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Abstract: Vehicular clouds represent an appealing approach, leveraging vehicles’ resources to gener-
ate value-added services. Thus, efficiently searching for and allocating resources is a challenge for
the successful construction of vehicular clouds. Many recent schemes have relied on hierarchical
network architectures using clusters to address this challenge. These clusters are typically constructed
based on vehicle proximity, such as being on the same road or within the same region. However, this
approach struggles to rapidly search for and consistently allocate resources, especially considering the
diverse resource types and varying mobility of vehicles. To address these limitations, we propose the
Resource Cluster-based Resource Search and Allocation (RCSA) scheme. RCSA constructs resource
clusters based on resource types rather than vehicle proximity. This allows for more efficient resource
searching and allocation. Within these resource clusters, RCSA supports both intra-resource cluster
search for the same resource type and inter-resource cluster search for different resource types. In
RCSA, vehicles with longer connection times and larger resource capacities are allocated in vehicular
clouds to minimize cloud breakdowns and communication traffic. To handle the reconstruction of
resource clusters due to vehicle mobility, RCSA implements mechanisms for replacing Resource
Cluster Heads (RCHs) and managing Resource Cluster Members (RCMs). Simulation results validate
the effectiveness of RCSA, demonstrating its superiority over existing schemes in terms of resource
utilization, allocation efficiency, and overall performance.

Keywords: VANETs; vehicular cloud; resource cluster; resource search; resource allocation

1. Introduction

In Intelligent Transport System (ITS), the autonomous vehicle technology is rapidly
developing following the development of onboard units (OBUs) in the vehicles. Drivers
will be relieved from driving vehicles when autonomous vehicles become commercially
available in the near future. Accordingly, the need for applications focusing on enter-
tainment as well as existing applications focusing on driving safety and convenience for
drivers and passengers is emerging [1–5]. Vehicles generate and consume various contents
of different types and sizes in VANETs. However, entertainment applications (e.g., OTT,
YouTube, Netflix, etc.) are gradually becoming high-definition and large-capacity with the
development of digital technology [6,7]. As a result, there is a limit to the production and
consumption of entertainment content with the available resources of a single vehicle. To
produce and consume valuable content such as high-definition and large-size contents, a
vehicular cloud is needed so that multiple vehicles communicate with each other to make
themselves a single entity with large resources by sharing their own resources [8–11].

Many schemes have been proposed for vehicular clouds. The vehicular cloud is
constructed as flat and hierarchical architectures from an architectural perspective.
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Vehicular clouds, which usually have a flat structure, are formed through V2X com-
munication between entities that comprise the network on VANETs. They are broadly
categorized into two types of clouds: V2I communication, which is vehicle-to-infrastructure
communication, and V2V communication, which is vehicle-to-vehicle communication. The
V2I cloud, in which the requester vehicle downloads the content from the Internet through
a fixed infrastructure, uses V2I communication [10,12–19]. Since the requester vehicle only
can connect to the Internet to download the content while the requester vehicle travels in the
communication range of the fixed infrastructure, the requester vehicle cannot download the
content when the requester vehicle gets out of the communication range of the fixed infras-
tructure. If the requester vehicle cannot download the whole content from the present fixed
infrastructure, it requests the content at the next fixed infrastructure. To continue down-
loading the content, the requester vehicle sends the information of the content repeatedly to
the next fixed infrastructure. This process is iterated until the requester vehicle downloads
the whole content, and it causes a communication delay. Furthermore, the requester vehicle
uses cellular communication to connect to the Internet, and, thus, the communication cost
highly increases. To reduce communication delay and cost, V2V cloud construction was
proposed. The V2V cloud is constructed by vehicles that have similar mobility and commu-
nicate with each other. The requester vehicle requests resource allocation to other vehicles
to consume the content [20–25]. Since the V2V cloud travels as a set of vehicles without the
connection of a fixed infrastructure, it can consume the content continuously and reduce
communication costs. However, the existing V2I and V2V cloud schemes have several prob-
lems because they perform the resource search and allocation based on the flat structure.
First, the number of neighbor vehicles that can provide available resources to the requester
vehicle is limited by the mobility of vehicles such as the location, speed, and future travel
route. Second, the V2V cloud construction requires a large number of computations because
it is constructed based on the connection time among vehicles. Third, the single-hop V2V
cloud has a limit because the communication range of vehicles is low [20]. To cover these
limits, multi-hop V2V cloud construction schemes have been proposed [21–25]. However,
as the hop count increases, the connectivity among vehicles becomes weak. In the worst
case, the vehicular cloud cannot be constructed by the mobility of vehicles. These issues
decrease vehicular cloud stability and service availability. This flat-structured vehicular
cloud is formed and released on-demand according to the request of the requester vehicle,
so the vehicular cloud can be destructed at any time as the vehicle’s mobility changes. This
considerably reduces the stability of the cloud service used by the requester vehicle, and re-
peated vehicular cloud destruction increases communication delay and overhead. To solve
these problems, some schemes have been proposed to support the construction of vehicu-
lar clouds utilizing a hierarchical structure using clustering techniques on VANETs. The
clustering technique can be utilized in VANETs [22,26–36]. Some schemes have proposed
the V2V cloud construction utilizing the clustering technique based on the hierarchical
structure [22,26,30]. In [26–28], these schemes construct clusters using the vehicles traveling
on the same travel route. These schemes search and allocate resources for the vehicular
cloud. In [22], SERVitES divides the map into four sections and constructs each cluster.
However, these schemes construct the cluster for managing the resource information of
vehicles based on the connectivity among vehicles in the same load or area. Clusters within
this architecture may lack sufficient resources to construct a vehicular cloud due to limita-
tions in the numbers or resource availability of vehicles caused by the proximity constraint
among vehicles. In this situation, the cluster should request resources from other clusters
to find enough resources for the vehicular cloud. Since this inter-cluster communication
for searching resources is based on multi-hop communications with many hop counts,
the existing schemes cannot rapidly search and stably allocate resources for constructing
vehicular clouds in VANET environments based on vehicles with various resource types
and different states of mobility. As a result, the existing scheme cannot satisfy various
vehicular cloud services. Therefore, it is necessary to propose a new cluster-based scheme
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to manage the resource information of vehicles to enable efficient resource search and
allocation for supporting various vehicular cloud services.

Therefore, we propose a Resource Cluster-based Resource Search and Allocation
(RCSA) scheme that exploits resource clusters based on resource types to efficiently search
and allocate resources for supporting various services of vehicular clouds. Unlike the pre-
vious schemes, RCSA constructs vehicles with the same resource type as a cluster in order
to easily search and effectively allocate resources for providing vehicular cloud services.
To stably manage the resource information of cluster member vehicles in each resource
cluster, a Cluster Header (CH) is selected as the member vehicle with the longest average
connection time and the largest resource amount among them. Since a requester vehicle
can belong to the resource cluster with the same resource type or with a different resource
type, RCSA provides both an intra-resource cluster search for the same resource type and
an inter-resource cluster search process for the different resource types, respectively. For
the allocation of resources, RCSA uses vehicles with longer connection times and larger
resource amounts in order to prevent the breakdown of vehicle clouds and to reduce the
communication traffic within the vehicle clouds. Since any vehicle as a CH or a cluster
member vehicle joins or leaves a resource cluster due to its mobility, RCSA provides a
resource cluster reconstruction to replace the CH and to manage cluster member vehicles.
Simulation results conducted in various environments verify that RCSA achieves better
performance than the existing schemes in terms of the resource searching delay, the number
of packets, and the success ratio. Our contribution is as follows:

• We propose the construction of resource clusters in a real field, where vehicles with
different types of resources are traveling. These resource clusters are constructed based
on both resource types to decrease the delay of resource search and the connection
time between vehicles to increase the stability of resource clusters.

• The requester vehicle can quickly search for the desired type of resource in the resource
clusters by utilizing intra- and inter-resource search and requesting an allocation of
the available resource to construct the vehicular cloud.

• We evaluate the performance of our proposed scheme compared to the existing cluster-
ing scheme in terms of resource searching delay, number of packets, and success ratio.
The main performance metric for the proposed scheme is the success ratio, which
shows a 20 to 60 percent performance improvement compared to the existing scheme.

The remainder of this paper is organized as follows: first, we provide the related
works on the proposed scheme for vehicular clouds in Section 2. Next, the network model
and the overview of the proposed scheme are presented in Section 3. Then, we describe the
proposed scheme in detail in Section 4. Next, simulation results are presented to evaluate
the performance of the proposed scheme in Section 5. Finally, the paper is concluded in
Section 6.

2. Related Works

In this section, we describe the related works for vehicular clouds in VANETs. Ve-
hicular clouds can be categorized into flat and hierarchical structures. In a flat structure,
a vehicle cloud is constructed on-demand through V2X communication with entities in
VANETs (e.g., vehicles, Road-Side Units, servers, etc.). On the other hand, entities in
VANETs form and maintain a network of a hierarchical structure regardless of the request
of the requester vehicle. When a requester vehicle requires a cloud service, it can enter the
communication range of this network and utilize the cloud service.

First, we survey vehicular clouds with a flat structure, which are categorized into
two communication types: V2I cloud and V2V cloud. The V2I cloud, where the requester
vehicle downloads content from the Internet through the RSU, utilizes V2I communication.
Several schemes have been proposed for V2I cloud construction [12–14,16,17,19,37].

Mershad et al. [12] introduced a system leveraging Roadside Units (RSUs) as a
cloud directory to store information on proximate vehicular cloud servers. The system
employs a ’STAR’ (Service Target) for streamlined access to services and resources via
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RSUs. Through shared registration data, RSUs enable vehicles to explore and utilize
services within designated areas. The system further aids in STAR selection based on
user requirements, enhancing the Quality of Service in dense networks by optimizing
communication speed between RSUs and the Cloud. Yu et al. [14] introduced a novel
cloud architecture for vehicular networks, comprising a vehicular cloud, a roadside cloud,
and a central cloud. This design seamlessly incorporates cloud computing into vehicular
networks, facilitating the sharing of computation, storage, and bandwidth resources among
vehicles. The three-layered architecture optimizes the organization of cloud resources,
providing vehicles with resilient options for selecting cloud services. Despite central clouds
offering abundant resources, they may encounter significant end-to-end communication
delays. To address this, the authors applied a game–theoretical approach to the optimal
allocation of cloud resources within this hierarchical framework. Salahuddin et al. [37]
introduced a Cloud Resource Management (CRM) model designed to minimize reconfigu-
ration overhead, service replications, and infrastructure delay while meeting network and
link layer constraints. The proposed model outlines the RSU cloud architecture, incorporat-
ing micro data centers, and includes an analysis of reconfiguration overhead. The CRM
design is formulated as multi-objective Integer Linear Programming (ILP). Additionally,
the authors developed an efficient heuristic for CRM, optimizing parameters such as VM
migrations, control plane overhead, number of service hosts, and infrastructure delay.
Lin et al. [13] introduced a Semi-Markov Decision Process (SMDP) model for optimal re-
source allocation in vehicular cloud computing (VCC), integrating both Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) interactions. This model aims to determine the
most efficient strategy for VCC resource allocation. Two additional features were incorpo-
rated to enhance the SMDP model, resulting in diverse outcomes compared to the original
version. The resource pool encompasses units from Roadside Units (RSUs) and accounts for
the number of RSUs catering to multiple vehicle types. Additionally, the model accommo-
dates various Poisson distributions to address the heterogeneity observed among different
vehicle types. Lee et al. [19] introduced an RSU-aided scheme for vehicular resource search
and cloud construction within Vehicular Ad Hoc Networks (VANETs). In this approach,
RSUs collect data on the mobility and resources of vehicles, coupled with their location in-
formation within the RSU coverage area. Utilizing this information, RSUs identify provider
vehicles capable of supplying the necessary resources for constructing a vehicular cloud
requested by a specific vehicle. The criteria for selecting provider vehicles encompass the
connection duration between each candidate vehicle and the requester vehicle, the resource
size of each candidate vehicle, and the connection starting time to the requester vehicle.
Jaiboon et al. [16] introduced a mechanism for infotainment data distribution in vehic-
ular networks utilizing the RSU cloud. The proposed system includes models and algo-
rithms for vehicles, the RSU cloud, and the data center. By harnessing the capabilities of
cloud computing, the RSU cloud overcomes limitations associated with traditional RSUs,
thereby improving the efficiency of distributing infotainment messages. This approach
not only reduces communication delay but also enhances throughput for vehicle commu-
nication through the RSU cloud, streamlining the distribution of infotainment messages.
Elahi et al. [17] introduced a dynamic resource allocation framework for a vehicular cloud
scenario. Their approach features a vehicular cloud network with a fixed roadside unit
acting as the coordinator. The authors devised three resource allocation algorithms, each
tailored to specific priorities: partial prioritization for service cars, prioritization for local
cars, and bandwidth reservation for partially serviced cars. The dynamic allocation of
resources entails considering the maximum portion of resources among all competing
vehicles. The study examines the trade-off between serving the maximum number of
vehicles and ensuring the highest possible quality of service.

Next, the V2V cloud can be constructed among vehicles without any infrastructure.
The requester vehicle can construct a vehicular cloud with the other vehicles after the
requested resources are searched and allocated [20–23,25]. Many schemes have been
proposed to construct the V2V cloud in VANETs. Meneguette et al. [21] introduced
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an innovative protocol for managing resources within the cloud, specifically targeting
the resources present in vehicles. The protocol promotes cooperation and collaboration
among vehicles, recognizing the substantial embedded resources within vehicles that
can be shared without depending on external infrastructure for communication assis-
tance. This protocol effectively enhances the availability of resources to vehicles, conse-
quently boosting the capacity of resources that can be utilized within the vehicle cloud.
Meneguette et al. [23] introduced a peer-to-peer protocol tailored to resource and service
search and management within the vehicular mobile cloud, operating autonomously from
external infrastructure. The scheme takes into consideration the dynamic nature of the ve-
hicular cloud shaped by vehicles, characterized by mobility and frequent topology changes.
The protocol places emphasis on vehicle mobility, recognizing its pivotal role in influencing
resource search time, cloud construction, maintenance, and service duration. The proto-
col facilitates collaboration and cooperation among vehicles, empowering them to share
resources across the vehicular network and identify hosts providing the desired services.
Meneguette et al. [22] introduced a protocol aimed at simplifying the search and man-
agement of resources within a vehicular cloud, operating independently of support from
roadside infrastructure. The proposed approach leverages idle resources within vehicles,
enabling their sharing within a mobile cloud formed by a set of vehicles. To create this
dynamic mobile cloud, clustering techniques are employed to form efficient groups of
vehicles. The mobile cloud dynamically moves along the road, allowing vehicles to join or
leave based on their proximity and speed. Choi et al. [25] introduced a multi-hop vehicular
cloud construction scheme that utilizes a multi-hop connection, time-based intermediate
vehicle selection strategy. This approach is tailored to a multi-hop resource search, with the
objective of identifying vehicles possessing ample resources for constructing a multi-hop
vehicular cloud. The primary aim is to minimize the likelihood of cloud failure during the
construction process. Resource allocation for the vehicular cloud is determined based on
the connection time between vehicles and the number of neighboring vehicles, leading to
heightened service availability and a decrease in the number of signaling packets.

These vehicular clouds based on the flat structure have several problems. Since the
mobility of the requester vehicle changes frequently and the RSUs are deployed in static
positions, the connection time between the requester vehicle and RSU is very short. This
reduces cloud service availability. Additionally, the requester vehicle needs to search
for other vehicles that have limited resources within the large communication range to
construct a V2V cloud. This causes weak connectivity and significant delays in cloud
construction. To address the disadvantages of vehicular clouds based on the flat structure,
vehicular cloud construction schemes using clustering have been proposed based on the
hierarchical structure [22,26–29]. This vehicular cloud has the advantage that the requester
vehicle does not need to search for resources directly because the cluster header manages the
information of all vehicles participating in the cluster. Thus, the requester vehicle requests
available resources when it meets the vehicle participating in the cluster. This reduces
resource search and allocation delays, thereby reducing vehicular cloud construction delays.
Zhang et al. [26] introduced a novel multi-hop clustering scheme to create stable vehicle
groups. In this approach, a new mobility metric is introduced to represent the relative
mobility between vehicles within the multi-hop distance. Vehicles determine the relative
mobility with other vehicles by measuring packet transmission delay. Subsequently, cluster
head nodes are selected based on the lowest aggregate mobility value, and other vehicles
decide to join the cluster based on this criterion. This scheme is designed to establish stable
vehicle clusters by considering the dynamic mobility interactions between vehicles within
the multi-hop distance. Arkian et al. [27] introduced a novel vehicular cloud architecture
that leverages a clustering technique for grouping vehicles and enabling collaborative
resource sharing. The cluster structure’s flexibility is augmented through the integration
of fuzzy logic in the cluster head selection process. Furthermore, resource management is
enhanced by incorporating the Q-learning technique. This technique is employed to select
a service provider from among the participating vehicles, thereby improving the efficiency
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of cluster head decisions. The proposed architecture seeks to optimize both resource
utilization and decision-making processes within the vehicular cloud. Zhang et al. [28]
introduced a novel passive multi-hop clustering algorithm (PMC) built on the principles of
a multi-hop clustering algorithm to guarantee comprehensive cluster coverage and stability.
The PMC algorithm prioritizes the selection of optimal neighboring nodes to join the
same cluster during the cluster head selection phase, employing a priority-based neighbor-
following strategy. Emphasizing cluster stability, the algorithm ensures the stability of
cluster members and selects the most stable node as the cluster head within the N-hop
range. This strategy substantially improves the overall stability of the clustering process.
Wu et al. [29] introduced a clustering scheme incorporating the channel effect, considering
both multipath fading in-vehicle communication and the Doppler effect due to the relative
speed of vehicles. The initial focus is on cluster head selection for Vehicle-to-Infrastructure
(V2I) communication, where the cluster head serves as a relay for other cluster members.
This design is particularly suitable for the application of vehicles as a cloud platform,
enabling connected vehicles and passengers to share information and computing resources.
The cluster head, in this context, can function as the coordinator for the Vehicle-as-a-
Service (VaS) platform, facilitating collaborative sharing and resource utilization within the
vehicular cloud. Meneguette et al. [22] introduced an efficient clustering scheme aimed
at establishing and maintaining an effective vehicular cloud. This approach assists in the
search and management of resources for vehicular cloud construction without depending
on support from roadside infrastructure. The cluster dynamically moves along the road,
enabling vehicles to join or leave based on their proximity and speed. To support the
mobility of clusters, a new gateway is selected to optimize the resource quality of service
parameters. Additionally, a novel routing mechanism is designed to tackle the challenges
associated with Vehicle-to-Vehicle (V2V) communication within this dynamic and mobile
cluster environment.

In the related works, these schemes primarily evaluate performance in terms of delay,
success ratio, and overhead. The performance of these metrics is sensitively affected during
the vehicular cloud construction process due to the mobility of vehicles. However, these
schemes do not consider the various resource types that a vehicle possesses, including stor-
age, bandwidth, network, computing power, etc. Since the requested resource types vary
for each requester vehicle, it is necessary to form clusters by dividing the resource types.

In this paper, we propose to construct a resource cluster considering the resource type
of vehicles, allowing a requester vehicle to construct a vehicle cloud using the resource
cluster. Our proposed scheme specifically focuses on constructing resource clusters among
vehicles with the same type of resources. To evaluate the performance of our proposed
scheme, we introduce a metric called resource searching delay. This metric measures the
delay experienced by a requester vehicle when searching for the desired type of resource,
in addition to the metrics typically evaluated by existing schemes.

3. Network Model and Scheme Overview
3.1. Network Model

As the network model of RCSA, we consider a vehicular network field where nu-
merous vehicles are positioned on roads, as illustrated in Figure 1. Each vehicle moves
towards its destination based on a predetermined trajectory determined by its mobility
information. Additionally, each vehicle possesses specific resources that can be shared to
construct vehicular clouds. In Figure 1, we depict three types of resources: type 1, type 2,
and type 3. Blue vehicles are equipped with type 1 resources, green vehicles possess type 2
resources, and red vehicles carry type 3 resources. In this paper, we define each of these ve-
hicles as a Normal Vehicle (NV). During movement, every NV exchanges beacon messages
periodically with neighboring vehicles within its communication range by broadcasting
the message to share information about itself. The beacon message of an NV includes its
resource types, resource amounts, position, and mobility information. Upon receiving a
beacon message from a neighboring vehicle, every NV extracts the relevant information
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and stores it in its neighboring vehicle table. By maintaining this neighboring vehicle table,
every NV can access information about all neighboring vehicles.

Figure 1. The network model of the proposed scheme involves vehicles with the same resource type
virtually constructing a resource cluster in the real field. Each resource cluster comprises a resource
cluster header and multiple member vehicles. These resource cluster headers are logically connected
and facilitate physical communication through member vehicles.

In this process, all NVs can establish communication with each other and form ve-
hicular networks within the multi-hop communication range. Our scheme facilitates this
communication using IEEE 802.11p Wireless Access in Vehicular Environment (WAVE)
communication technology [38]. Through multi-hop communications, NVs organize them-
selves into resource clusters based on resource types.

In Figure 1, three resource clusters are depicted for blue vehicles, green vehicles, and
red vehicles, respectively. Consequently, each resource cluster is established as a virtual
entity within the real field.

3.2. Scheme Overview

From this point, we outline the overview of RCSA. Initially, since RCSA relies on
resource clusters distinct from those utilized in existing schemes to facilitate efficient
vehicular cloud construction, we delineate the process for constructing Resource Clusters
(RCs) comprising vehicles with identical resource types.

In RCSA, all NVs exchange their individual information with one another and store it
within their respective tables through beacon message broadcasting. Subsequently, they
engage in communication and connection to establish vehicular networks irrespective of
their resource types. Each NV then searches other NVs possessing the same resource type
as itself using single/multi-hop communications. Following the resource type search, a
Resource Cluster (RC) is formed among NVs sharing identical resource types. The NVs
transition into Resource Cluster Member vehicles (RCMs) within the RC. The RCM that
remains within the RC range for the longest duration is appointed as the Resource Cluster
Header (RCH) for the RC. Through this process, each RC comprising solely RCMs with
identical resource types can be established on the real vehicular field, where numerous
vehicles with varied resource types are intermingled. For instance, in a vehicular network
field featuring three resource types, each of the three RCs is conceptually established on
the vehicular network field as virtual clusters 1, 2, and 3, as depicted in Figure 1. The RCH
of each RC engages in periodic communication with its RCMs to oversee and sustain the
RC, while also facilitating resource allocation functions to construct vehicular clouds for
requester vehicles. In RCAS, the resource search and allocation process are delineated
into two scenarios: intra-resource search and inter-resource search. In the case of intra-
resource search, a requester vehicle seeks a resource for its vehicular cloud through a
neighboring RCM affiliated with the RC possessing the same resource type as the sought-
after resource. To initiate this process, the requester vehicle forwards a resource request
to the neighboring RCM. Upon receiving the request, the neighboring RCM relays the
request information to the RCH of the RC. Subsequently, the RCH identifies its RCMs with
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available resources based on the requested information and directs the selected RCMs to
allocate the resources for the requester vehicle. Conversely, in the scenario of inter-resource
search, a requester vehicle hunts for a resource for its vehicular cloud via a neighboring
RCM associated with the RC featuring a different resource type from the desired resource.
To do this, the requester vehicle submits a resource request to the neighboring RCM with
a distinct resource type. Upon receiving the request, the neighboring RCM verifies if any
RCM within its vicinity possesses the requested resource type. If such an RCM is found,
the neighboring RCM relays the requested resource information to the RCM, which then
forwards it to its RC to initiate the intra-resource search process. However, if no RCM
with the requested resource type is detected, the neighboring RCM increments the hop
count for resource searching and repeats the process to locate an RCM with the desired
resource type. Subsequently, we outline the process for maintaining an RC. Given the
dynamic nature of vehicular movement, vehicles continuously join and depart from an RC,
necessitating ongoing maintenance to facilitate resource search and allocation for vehicular
clouds. RC maintenance encompasses the replacement of both RCH and RCMs due to
the departure of existing members from the RC. RCH replacement is crucial as it solely
manages information on all RCMs within the RC. In the event of an RCH departure without
a suitable replacement candidate, the RC faces dissolution. Thus, prompt RCH replacement
is imperative, with the new RCH elected through the same procedure as the initial RCH.
Additionally, RCM replacement occurs when a departing RCM notifies the RC of its exit
and requests the retrieval of its resources. The RCH updates the RC information accordingly
and recalculates the available resources. Conversely, when a new NV desires to join an
RC, it forwards its resource information to the RC’s RCH, subsequently becoming a new
RCM. The RCH updates the RC information with the new RCM’s details and recalculates
the total available resources within the RC.

4. The Proposed Scheme (RCSA)

In this section, we describe the proposed scheme named Resource Cluster-based
Resource Search and Allocation (RCSA) in the following three subsections. First, Section 4.1
describes the construction of resource clusters. Next, Section 4.2 describes the process
through which a requester vehicle requests an available resource search and receives an
allocation of a resource cluster for a vehicular cloud service. Finally, Section 4.3 describes
the process of maintaining resource clusters.

4.1. Construction of Resource Clusters

In this section, we present the process of the construction of Resource Clusters (RCs)
in RCSA. As shown in Figure 1, NVs are located on the real field and move toward their
destinations. They can have resources according to their vehicle equipment capability for
constructing vehicular clouds and connect for exchanging information about the resources
by V2V communications based on IEEE WAVE communication technology. NVs with the
same resource type are virtually grouped as an RC on the real field. Then, the RC consists
of a Resource Cluster Header (RCH) and Resource Cluster Member vehicles (RCMs). To do
this, we provide two phases: (1) resource type-based clustering and (2) election of an RCH.
The resource type-based clustering explains the way to construct an RC by grouping NVs
with the same resource type. The election of an RCH explains the way to select an RCH
among all RCMs participating in an RC. We describe the resource type-based clustering
and the election of an RCH in the next two subsections, respectively. Algorithm 1 shows
the process of the construction of resource clusters in RCSA.

To explain Algorithm 1, we define a neighboring vehicle as NVj, and the requester vehicle
that wants to search the same type of resource as NVi. In lines 1 to 3, the algorithm begins
by updating the neighbor table that each vehicle has in the network. When NVi searches
the same type of resource which it has and it is not equal to the type of NVj, the process is
terminated, and no further actions are taken with this neighbor. In lines 5 to 8, if both NVj
and NVi have CHs, then the algorithm proceeds to check if their CHs are the same. If the
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CHs of NVj and NVi are the same, they are already part of the same cluster, and the process is
terminated without any further action. In lines 9 to 12, if the CHs of NVj and NVi are different,
the algorithm performs a comparison between them to determine which one should be the
representative CH. After the comparison, the clusters represented by the two CHs are merged
using the cluster merging process. In lines 13 to 16, if NVj is not a CH but NVi is a CH, NVi
sends a Cluster Head message to NVj. This is performed to request NVj to join the cluster. In
lines 17 to 20, if NVj is a CH and NVi is not a CH, NVi sends a Join message to NVj. This is
performed to request NVi’s joining the cluster represented by NVj. In lines 21 to 23, regardless
of whether NVi is a CH or not, the algorithm proceeds to compare NVi with NVj using the
Comparing function. Based on the comparison results and messages exchanged, a new cluster
is created, and NVi becomes the CH. Finally, NVi sends a Cluster Head message to NVj.

Algorithm 1 Resource cluster construction
Input: Beacon msg (ID, mobility, type, amount)
Output: Creation of resource cluster
NeighborTable.Update (ID, mobility, type, amount)

1: NeighborTable.Update
2: if type ̸= type_NVi then
3: END
4: end if
5: if NVj.b_CH() == 1 && NVi.b_CH() == 1 then
6: if NVj.CH ̸= NVi.CH then
7: END
8: end if
9: CH→ Comparing(NVj.CH, NVi.CH)

10: Cluster Merging (CH)
11: END
12: end if
13: if NVj.b_CH() == 0 && NVi.b_CH() == 1 then
14: Sending CH msg to NVj
15: END
16: end if
17: if NVj.b_CH() == 1 && NVi.b_CH() == 0 then
18: Sending Join msg to NVj
19: END
20: end if
21: CH→ Comparing(NVj, NVi)
22: Creating Cluster
23: Sending CH msg to NVj

4.1.1. Resource Type-Based Clustering

The process of creating an RC by a resource type proceeds on the vehicular network
where all NVs communicate with each other periodically. All NVs are traveling along
their respective routes to their destinations on the real vehicular field. Every NV has a
resource with a resource type and periodically broadcasts the information on the resource
type within its communication range through a beacon message. It stores the information
on the resource type from all of its neighboring NVs by receiving their beacon messages in
its neighboring tables. After every NV has finished storing the resource information about
its neighboring NVs, it conducts resource sharing with only its neighboring NVs that have
the same resource type as its resource. NVs with the same resource type are connected to
create an RC for the resource type. For example, as shown in Figure 1, blue NVs have a
resource type 1 and create an RC1 on the virtual field 1, orange NVs have a resource type 2
and create an RC2 on the virtual field 2, and green NVs have a resource type 3 and create
an RC3 on the virtual field.
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The process for constructing an RC is explained in detail as follows. Searching NVs
that have the same type of resource is processed based on the range of single/multi-hop
communication. First, we explain the process of searching for NVs that have the same
type of resource in a single-hop communication range. NVs that have configured the
network in the real field know each other for the types of resources held by neighboring
NVs located within their communication range. Every NV requests each of the other
NVs to share resources if any of its neighboring NVs has the same resource type as itself.
When all NVs have completed resource sharing with their neighboring NVs with the same
type of resource, each of them checks that it is connected to its neighboring NVs of the
same resource type. Due to the mobility of vehicles, the probability that all NVs with
the same type of resource are connected might be low. Thus, the next step is to expand
the communication range from single-hop to multi-hop for searching NVs with the same
resource type. The process of connecting NVs with the same resource type in the multi-hop
range is as follows. In the single-hop communication range, some NVs may not find a
neighboring NV that has the same type of resource. In this case, they only travel without
searching for any NV with the same type of resource. However, since the NVs configure a
vehicular network regardless of resource type, any neighboring NVs with different types
of resources can exist within their communication range. In this communication range of
any neighboring NVs, neighboring NVs having the same type of resource may exist. To
share resources with these neighboring NVs located in the multi-hop range, they can use
neighboring NVs with different types of resources as the relay vehicles to share resources
with the NVs located in the multi-hop range. The single/multi-hop communications allow
for the configuration of RCs between NVs with the same type of resources on the vehicular
network configured in the real field.

4.1.2. Election of Resource Cluster Headers

In RCSA, every RCH has the responsibility for maintaining the information of RCMs
as well as joining new RCMs and leaving existing RCMs to ensure stable connectivity. To
conduct this responsibility, the RCH sends and receives information from these RCMs
continuously. Accordingly, the RCH needs to have a long and stable connection time with
each RCM. Thus, we use the probability of connecting each vehicle in an RC as the factor to
select its RCH and calculate the connection probability. In urban scenarios, roads are typi-
cally composed of two- or multi-directional roads, except for specific environments. Thus,
the connection time between vehicles traveling on a two-directional road is first calculated,
followed by the connection time for the multi-directional road of an intersection [39].

The connection probability between two vehicles at a specific time tn on a two-
directional road can be obtained by calculating the location probability of the vehicles
at that time. To determine this probability, the time step ∆t between two consecutive time
units tn−1 and tn is set as the unit time, with ∆t = tn − tn−1 and m representing the number
of unit times. For the user’s convenience, the acceleration of autonomous vehicles is usually
restricted to [−5, 5] m/s2, while roads typically have a legal speed limit [40,41]. At a given
time tn, the velocity of a vehicle is assumed to follow a random distribution, where the
vehicles move uniformly and the acceleration experiences white Gaussian noise with a
constant variance ε during the unit time ∆t [42]. The velocity component of the x-axis for a
vehicle i at the k-th unit step between two consecutive time units tn−1 and tn is denoted as
v(k)x , and the location component of the x-axis is represented by x(k) as follows:

v(k)x = v(0)x +
k

∑
i=1

ε
(i)
x ∆t, (1)

x(k) = x(0) + k∆tv(k)x +
1
2

k

∑
i=1

(2k− 2i + 1)ε(i)x ∆t2, (2)

where ε
(k)
x is the acceleration component mentioned in [43]. The Gaussian distribution at tn

is obtained as follows:
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µx = xn−1 + vx
(n−1)m∆t, (3)

σ2
x =

(4m3 −m)ξ∆t4

12
. (4)

The location at the time tn−1 is denoted by (xn−1, yn−1), and the results for the y-axis
and z-axis are analogous to those of the x-axis. Thus, using the location (xn−1, yn−1) at
tn−1, we can obtain the probability density function for reaching (xn, yn) as follows:

p{(xn, yn)|(xn−1, yn−1)} (5)

=
1

2πσ2 exp
(
− 1

2σ2 [(xn−µx)2+(yn−µy)2]
)

.

By considering the probability, the Gaussian distribution at the time tn−1 can be
adjusted for the distance between a vehicle α and a vehicle β as follows:

µd(α, β) =
(

µα
x −muβ

x

)2
+

(
µα

y − µ
β
y

)2
, (6)

σ2
d (α, β)

=
∆t4

4

× E

[
m

∑
i=1

(2i− 1)4
(
(ε

(k)2
α,x − ε

(k)2
β,x )2 + (ε

(k)2
α,y − ε

(k)2
β,y )2

)]
,

(7)

The Gaussian distribution for the vehicle α is denoted by µα
x, µα

y , ε(k)α, x, and ε(k)α, y,

while the Gaussian distribution for the vehicle β is represented by µ
β
x , µ

β
y , ε(k)β, x, and

ε(k)β, y. Therefore, the probability density function for reaching dγ is obtained based on the
distance dn−1 between the vehicle α and the vehicle β at time tn−1 as follows:

p{dn(α, β) = dγ|dn−1(α, β)}

=
1

2πσ2 exp
(
− 1

2σ2 [(dn−µd(α,β))2]
)

.
(8)

The probability of the distance between two vehicles being within the communication
range RV2V of vehicle-to-vehicle at time tn can be determined by integrating under dn, and
it can be calculated as follows:

Pr[α,β]
conn(tn) =

∫ RV2V

0
p{dn(α, β) = q|dn−1(α, β)} dq. (9)

Subsequently, the connection probability between two vehicles at time tn on a two-
directional road is utilized to calculate the probability of their connection on a multi-
directional road. To accurately calculate the connection probability between two vehicles
at a given time tn, it is crucial to consider the probability of each vehicle’s trajectory. A
Markov model [44], which takes into account each vehicle’s historical data, can estimate
the trajectory probability of the vehicle. However, the accuracy of the Markov model is
affected by the complexity of the model, which increases with the order number. Thus,
the 1st-order Markov model is commonly used to estimate the trajectory probability. The
trajectory probability of a 1st-order Markov model is calculated as follows:

pi(i+1) = Pr(L(i+1)|Li) =
X(Li, L(i+1))

Z(Li)
, (10)

where pi(i+1) is the trajectory probability that is derived based on the number of times that the
vehicle moves to the next location L(i+1) when it drive at a current location Li. X(Li, L(i+1))
represents the number of transitions observed from state Li to the state L(i+1), and Z(Li)
represents the number of transitions observed from the state Li to any other states.
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For an intersection that has more multiple directions, the trajectory probability is
calculated using a 2nd-order Markov model based on the calculated Equation (10) using
the 1st-order Markov model. Then, the trajectory probability of a 2nd-order Markov model
can be expressed as follows:

p(i−1)i(i+1) = Pr(L(i+1)|Li, L(i−1)) (11)

=
X(L(i+1), Li, L(i−1))

Z(Li, L(i−1))
, (12)

where p(i−1)i(i+1) represents the probability of the vehicle’s trajectory from L(i−1) to Li
and then to L(i+1) based on the number of times the vehicle has traveled this path.
X(L(i+1), Li, L(i−1)) is the frequency of observing the sequence L(i−1), Li, L(i+1), while
Z(Li, L(i−1)) is the normalization factor that ensures the sum of all possible trajectories
from L(i−1) to Li and then to any next location Lj except L(i−1) to Li is equal to one.

Depending on the order of the Markov model, the accuracy of the trajectory prediction
increases but leads to a tremendous increase in complexity. Thus, we only predict the
trajectory by using the 2nd-order Markov model. According to the location (xn−1, yn−1) of
a vehicle α at time tn−1, the probability of the vehicle to reach the location (xn, yn) at time
tn while choosing the s-th path among S available paths can be represented as follows:

Pr[αs
n((xn, yn))]

= p{(xn, yn)|(xn−1, yn−1)} × pα
(n−1)n,s.

(13)

Then, to calculate the expected connection probability between two vehicles α and β
at the time tn, we define the cumulative distribution function (CDF) by considering the
trajectory probability of each of them as follows:

Pconn,αβ(tn) =
∫∫

D
P(dαβ, s|tn) f (dαβ)dsddαβ, (14)

where D represents the possible values of dαβ and s for a given time tn, f (dαβ) is the
probability density function of the distance dαβ between the two vehicles α and β, and
P(dαβ, s|tn) is the conditional probability that the two vehicles are connected when they
are at a distance dαβ and follow the s-th path at the time tn. Based on this information, the
overall probability of the connection between the vehicle α and the vehicle β at the time tn
can be calculated using the product of the conditional connection probabilities between
each pair of two consecutive locations Li and L(i+1) along their respective trajectories.
Therefore, the connection probability between the vehicles α and β at the time tn can be
represented as follows:

Prα,β
conn(tn) =

Qα,β

∏
q=1

Pri,(i+1)
conn (tn). (15)

After calculating the connection probabilities between vehicles using Equation (14), each
vehicle in an RC determines its connection time with its neighboring vehicles. The average
connection time with neighbors is then calculated, and the vehicle with the highest average
connection time is chosen as the RCH in the RC. This selection is based on the ability to
maintain a stable connection with neighboring vehicles for the longest time in its RC, thereby
facilitating our RC management. By this RCH election process, the selected RCH in an RC
sends an RCH_Selection message with its ID and location information to all RCMs in the
RC to inform them of its selection. On receiving the RCH_Selection message, every RCM
in the RC recognizes the ID of the selected RCH and sends an Acknowledge message with
its available resource amount information to the selected RCH. By gathering Acknowledge
messages from all RCMs in the RC, the selected RCH knows the information of their IDs
and their available resource amounts and saves the information in an RCM table. As a result,
vehicles with the same resource type construct an RC consisting of an RCH and RCMs. Since it
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is also very important to know the latest information about RCMs and their resource amounts
in each RC for effectively constructing vehicular clouds, every RCM periodically sends an
Update message with its ID, location, and available resource amount to its RCH.

4.2. Resource Search and Allocation

This section presents the process for searching for the desired type of resource and for
allocating the resource to construct a VC through using RCs. This process is divided into
two schemes: intra-resource search, and inter-resource search. The intra-resource search
means that a requester vehicle as an NV searches RCMs for allocating the required amount
of resources in its RC with the same resource type as itself to construct a VC. On the other
hand, the inter-resource search means that a requester vehicle as an NV searches RCMs for
allocating the required amount of resources in another RC with a different resource type
from itself to construct a VC. We describe the intra-resource search and the inter-resource
search in detail in the next two subsections, respectively.

Algorithm 2 shows the process of resource search and allocation in RCSA. To explain
Algorithm 2, we define a q as the neighboring vehicle of the requester vehicle within its
communication range. Candidate is the neighboring vehicle that has the same type of
resource as the requester vehicle. maxConn is the maximum connection time between the
candidate and the requester vehicle.

Algorithm 2 Resource search and allocation
Vreq is i
Input: Request message (IDi, posi, veli, typei, resi)
Output: next ID

1: next == NULL
2: for q ∈ neighborTable do
3: if (typeq == typei) then
4: if (q.isCH()) then
5: return q
6: else
7: Candidate[1]← q
8: end if
9: else

10: if (q.isNeighborTypes(typei) != 0) then
11: Candidate[2]← q
12: else
13: if (q.isCH()) then
14: Candidate[3]← q
15: else
16: if (q.i f NeighborO f CH) then
17: Candidate[4]← q
18: else
19: Candidate[5]← q
20: end if
21: end if
22: end if
23: end if
24: end for
25: for p = 1 to 5 do
26: if (Candidate[i].isEmpty()) then
27: next← Candidate[i].maxConn()
28: return next
29: end if
30: end for
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Enter the neighbor into a candidate set with different priorities according to
Algorithm 2. First, determine if the neighbor’s resource type is the same as the requested
resource type. If both types are the same and the neighbor is a CH, it immediately requests
to join the resource cluster. If the neighbor is not a CH, it is entered into the candidate set
with the priority because it has the information of a CH. If the neighbor’s resource type
is different from the requested resource type, two more things are checked. First, check if
there are any vehicles in the neighbors that belong to the requested resource type. If this
neighbor has a vehicle with the requested resource type in its communication range, it is
entered into the second priority candidate. If this neighbor is a CH with a different type of
resource, this vehicle is entered in the third priority candidate set because it can access the
CH with the requested resource type through CH-to-CH communication. In addition, this
neighbor checks if any vehicles are CHs. If there are vehicles in the neighbors that are CHs,
the neighbor is entered into the fourth priority candidate set. If not, the neighbor is entered
into the lowest priority candidate set with the lowest rank.

After the candidate set input is complete, check at the highest priority candidate set
first. If the high-priority candidate set is empty, check the next priority candidate set. If the
candidate set is not empty, the vehicle selects the vehicle with the longest connection time
from that candidate set and selects it as the next node to forward the packet.

4.2.1. Intra-Resource Search

In this section, we present the intra-resource search. Figure 2 shows an example of
the intra-resource search. In the network model of this paper, any vehicle can construct
a vehicular cloud to exploit a vehicular cloud service in a vehicular network field. This
vehicle is defined as a requester vehicle in this paper. In our resource cluster-based network
architecture, there can be two types of requester vehicles. The first type is requester vehicles
as NVs. As shown in Figure 2, if a vehicle (i.e., the yellow vehicle) as an NV wants to use a
vehicular cloud service with a resource type on moving toward its destination, it becomes
a requester vehicle Vreq as the type of NV for the vehicular cloud. In this case, to construct
a vehicular cloud with the resource type, Vreq needs to find the RC with the resource type
because it should be allocated the resource from the RCH of the RC. To do this, Vreq checks
whether anyone among its neighboring vehicles in its communication range is an RCM
(i.e., a blue vehicle) in the RC by its neighboring vehicle table. If Vreq has this RCM as its
neighboring vehicle, it requests the resource to construct the vehicular cloud to the RC by
using the RCM. For requesting the resources to construct the vehicular cloud, Vreq sends
a Request message with the information of the resource type and the required resource
amount to the RCM to require the resource to the RC as shown in Figure 2a. On receiving
the Request message from Vreq, the RCM checks whether the requested resource type in the
Request message is the same as its resource type. Because its resource is the same as the
requested resource type, the intra-resource search process is conducted. To further relay
the Request message to the RCH (i.e., the blue RCH), the RCM sends the message to the
next RCM of the RC toward the RCH. On receiving the Request message, the next RCM
performs the same process as the previous RCM that sent the message to it. By this process,
the RCH of the RC can consequently receive the Request message of Vreq through relaying
the message by RCMs because every RCM knows the route to the RCH.

There can be the second type of requester vehicle as an RCM in this paper. If an RCM
in an RC wants to construct a vehicular cloud with its resource (that is the resource type in
the RC), it becomes a requester vehicle Vreq as the type of RCM for the vehicular cloud. In
this case, since Vreq is an RCM in the RC, the intra-resource search process is conducted.
For constructing the vehicular cloud, Vreq as the RCM sends a Request message with the
information of the resource type and the required resource amount to the next RCM of
the RC toward the RCH. As in the NV type, the Request message is eventually sent to the
RCH through relaying the message by RCMs If the RCH receives a request message from a
requester vehicle Vreq as an NV or an RCM, it selects RCMs that can provide the requested
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resource amount in the message among RCMs in the RC. When selecting RCMs for the
requested resource amount, the RCH can have multiple candidate combinations of RCMs.

Figure 2. The intra-resource search and allocation process: (a) resource request from a requester
vehicle to an RCH; (b) resource allocation from an RCH to RCMs.

The RCH chooses the optimal combination that can provide the requested resource
amount to Vreq as a minimum number of RCMs and a high connection time among vehicles.
Since multiple requester vehicles can request the same resource from the RCH in our
network model, the minimum RCMs should be selected to meet the requirements of
requester vehicles as much as possible. If RCMs to allocate resources are selected, the RCH
sends an Allocation message to each of the RCMs as shown in Figure 2b. Algorithm 3 shows
the summary of the intra-resource search process. We describe how to select RCMs for
resource allocation in Section 4.2.3.
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Algorithm 3 Intra-Resource Search
Vreq is i
Input: Request message (IDi, posi, veli, typei, resi)
Output: next ID

1: next == NULL
2: for q ∈ neighborTable do
3: if (typeq == typei) then
4: if (q.isCH()) then
5: return q
6: else
7: Candidate[0]← q
8: end if
9: end if

10: end for
11: return Candidate[i].maxConn()

4.2.2. Inter-Resource Search

In the inter-resource search process, two types of requester vehicles aim to construct
vehicular clouds: Normal Vehicles (NVs) and Resource Cluster Members (RCMs). NVs are
vehicles searching for resources to construct vehicular clouds, while RCMs are already part
of resource clusters and are capable of providing resources to NVs searching to construct
vehicular clouds.

Figure 3 shows an example of the inter-resource search. As the first type, a vehicle as
an NV becomes a requester vehicle Vreq when it wants to construct a vehicular cloud with a
resource type. For constructing the vehicular cloud by being allocated the resource, Vreq
should find the RC of the resource type. However, when Vreq checks its neighboring vehicles
in its communication range, it cannot have any RCMs of the RC as a neighboring vehicle
different from the intra-resource search. Then, for requesting the resource, Vreq arbitrarily se-
lects one of its neighboring vehicles which is an RCM of any RC different from the RC of the
requested resource type. For constructing the vehicular cloud, Vreq sends a Request message
with the information of the resource type and the required resource amount to the RCM as
shown in Figure 3a. On receiving the Request message from Vreq, the RCM checks whether
the requested resource type in the Request message is the same as its resource type. Because
its resource type is different from the requested resource type, the inter-resource search
process is conducted. In the proposed scheme, the inter-resource search can be divided
into two cases because vehicles maintain their neighbor tables. The first case is shown in
Figure 3a,b,d. In the first case, the RCM (i.e., the green RCM) further sends the Request
message to the RCH (i.e., the green RCH) of its RC by relaying other RCMs (i.e., other green
RCMs) as shown in Figure 3a. In this case, all RCMs that participated in relaying the Request
message do not have any RCM (i.e., a blue RCM) of the requested resource type in their
own neighbor table. On receiving the Request message, the RCH (i.e., the green RCH) also
sends the Request message to the RCH (i.e., the blue RCH) of the requested resource type
in the Request message as shown in Figure 3b. If the RCH of the requested resource type
finally receives the Request message of Vreq, it selects RCMs that can provide the requested
resource amount in the message among RCMs in its RC as shown in Figure 3d. The second
case is shown in Figure 3c,d. Sometimes, any RCM (i.e., a red RCM in Figure 3c that
participated in relaying the Request message can have any RCM (i.e., the blue RCM) of
the requested resource type in the Request message in its neighbor table different from the
first case. Then, the RCM with the RCM of the requested resource type sends the Request
message to the RCM of the requested resource type as shown in Figure 3c. On receiving the
Request message, the RCM of the requested resource type further sends the Request message
to its RCH (i.e., the blue RCH). In the first case, the RCH of the requested resource type
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finally receives the Request message and selects RCMs in its RC for the requested resource
amount of Vreq as shown in Figure 3d.

Figure 3. The resource search in the inter-resource: case (1), RCHs are related in searching as in
(a)→(b)→(d); case (2), only members are related in searching as in (c) →(d).

In the intra-resource search, there can be a second type of requester vehicle as RCMs
in the inter-resource search. If an RCM in an RC wants to construct a vehicular cloud with
a resource type that is different from its resource type, it becomes a requester vehicle Vreq
as the RCM. In other words, the RCM as Vreq does not belong to the RC of the requested
resource type. If the RCM does not have any RCMs in the RC of the requested resource type
as a neighboring vehicle in its neighbor table, the second type of requester vehicles case
also conducts the inter-resource search process. The second type can also have two cases in
the inter-resource search process according to the information of vehicles in the neighbor
tables like the requester vehicles as NVs. For constructing the vehicular cloud in the first
case, the RCM as Vreq sends a Request message with the information of the resource type
and the required resource amount to the RCH of its RC by relaying other RCMs because
all RCMs that participate in relaying the Request message do not have any RCMs of the
requested resource type in their neighbor table. If the RCH receives the Request message, it
further sends the Request message to the RCH of the requested resource type in the Request
message. Finally, the RCH of the requested resource type receives the Request message
and selects RCMs in its RC for the requested resource of Vreq for resource allocation. For
the second case different from the first case, any RCM that participates in relaying the
Request message can have any RCM of the requested resource type in the Request message
in its neighbor table. Then, the RCM with the RCM of the requested resource type sends
the Request message to the RCM of the requested resource. The RCM of the requested
resource further sends the Request message to its RCH. On receiving the Request message,
the RCH selects RCMs in its RC for the requested resource of Vreq for resource allocation.
Algorithm 4 shows the summary of the inter-resource search process. As the intra-resource
search, we describe how to select RCMs for the resource allocation in Section 4.2.3.
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Algorithm 4 Inter-Resource Search
Vreq is i
Input: Request message (IDi, posi, veli, typei, resi)
Output: next ID

1: next == NULL
2: for q ∈ neighborTable do
3: if (typeq ̸= typei) then
4: if (q.isNeighborTypes(typei) != 0) then
5: Candidate[0]← neighbor
6: else
7: if (q.isCH()) then
8: Candidate[1]← neighbor
9: else

10: if (q.i f NeighborO f CH) then
11: Candidate[2]← neighbor
12: else
13: Candidate[3]← neighbor
14: end if
15: end if
16: end if
17: end if
18: end for
19: for p = 0 to 3 do
20: if (Candidate[i].isEmpty()) then
21: next← Candidate[i].maxConn()
22: return next
23: end if
24: end for

4.2.3. Resource Allocation

For constructing a VC of a resource type, a requester vehicle Vreq needs to be allocated
the resources from the RCMs of the RC for the resource type through intra-resource or
inter-resource searches. Then, Vreq requests the resource allocation to the RCH of the RC.
When Vreq uses the intra-resource search, if there is an RCM belonging to the RC of the
same resource within the communication range of Vreq, Vreq sends the information about
the required amount of the resource to the RCM. Upon receiving the information, the RCM
further sends it to the next RCM toward its RCH. Through this process, the information
received from Vreq is finally transmitted to the RCH. Then, the RCH determines whether the
required amount of the resource of Vreq can be fully allocated by RCMs in its RC. If the RC
has a sufficient amount to allocate the required amount of Vreq, the RCH selects the RCMs
that have high connection times with Vreq and available resource amounts among all RCMs.
The RCH requests the selected RCMs to allocate their available resources for Vreq and
sends the resource and mobility information of the selected RCM to Vreq. Accordingly, Vreq
can leverage the resources of the selected RCMs to form a VC through single or multiple
communications with them and use the service of the VC. On the other hand, when Vreq
uses the inter-resource search, Vreq requests the required amount of a resource type to
an RCM of RCs with different resource types within its communication range. As the
process in the intra-resource search, the request of Vreq is transmitted to the RC of the RCM
with a different resource type from the required resource. Since the RCH has a different
resource type, it further forwards the request to the RCH of the required resource type
from Vreq. On receiving the request, the RCH of the required resource type performs the
same resource allocation process to select RCMs to allocate the required amount as in the
intra-resource search.
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To explain the resource allocation process in more detail, we present an example of
resource allocation. Based on YouTube recommendations, the length of the common 1080p
video is 3 to 15 min and its size is 150 MB to 1 GB [45].

For example, let Vreq download a video from YouTube, which is 500 MB in size and
600 s in length. If Vreq only has the storage resource of 100 MB to save the video, it cannot
download the whole of the video by itself. Thus, Vreq needs to request the lack amount
of 400 MB of the resource for 600 s to the RCH of the resource type. To do this, it sends a
Request message with the required information of 400 MB and 600 s to the RCH by relaying
the message to RCMs of the RCH. On receiving the Request message, the RCH selects the
RCMs that can satisfy the required information from Vreq among all RCMs in its RCM table
as shown in Figure 4. Based on the RCM table, RCMs that can satisfy the requirement of
Vreq are a set of RCMs 1, 2, and 3 (460 MB, 680 s) and a set of RCMs 2, 3, and 4 (690 MB,
640 s). In RCSA, among them, we select the set that uses the least amount of the resource
among all available sets to satisfy the requirement of Vreq. Thus, the set of RCMs 1, 2, and
3 are selected to allocate their resource for Vreq. Since using more resource amount than
the requirement of Vreq may result in resource waste for the RCMs providing the resource
when any of them becomes a new Vreq, it will not receive the resource back. For the resource
allocation to Vreq, the RCH sends an Allocation message to each of the RCMs in the selected
set. On receiving the Allocation message from the RCH, the RCMs allocate their resource
for Vreq.

Figure 4. An example of an RCM table for Vreq in the RCH of the storage resource type. Each element
has the ID of an RCM, its available resource amount, and its connection time with Vreq.

4.3. Maintenance of Resource Clusters

In this section, we address the maintenance of RCs in RCSA. The maintenance of RCs
is divided into two processes. The first process is replacing the existing RCH with a new
RCH in an RC because the existing RCH can leave the RC due to its mobility. The second
process is managing RCMs in an RC because any vehicle can join as an RCM in the RC or
any RCM can leave the RC. We describe the two processes, the replacement of RCHs and
the management of RCMs, in the next two subsections, respectively.

4.3.1. Replacement of Resource Cluster Headers

The leaving of the RCH in an RC is a critical issue that destructs the RC. The RCH has
an important role in periodically managing the information of all RCMs within the RC and
is responsible for the resource search and allocation according to the requirement from Vreq.
If an RCH leaves its RC by changing its mobility or by using the RC for making a VC, it
must be quickly replaced by a new RC through the election of the RCH. As a new RCH,
the existing RCH selects the RCM with the highest score among all RCMs according to the
equation presented for the election of resource cluster headers in Section 4.1.2. After electing
the new RCH, the existing RCH needs to inform all RCMs in the RC of the fact that the new
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RCH has been changed. To do this, the existing RCH sends an RCH_Selection message to
the RCM with the highest score to inform the selection as the new RCH. On receiving the
RCH_Selection message, the RCM with the highest score sends an Acknowledge message as
the response to accept the new RCH election and eventually becomes the new RCH in the
RC. If the existing RCH receives the Acknowledge message, it recognizes the completion of
the new RCH selection and leaves the RC. To inform all RCMs in the RC of the replacement
of the new RCH, the RCH sends an RCH_Change message to all RCMs in the RC. The
RCH_Change message includes information about the ID and mobility of the new RCH.
On receiving the RCH_Change message, each RCM saves the information about the new
RCH and sends a Join message with its ID, mobility, and resource information to the new
RCH. On receiving Join messages from RCMs, the new RCH stores the information about
them in its RCM table. Furthermore, the new RCH informs other RCHs with different types
of resources that it has become the new RCH. Accordingly, it sends another RCH_Change
message to each of the other RCHs. On receiving the RCH_Change message, the other
RCHs recognize the replacement of the new RCH, save the information about it, and send
an Acknowledge message with the information of their ID and mobility as the response to
the new RCH. On receiving Acknowledge messages from the other RCHs, the new RCH
saves the information about their ID and mobility. By using the information of the other
RCHs and RCMs obtained from this process, the new RCH can update and manage the
information about all of them.

4.3.2. Management of Resource Cluster Members

Generally, to participate in the vehicular network field, a vehicle needs to join as a new
RCM in an RC based on its resource type. Any existing RCM in an RC can also leave the RC
due to getting out of the vehicular network field. Accordingly, the management of joining a
new RCM and leaving an existing RCM in an RC is also a critical issue for the maintenance
of RCs in RCSA. As an event for the management of RCMs, when an existing RCM leaves
its RC, it sends a Leave message to its RCH to inform it of its leaving. The Leave message
includes the information about the ID and resources of the RCM. On receiving the Leave
message, the RCH checks whether it allocates the resource of the RCM for making a VC or
not. If the resource of the RCM is not allocated, the RCH sends an Acknowledge message
as the response for the Leave message to the leaving RCM and deletes the information of
the RCM in its RCM management table. However, if the RCH allocates the resource of
the RCM, it needs to replace the RCM with another RCM among all RCMs in the RC. As
the replacing RCM, the RCH chooses one among RCMs that have more resources than the
allocated resource amount of the leaving RCM to maintain the VC continuously during its
service duration. To do this, the RCH sends an Allocation message with the information
of the allocation amount and duration of the resource to the chosen RCM and updates
the information about the resource of the chosen RCM in its RCM management table. On
receiving the Allocation message, the chosen RCM uses the allocated resource amount
during the allocation duration for the VC. The RCH also sends an Acknowledge message
as the response to the Leave message to the leaving RCM. Then, the RCH recalculates the
available amount of the resource in the RC based on the updated information about RCMs
in its RCM management table. As another event for the management of RCMs, when
a vehicle comes into the vehicular network field, it wants to join for becoming an RCM
in an RC according to its resource type. To do this, it gathers Beacon messages from its
neighboring vehicles within its communication range. Through the information about the
neighboring vehicles in the beacon messages, it checks whether some neighboring vehicle
has the same resource type as its resource type or not. If it finds a neighboring vehicle
with the same resource type, it requests and receives the ID and location information of
the RCH of the RC for the resource type of the neighboring vehicle. With the information
of the RCH, it sends a Join message with its ID and resource information to the RCH to
become a new RCM. On receiving the Join message, the RCH adds the new RCM to its
RCM management table, recalculates the available amount of the resource in the RC, and
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sends an Acknowledge message to the new RCM. On receiving the Acknowledge message,
the joining of the new RCM in the RC is completed. On the other hand, if the vehicle has
no neighboring vehicle with the same resource type because all of its neighboring vehicles
have resource types different from its resource type, it sends a Request message with its ID,
resource type, and location information to one of its neighboring vehicles to find out the
RCH of the RC for its resource type. On receiving the Request message, the neighboring
vehicle further relays the Request message to its RCH. On receiving the Request message,
the RCH finds the RCH for the resource type in the Request message and sends a Response
message with the ID and location information of the RCH of the requested resource type to
the vehicle of the Request message. If the vehicle receives the Response message, it sends a
Join message to the RCH included in the Response message to become a new RCM of the
RCH. On receiving the Join message, the RCH adds the new RCM to its RCM management
table, recalculates the available amount of the resource in the RC, and sends an Acknowledge
message to the new RCM. On receiving the Acknowledge message, the joining of the new
RCM in RC is completed.

5. Performance Evaluation

In this section, we compare the performance of the proposed scheme (Named RCSA)
with that of the previous scheme (SERVitES) [22] through simulations. We first describe
our simulation environments and performance evaluation metrics. We next evaluate the
performances of the proposed scheme and the previous scheme through simulation results.

5.1. Simulation Environment

To evaluate the performances of SERVitES and the proposed scheme, we implemented
them in a Network Simulator-3 (NS-3) version 3.34. To apply the mobility of vehicles in
the city area, we included an enhanced Manhattan Mobility Model in the NS-3. In the
network size of 2 km × 2 km, intersections existed at the interval of 1 km, and RSUs were
deployed for each intersection. The RSUs had a communication range of up to 800 m and a
transmission rate of up to 54 Mbps based on the IEEE 802.11p communication standard.
The vehicles had a density of 100 vehicles per 1 km2 and travelled at an average speed of
40 km/h on a two-lane road. The speed of the vehicles was determined by an acceleration
value according to the Gaussian distribution limited to [−5, 5] m/s2 every second [40,41].
The probability of selecting a driving direction at each intersection for each vehicle follows
the Markov Model. Furthermore, vehicles have a communication range of up to 200 m and
a transmission rate of up to 54 Mbps. The list of simulation parameters is given in Table 1.

Table 1. Simulation Parameter Settings.

Parameter Values

Network size 2 km × 2 km
Vehicle density [50, 250]/km2

Vehicle average speed [20, 60] km/h
V2I communication range up to 1000 m
V2V communication range up to 200 m

V2I transmission rate up to 54 Mbps
V2V transmission rate up to 54 Mbps

Vehicle cache storage size 512 GB
RSU cache storage size 1 TB

The distance between RSUs 1 km
Vehicle mobility model Manhattan model

The number of resource types [1, 5]
The requester vehicle ratio [5, 50]%

To evaluate the proposed scheme, we compared its performance with SERVitES be-
cause they only use V2V communications to construct vehicular clouds. The proposed
scheme considers various kinds of resources but SERVitES does not consider them. Un-
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like the proposed scheme, SERVitES divides a vehicular network into clusters called cells.
Furthermore, in SERVitES, when a requester vehicle enters a cluster or leaves the cluster
due to its mobility, it will search for a new cluster within a maximum of 3 hops. Due to
these reasons, the performance of SERVitES is highly dependent on the cluster range and
vehicle-to-vehicle connectivity.

Thus, we compared three performances of the proposed scheme with SERVitES ac-
cording to four environmental values. The four environmental values were the density of
vehicles, the ratio of the requester vehicles, the average speed of vehicles, and the number
of the considered resource types, respectively. The density of vehicles is the number of
vehicles in the 1 km × 1 km network area. If the density of vehicles is high, the requester
can easily find a cluster of the requested resources. This has a direct impact on finding the
cluster. The ratio of the requester vehicles reflects the popularity of the requested resource
as a percentage of requester vehicles among all vehicles. The average speed of vehicles is
the average of the vehicle’s speed based on the determined acceleration by the Gaussian
distribution every second from the start of the simulation in the entire network area. It
directly affects vehicle-to-vehicle connectivity when maintaining the RC. However, we only
consider it to search the RC. In this consideration, the speed affects the new connection of
other vehicles with the requester vehicles. The number of the considered resource types
denotes the number of subdivided clusters to provide various kinds of resource services.
It is good for compatibility but causes a lack of member vehicles in the cluster because
clusters are divided according to the resource types.

The performances of the proposed scheme and SERVitES were estimated in terms of
the resource searching delay, the number of packets, and the success ratio.

The resource searching delay is the time from requesting the resource by the requester
vehicle to allocating the resource to the requester vehicle. If the resource searching delay
is long, the requester vehicles suffer buffering and, in the worst cases, the service will be
interrupted. In the proposed scheme, since all the vehicles have information about their
neighbors’ resources and clustering, the time to search the vehicular cluster of the requested
resource is decreased.

The number of packets is the number of transmitted packets during the resource
searching delay. It includes the number of packets to search the cluster members of the
requested resource, to make the requester vehicle join the vehicular cluster, and to allocate
the cluster member vehicle to the requester vehicle. Furthermore, it includes the number of
packets to make a new vehicle when there are no members of any vehicular cluster among
neighbors of the requester vehicle in the network area. The increased number of packets can
cause congestion and collision in the network and disrupt other vehicles’ various services.
The proposed scheme reduces the number of packets through the information of neighbors’
resources and clustering.

The success ratio is the percentage of the number of successes in allocating the re-
quested resources to the requester vehicle by the member vehicles of the vehicular cluster
for the number of requests for resources by the requester vehicles. The requester vehicle
may not receive the requested resource due to it failing to search the vehicular cluster of
the requested resource. To prevent this failure, all the vehicles have neighbors’ informa-
tion about resources and clustering in the proposed scheme. Furthermore, if none of the
neighbors of the requested vehicle has the same type of resource as the requested resource,
the neighbor with the other type of resource forwards the request message to the CH of
its type or the neighbor of a neighbor with the same type of resource forwards the request
message to the neighbor. The CH with the other type of resource forwards the request
message to the CH with the same type of resource using the table between CHs. Therefore,
the proposed scheme improves the success ratio using these forwarding algorithms.
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5.2. Simulation Results
5.2.1. The Resource Searching Delay

In RCSA, when a vehicle sends a join message to the RC requesting a specific resource
type, its neighbors can efficiently forward the message to other vehicles with the same
resource type. This efficient communication is enabled through the intra and inter-resource
search where all vehicles periodically exchange information about their resource type and
mobility. On the contrary, SERVitES constructs vehicular clusters based on vehicle mobility
without considering the resource type. Consequently, a requester vehicle broadcasts the
request message to its neighbors until it identifies a vehicle with a matching resource type.
If no vehicle with the required resource type exists in the current cell, the requester vehicle
must wait until it enters the next cell to continue the search. For this reason, the proposed
scheme has fewer resource searching delays than SERVitES.

Figure 5a shows the resource searching delay according to the density of vehicles.
When vehicles are sparse, the requester vehicles hardly find the RC that has the requested
type of resource among their 1 hop neighbors. In SERVitES, if the requester vehicles do
not have neighbors of the RC, they have to find the RC via 2 or 3 hops neighbors using
broadcast. Even though the requester vehicles find the RC in the current cell, there is a
high probability that the number of cluster members in the cell is not enough to provide
the requested resource to the requester vehicles when the vehicles are sparse. Therefore,
the requester vehicle needs to wait until it enters the next cell, and it causes a lot of delays.
In the proposed scheme, since the requester vehicle can use all the vehicles in the entire
network area, it has enough cluster members. Furthermore, the requester vehicles do not
have to broadcast to find the RC because vehicles already know neighbors’ information
about the resource. For these reasons, the requester vehicles suffer very few delays in
finding the RC. When vehicles are dense, the RC has many member vehicles to be allocated
to the requester vehicles. Furthermore, in the entire network, since there is much congestion
when vehicles are dense because vehicles exchange their information with their neighbors,
the requester vehicles suffer an additional slight delay.

Figure 5b shows the resource searching delay according to the ratio of the requester
vehicles. If there are many requested vehicles, they should distribute limited resources
appropriately. In SERVitES, only vehicles that are in the same cell are considered cluster
members. Thus, if the cell does not have enough resources to provide the service to the
requester vehicle, the requester vehicle has to move to another cell. When the number of
the requester vehicles is increased, the requester vehicle has a low probability of getting
enough resources because the amount of the resources that has to be shared is fixed within
the same cell. That is the reason that the resource searching delay increases when there are
many requester vehicles in SERVitES. In the proposed scheme, even though the number
of requester vehicles increases, it has enough resources because the RCs use the entire
network. Therefore, the ratio of the requester vehicles does not affect the resource searching
delay in the proposed scheme.

Figure 5c shows the resource searching delay according to the average speed of
vehicles. The speed of vehicles affects the connectivity between vehicles. However, in
SERVitES, the requester vehicles are more affected by the delay until entering the next cell.
When the speed of the requester vehicle is fast, that delay can be reduced. Furthermore,
the speed of vehicles affects new chances to meet other vehicles in the cell. If vehicles are
fast, the requester vehicle can contact many vehicles in the cell. This makes the requester
vehicle find the RC faster, so the delay is reduced. In the proposed scheme, the number of
vehicles that can cluster member vehicles does not change because the RC uses all vehicles
in the entire network area, regardless of the speed of the vehicle. Therefore, the average
speed of vehicles does not affect the resource searching delay in the proposed scheme.

Figure 5d shows the resource searching delay according to the number of the con-
sidered resource types. The larger number of the considered resource types has more
distributed RCs. In SERVitES, the cluster is limited to a maximum of 3 hops, requiring more
distributions of RCs. Since the small-size RC due to the hop limitation can hold a small
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amount of resources, the requester vehicles might not be served enough resources. In that
case, since the requester vehicle should find another RC to satisfy its requested resource,
SERVitES has more delays than the proposed scheme when the number of the considered
resource types is 1. In the proposed scheme, if more RCs are distributed, the requester
vehicle might not find the RS in 1 hop. In this case, the RC allocates the multi-hop member
provider vehicle to the requester vehicle. When the number of the considered resource
types increases, RCs are more distributed, and it denotes that the requester vehicle needs
more hops to receive the service. Therefore, it causes an additional slight delay according
to hops between the requester vehicle and the provider member vehicle.
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Figure 5. The resource searching delay according to (a) the density of vehicles, (b) the ratio of
the requester vehicles, (c) the average speed of vehicles, and (d) the number of the considered
resource types.

5.2.2. The Number of Packets

The proposed scheme does not use broadcast or flood to find the RC. Compared
with the proposed scheme, in SERVitES, since the requester vehicle and its neighbors
do not know about other neighbors’ information, the requester vehicle finds the cluster
member of the requested resource by flooding the request message. Furthermore, every
time the requester vehicle needs a new cluster due to leaving the vehicular cluster or
entering the next cell, it has to find the cluster member again. Because it generates a lot of
packets to search for the new vehicular cluster, the proposed scheme spends fewer packets
than SERVitES.

Figure 6a shows the number of packets according to the density of vehicles. The
requester vehicle sends a request message when it needs additional resources. After
receiving the request message, neighboring vehicles of the requester vehicle reply with
information about the resource and mobility to the requester vehicle. If there are many
neighbors of the requester vehicle, the requester vehicle receives more reply messages to
obtain information about neighbors. It causes an increased number of packets. In SERVitES,
the requester vehicle can know about up to 3 hop neighbors via flooding. In addition,
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if the requester vehicle can not find enough resources in the cell, it repeats requesting
for the resource and receiving reply messages in the next cell. Since flooding and the
repeated request process cause a lot of packets, SERVitES spends more packets than the
proposed scheme to search the RC. When vehicles are dense, the proposed scheme also
has a lot of packets because the requester vehicle receives more reply messages. However,
the requester vehicle in the proposed scheme does not use flooding because all vehicles
know the resource and mobility information of their neighbors. The join message by the
requester vehicle is forwarded to the CH of the same or different resource types. Therefore,
the proposed scheme spends smaller packets than SERVitES.
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Figure 6. The number of packets according to (a) the density of vehicles, (b) the ratio of the requester
vehicles, (c) the average speed of vehicles, and (d) the number of the considered resource types.

Figure 6b shows the number of packets according to the ratio of the requester vehicles.
If there are many requester vehicles, the total size of the requested resources is dramatically
increased. Since the total available resources of the RC are limited, the later requester
vehicles might not receive enough resources. In SERVitES, the later requester vehicles
that cannot receive enough resources from the RC have to move to the next cell. If more
vehicles request resources, the number of packets that are generated in the next cell is
increased because they do have not enough resources. On the other hand, if the requester
vehicles are few, the requester vehicle can satisfy the service in this cell because the cell has
enough resources to provide. Furthermore, SERVitES has a few packets when the requester
vehicles are few because it just spends 1 hop broadcast to find the RC. In the proposed
scheme, when the requester vehicles are increased, the later requester vehicle cannot use
a good cluster member vehicle as a provider. The later requester vehicles have to spend
more hops to receive the service, and the increased number of hops causes more packets.
Therefore, the number of packets is increased by the increased number of requester vehicles
in the proposed scheme. However, because the RC has enough resources as there are no
limitations of hops and the requester vehicles do not need to flood to find the RC, the
proposed scheme has a smaller number of packets than SERVitES.
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Figure 6c shows the number of packets according to the average speed of vehicles. The
fast vehicle spends more packets to maintain the service because it has weak connectivity,
but because we only consider the packets to search the RC, the number of packets is
decreased due to the allocation of vehicles with small hops when the vehicle’s speed
increases. In SERVitES, when the average speed of vehicles is slow, the requester vehicle
can use the vehicles that have more hops from the requester vehicle because the connectivity
between vehicles is stable. Since the requester vehicle that has the small hops provider
spends a small number of packets, it spends a smaller number of packets when the vehicles
are fast. Because the requester vehicles can use only 1 hop neighbors when the vehicles
are very fast, the performance of the two schemes becomes similar. However, because of
the characteristics of the proposed scheme, the number of packets to search the RC in the
proposed scheme is less than SERVitES.

Figure 6d shows the number of packets according to the number of the considered
resource types. If the number of the considered resource types is 1, all RCs have the same
type of resource. If many types of resources are considered, RCs have to be distributed
according to their types. Then, the RCs have a reduced number of member vehicles because
of the distribution. The reduced number of member vehicles in an RC causes additional
hops to find enough resources for the requester vehicles. In SERVitES, if the provision of
resources of the RC is not enough in the cell, the requester vehicle has to repeat the request
process in the next cell. Because of the additional hops and a lack of the provided resources
in an RC, the requester vehicles spend more packets to find the RC. For this reason, more of
the considered resource types make the number of packets to find the RC increase. In the
proposed scheme, the lack of provided resources is solved because the requester vehicle
can use all the vehicles in the entire network area and the number of hops is not limited. In
addition, because all the vehicles do not need to use broadcast to find the RC, the requester
vehicles can reduce the number of packets. As a result, it derives a smaller number of
packets than SERVitES.

5.2.3. The Success Ratio

The proposed scheme does not have a separate area to operate the cluster. Compared
with the proposed scheme, in SERVitES, only vehicles within the same cell as the requester
vehicle can be considered members of the RC. Since the restricted searching area has
limited resources to find the RC, there might not be enough resources to meet the requested
resources. Therefore, the proposed scheme improves the success ratio more than SERVitES.

Figure 7a shows the success ratio according to the density of vehicles. When the
density of vehicles is high, the number of vehicles that can be members of the vehicular
cluster is increased. Since the number of members in the vehicular cluster affects the
amount of provision resources, the dense number of vehicles improves the success ratio for
searching the RC. In SERVitES, the number of vehicles that can be used is restricted because
of the limited searching coverage of the same cell with the requester vehicle. Therefore,
when the vehicles are not dense, the cell does not have enough resources and vehicles to
provide the requested resources to the requester vehicle. In addition, the requester vehicles
can use the RC within three-hop neighbors. In the proposed scheme, if the vehicles are very
sparse, the network might have insufficient resources to provide the service. Nevertheless,
because there is no limitation on the range to search the RC, the proposed scheme has a
higher success ratio than SERVitES.

Figure 7b shows the success ratio according to the ratio of the requester vehicles. The
ratio of the requester vehicles denotes the number of the requester vehicles in the network
area. If there are so many requester vehicles, the resources in the network will not be
enough to meet all the requester vehicles’ needs. So, the increased number of requester
vehicles makes the success ratio drop. In SERVitES, the vehicles that can be used as a
provider are needed more when the number of the requester vehicles is increased, but
because the number of vehicles in the same cell with the requester is limited, there is a lack
of providing resources and failure to search the RC. In the proposed scheme, if half of the



Sensors 2024, 24, 2175 27 of 30

vehicles want the resources, the failure to search the RC is increased because the resources
in the entire network are not enough to meet that request. However, the resources that
can be used are enough to make provision for the requester vehicles because there is no
limitation on the search coverage other than the comparing scheme.
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Figure 7. The success ratio according to (a) the density of vehicles, (b) the ratio of the requester
vehicles, (c) the average speed of vehicles, and (d) the number of the considered resource types.

Figure 7c shows the success ratio according to the average speed of vehicles. If the
vehicle is fast, the vehicle can be connected very quickly to another vehicle. Furthermore,
new vehicles continue to flow into the search area. In these cases, the success ratio rises
because the number of vehicles that can be member vehicles is raised. In SERVitES, the
new connection does not have much impact on RC searches due to hop restrictions on the
requester vehicles. However, in the proposed scheme, when the vehicles are very fast, the
new connection is increased, and it affects the success ratio to search the RC. In terms of the
search success ratio, the performance is improved because the high speed of vehicles is a
good chance to contact other vehicles.

Figure 7d shows the success ratio according to the number of the considered resource
types. The number of the considered resource types denotes the distribution of the RCs.
The many distributions of RCs in the fixed number of vehicles lead to a reduced amount
of the provided resources, which affects the success ratio of finding the RC. Because of
the searching area limitations in SERVitES, it has a smaller number of vehicles that can be
member vehicles of the RC. In addition, the distributions of RCs make the problem worse.
The proposed scheme has the same problem as SERVitES in terms of the distributions of the
RCs. However, because of its extended searching area compared to SERVitES, the requester
vehicles in the proposed scheme have enough resources.

6. Conclusions

Vehicular clouds are considered an attractive approach because vehicles collaborate
using their resources to create value-added services such as safety and entertainment
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applications. For constructing vehicular clouds, an efficient resource search and allocation
process is one of the most important and challenging issues for supporting various vehicular
cloud services. To search and allocate sufficient available resources for the V2V cloud
construction, clustering techniques based on the hierarchical structure are utilized in
VANETs. However, since they construct clusters of vehicles for managing the resource
information by using the proximity between vehicles such as the same road or region units,
they cannot rapidly search and stably allocate resources for vehicles with various resource
types and different mobility states. As a result, they cannot satisfy various vehicular cloud
services. Therefore, we propose a Resource Cluster-based Resource Search and Allocation
(RCSA) scheme based on resource clusters to efficiently search and allocate resources.
RCSA constructs vehicles with the same resource type as a resource cluster and selects the
cluster member vehicle with the longest average connection time and the most resources
as a Cluster Header (CH). In resource clusters of various resource types, RCSA supports
both an intra-resource search for the same resource type and an inter-resource cluster
search for the different resource types, respectively. Results of simulation conducted in
various environments verify that RCSA achieves better performance than the existing
schemes in terms of the resource searching delay, the number of packets, and the success
ratio. We propose to construct and manage a resource cluster by merging the resources of
vehicles based on their resource type using V2V communication to reduce the burden on
infrastructure. By utilizing vehicles that have various resources such as storage, bandwidth,
RAM, CPU, etc., resources can be allocated according to the resource needs of the requester
vehicle to meet its requirements. However, a vehicle’s resource needs may not require
a single type of resource but may require multiple types of resources. Therefore, it is
necessary to be able to construct and manage resource clusters with multiple resource types.
In future work, we will study how to manage and optimize multi-type resource clusters
with different types of resource needs and available resources.
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