1.0000 0.9986 0.0302 1.0000 0.9983 0.0245

Macro-average 0.8753 0.9979 0.7642 0.9347 0.9979 0.7988 0.9850 0.9982 0.8225
Weighted-average 0.9590 0.9985 0.9478 0.9699 0.9983 0.9560 0.9949 0.9984 0.9714
Unknown-average 0.6477 0.9944 0.6261 0.7418 0.9951 0.7190 0.9563 0.9978 0.8730

The low F1-score can be attributed to the significant proportion of benign samples.
Despite achieving an overall detection accuracy of 99.9%, the number of misclassified
benign samples remains significant, which results in a low detection precision for specific
attacks. The weighted F1-score, which takes into account the effect of the number of
samples, is at a higher level (above 97% using ResNet18).

The detection results for the CSE-CIC-IDS2018 dataset are shown in Table 5. Except
for SQL injection, CHCG shows a high F1-score for both known and unknown attacks. The
weighted accuracy reaches 99.9%, indicating a strong detection capability for both benign
and malicious samples. Unknown attacks can also be effectively detected. The models
achieve a recall of 100%, which means that all unknown attack samples were detected, with
an unknown-F1-score of up to 96.77%.

Table 5. Results using CSE-CIC-IDS2018.

Category
2-Layer CNN 4-Layer CNN ResNet18

RC AC F1 RC AC F1 RC AC F1

K
no

w
n

DDoS-LOIC-UDP 1.0000 0.9990 0.9951 1.0000 0.9990 0.9951 1.0000 0.9990 0.9953
DoS-Hulk 1.0000 0.9990 0.9951 1.0000 0.9990 0.9951 1.0000 0.9990 0.9953

SSH-BruteForce 1.0000 0.9990 0.9951 1.0000 0.9990 0.9951 1.0000 0.9990 0.9953
Botnet 1.0000 0.9990 0.9951 1.0000 0.9990 0.9951 1.0000 0.9990 0.9953

DDoS LOIC-HTTP 1.0000 0.9990 0.9951 1.0000 0.9990 0.9951 1.0000 0.9990 0.9953
DDOS-HOIC 1.0000 0.9989 0.9919 1.0000 0.9989 0.9919 1.0000 0.9990 0.9922

Infiltration 1.0000 0.9989 0.9758 1.0000 0.9989 0.9756 1.0000 0.9989 0.9767

U
nk

no
w

n

DoS-GoldenEye 1.0000 0.9989 0.9814 1.0000 0.9989 0.9812 1.0000 0.9989 0.9821
DoS-SlowHTTPTest 1.0000 0.9989 0.9773 1.0000 0.9989 0.9770 1.0000 0.9989 0.9781

DoS-Slowloris 1.0000 0.9989 0.9561 1.0000 0.9989 0.9557 1.0000 0.9989 0.9577
Brute Force-XSS 1.0000 0.9989 0.9329 1.0000 0.9989 0.9322 1.0000 0.9989 0.9352
Brute Force-Web 1.0000 0.9989 0.9268 1.0000 0.9989 0.9261 1.0000 0.9989 0.9294

SQL Injection 1.0000 0.9989 0.0594 1.0000 0.9989 0.0588 1.0000 0.9989 0.0616

Macro-average 1.0000 0.9989 0.9059 1.0000 0.9989 0.9057 1.0000 0.9990 0.9069
Weighted-average 1.0000 0.9990 0.9911 1.0000 0.9990 0.9910 1.0000 0.9990 0.9914
Unknown-average 1.0000 0.9989 0.9665 1.0000 0.9989 0.9661 1.0000 0.9989 0.9677

The enhanced detection of unknown attacks in the experiments can be attributed
to two primary factors. Firstly, there exist certain resemblances among DoS subclasses,
which allow the attacks in the training set to contribute to acquiring knowledge about the
characteristics of unknown attacks. Secondly, the introduction of contrastive loss in this
study effectively segregates benign samples from malicious samples in the representation
space. This process not only generates a more condensed cluster of benign representations
but also ensures that representations of unknown samples are distanced from the core of
the cluster, facilitating effective recognition.
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4.3. Detection Results with Different Hyperparameters

There are two essential hyperparameters in data processing and training, the detection
window size w and the scaling temperature factor τ.

4.3.1. Detection Results with Different Window Size W

The window size plays a crucial role in determining the frequency of detection; a
smaller w results in faster detection frequency and reduced packet storage pressure on
the IDS. However, this may lead to increased computational pressure on the model and
difficulty in effectively representing some attacks. Conversely, a larger w leads to higher
storage pressure and potential introduction of excessive noise, thereby increasing the
challenge in representation.

We used a 2-Layer CNN + GRU model to test the performance on different window
size of 10, 20, and 30, and CSE-CIC-IDS2018 was chosen as the dataset. Table 6 shows the
test results. It can be seen that when w is 30, the detection performance of CHCG is the
worst, and unknown-average-F1 is about 3% lower than w = 10. When the parameter w
is set to 10 and 20, CHCG can obtain better detection results. Both known and unknown
attacks can achieve high recall rates and F1-scores.

Table 6. Detection results with different window size on CSE-CIC-IDS2018.

Traffic Category
w = 10 w = 20 w = 30

RC AC F1 RC AC F1 RC AC F1

K
no

w
n

DDoS-LOIC-UDP 1.0000 0.9990 0.9947 1.0000 0.9990 0.9951 1.0000 0.9990 0.9956
DoS-Hulk 1.0000 0.9990 0.9947 1.0000 0.9990 0.9951 1.0000 0.9990 0.9956

SSH-BruteForce 1.0000 0.9990 0.9947 1.0000 0.9990 0.9951 1.0000 0.9990 0.9956
Botnet 1.0000 0.9990 0.9947 1.0000 0.9990 0.9951 1.0000 0.9990 0.9956

DDoS LOIC-HTTP 1.0000 0.9990 0.9947 1.0000 0.9990 0.9951 1.0000 0.9990 0.9956
DDOS-HOIC 1.0000 0.9990 0.9947 1.0000 0.9989 0.9919 1.0000 0.9990 0.9891

Infiltration 0.9999 0.9990 0.9868 1.0000 0.9989 0.9758 1.0000 0.9989 0.9673

U
nk

no
w

n

DoS-GoldenEye 1.0000 0.9990 0.9899 1.0000 0.9989 0.9814 1.0000 0.9989 0.9749
DoS-SlowHTTPTest 1.0000 0.9990 0.9876 1.0000 0.9989 0.9773 1.0000 0.9989 0.9693

DoS-Slowloris 1.0000 0.9990 0.9758 1.0000 0.9989 0.9561 1.0000 0.9989 0.9412
Brute Force-XSS 1.0000 0.9990 0.9627 1.0000 0.9989 0.9329 0.9560 0.9987 0.8885
Brute Force-Web 1.0000 0.9990 0.9592 1.0000 0.9989 0.9268 0.9549 0.9987 0.8801

SQL Injection 1.0000 0.9989 0.1093 1.0000 0.9989 0.0594 1.0000 0.9989 0.0409

Macro-average 1.0000 0.9990 0.9184 1.0000 0.9989 0.9059 0.9931 0.9989 0.8945
Weighted-average 1.0000 0.9990 0.9919 1.0000 0.9990 0.9911 0.9994 0.9990 0.9910
Unknown-average 1.0000 0.9990 0.9814 1.0000 0.9989 0.9665 0.9918 0.9989 0.9511

Figure 5 illustrates the distribution of sample representation vectors visualized after
PCA dimensionality reduction. When w is set to 30, BruteForce-XSS and BruteForce-
Web show dispersion and are partially mixed with benign traffic, so a certain number
of malicious samples are classified as benign. When w is taken as 10 and 20, there is a
significant difference in the distribution of benign and attack traffic, making the detection of
malicious traffic easy. Contrastive loss plays a key role in separating benign and malicious
samples, and the large margin between the two makes it easy to detect unknown attacks
as well.

4.3.2. Detection Results with Different τ

As indicated in preceding sections, the scaling factor serves the purpose of equilibrat-
ing the intra-class and inter-class distances [42]. A smaller scaling factor leads to a quicker
change in the contrastive loss, an increased emphasis on hard samples, a higher penalty
for ambiguous samples near the boundary, and a finer delineation of the class boundary.
A larger scaling factor results in a slower rate of change in the contrastive loss, a reduced
penalty for ambiguous samples near the boundary, and a smoother class boundary.
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(a)

(b)

(c)

Figure 5. Distribution of traffic representation using PCA visualization. (a) w = 10. (b) w = 20. (c) w = 30.

We tested the CHCG with temperature factors of 0.03, 0.05, 0.07, 0.1, 0.15, 0.2, and 0.5
on CSE-CIC-IDS2018. As shown in Table 7, the performance of the model remains relatively
stable as τ increases, indicating that the proposed model has a strong representation
capability. However, in the process of experiments, we observed that the distributions of the
representations after dimensional reduction exhibit a clear trend. The clusters are sparsest
at τ = 0.03 and become progressively more compact as τ increases, which is consistent with
the findings of the work [42]. We recommend setting τ to 0.1 for optimal performance.
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Table 7. Performance on CSE-CIC-IDS2018 with different τ.

τ Macro RC Macro F1 Weighted F1 Unknown F1

0.03 1.0000 0.8990 0.9886 0.9573
0.05 0.9984 0.9034 0.9890 0.9643
0.07 1.0000 0.9018 0.9896 0.9611
0.1 1.0000 0.9059 0.9911 0.9665

0.15 0.9456 0.8714 0.9872 0.9268
0.2 1.0000 0.9032 0.9902 0.9630
0.5 1.0000 0.9018 0.9897 0.9612

4.4. Ablation Study

CHCG is structured as a hierarchical architecture combining CNN and GRU with an
Embedding layer aimed at improving the encoding of protocol header bytes. This section
tests the Embedding layer used and the hierarchical CNN and GRU structures.

4.4.1. Embedding Layer

Experiments were conducted on the CSE-CIC-IDS2018 dataset using consistent param-
eter configurations after excluding the Embedding layer. The results of the experiments are
displayed in the Table 8. After removing the Embedding layer, the detection capability of
some attacks is significantly reduced, including DDoS-LOIC-UDP, Brute Force-XSS, and
Brute Force-Web. Unknown-average recalls decreased by 1.12%, and Weighted-average
F1-score decreased by 1.54%.

Table 8. Performance on CSE-CIC-IDS2018 with and without the Embedding layer.

Category
with Embedding without Embedding

RC AC F1 RC AC F1

K
no

w
n

DDoS-LOIC-UDP 1.0000 0.9990 0.9951 0.9073 0.9886 0.9424
DoS-Hulk 1.0000 0.9990 0.9951 1.0000 0.9981 0.9909

SSH-BruteForce 1.0000 0.9990 0.9951 1.0000 0.9981 0.9909
Botnet 1.0000 0.9990 0.9951 1.0000 0.9981 0.9909

DDoS LOIC-HTTP 1.0000 0.9990 0.9951 1.0000 0.9981 0.9909
DDOS-HOIC 1.0000 0.9989 0.9919 1.0000 0.9980 0.9851

Infiltration 1.0000 0.9989 0.9758 0.9999 0.9979 0.9559

U
nk

no
w

n

DoS-GoldenEye 1.0000 0.9989 0.9814 0.9999 0.9980 0.9659
DoS-SlowHTTPTest 1.0000 0.9989 0.9773 1.0000 0.9980 0.9585

DoS-Slowloris 1.0000 0.9989 0.9561 1.0000 0.9979 0.9213
Brute Force-XSS 1.0000 0.9989 0.9329 0.9052 0.9972 0.8331
Brute Force-Web 1.0000 0.9989 0.9268 0.9765 0.9977 0.8601

SQL Injection 1.0000 0.9989 0.0594 1.0000 0.9979 0.0328

Macro-average 1.0000 0.9989 0.9059 0.9838 0.9972 0.8784
Weighted-average 1.0000 0.9990 0.9911 0.9845 0.9966 0.9757
Unknown-average 1.0000 0.9989 0.9665 0.9888 0.9979 0.9344

The experimental results show that the performance of CHCG is improved by the
addition of the Embedding layer.

This shows that it is necessary to enhance the representation of protocol header bytes.
Header bytes contain important flags, lengths, or other information, and it is unreasonable
to simply treat a byte as a number in the range [0,255]. In addition, there is no clear
semantic connection between the values corresponding to bytes, and similar values do
not necessarily mean that they represent similar information. For example, the two bytes
representing port numbers, 80 and 81, are far apart semantically, although the difference is
very small numerically.

The complexity of network protocols presents challenges in evaluating the Embedding
layer. Other network protocols, such as UDP and ICMP, may not always meet the practical
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requirements for the number of embedding bytes. In addition, there are optional fields in
the IP and TCP protocol headers, which contribute to the expansion of the protocol header
bytes. The utilization of encryption protocols further increases the number of protocol
header bytes, making it challenging to find a unified embedding approach. The evaluation
carried out in this paper mainly uses a standard TCP protocol packet as a template. It
selects 34 bytes for embedding, excluding the MAC address and IP address. However,
there may be a certain degree of non-adaptation for other protocols.

4.4.2. The Hierarchical CNN and GRU Model

Experiments were conducted on the CSE-CIC-IDS2018 dataset using a consistent
parameter configuration with the CNN or GRU module removed. We used the encoder
of a vanilla autoencoder to replace the CNN module, which consists of two linear layers.
The experimental results are displayed in the Table 9. After using linear layer instead of
CNN, the recall rate of malicious traffic remains high, but the detection effect of DDoS
LOIC in known attacks is reduced to some extent. In addition, the F1-score also decreased
to a certain extent, indicating that there were more misscores for benign samples. The
group with the GRU removed had a larger drop in recall for unknown attacks, down 2.5%.
However, the decrease of F1-score is small, indicating that the detection ability of benign
samples is more accurate. The experiment verifies the practicability of the CNN and gated
cycle unit (GRU) in enhancing the feature description ability of the model.

Table 9. Results of CNN and GRU ablation experiments.

Category
Linear layers + GRU CNN without GRU CNN + GRU

RC F1 RC F1 RC F1

K
no

w
n

DDoS LOIC 0.9844 0.9893 1.0000 0.9954 1.0000 0.9951
DoS Hulk 1.0000 0.9897 1.0000 0.9954 1.0000 0.9951
PortScan 1.0000 0.9897 1.0000 0.9954 1.0000 0.9951

BruteForce-SSH 1.0000 0.9897 1.0000 0.9954 1.0000 0.9951
BruteForce-FTP 1.0000 0.9897 1.0000 0.9954 1.0000 0.9951
DoS GoldenEye 1.0000 0.9831 1.0000 0.9923 1.0000 0.9919

U
nk

no
w

n

Infiltration 1.0000 0.9503 1.0000 0.9770 1.0000 0.9758
DoS Slowloris 1.0000 0.9616 1.0000 0.9823 1.0000 0.9814

DoS Slowhttptest 1.0000 0.9532 1.0000 0.9784 1.0000 0.9773
WebAttack-BruteForce 1.0000 0.9117 1.0000 0.9582 1.0000 0.9561

Botnet 1.0000 0.8682 0.8344 0.8466 1.0000 0.9329
WebAttack-XSS 1.0000 0.8571 0.8970 0.8764 1.0000 0.9268

WebAttack-SQL Injection 1.0000 0.0291 0.9677 0.0604 1.0000 0.0594

Macro-average 0.9988 0.8817 0.9769 0.8960 1.0000 0.9059
Weighted-average 0.9976 0.9817 0.9973 0.9901 1.0000 0.9911
Unknown-average 1.0000 0.9330 0.9750 0.9547 1.0000 0.9665

5. Conclusions

In this paper, we propose CHCG, a contrastive learning-based end-to-end intrusion
detection framework with hierarchical CNN and GRU networks to extract features from raw
traffic. The network architecture combines hierarchical CNN and GRU to autonomously
extract spatiotemporal features from sequences of packets, eliminating the need for manual
feature engineering. The inclusion of an embedding layer enhances the encoding of protocol
header bytes, as empirically demonstrated to significantly improve detection precision and
F1 scores. Contrastive learning improves the model’s capacity to encode benign network
traffic into a compact cluster while also amplifying the differentiation between benign
and malicious representations. This, in turn, aids in the expansion of the margins of the
decision boundary. The proposed framework is assessed utilizing commonly employed
datasets, namely, CIC-IDS2017 and CSE-CIC-IDS2018. The experiments demonstrate that
our method can attain a detection accuracy of 99.9% for known attacks, thus achieving state-
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of-the-art performance. Our method also achieved a recall rate of over 95% for all unknown
attack samples. Our future work will focus on achieving a fine-grained classification of
malicious network traffic while also maintaining the capability to identify unknown attacks.
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