
Citation: Kurte, R.; Salcic, Z.; Wang,

K.I.-K. Decentralised Global Service

Discovery for the Internet of Things.

Sensors 2024, 24, 2196. https://

doi.org/10.3390/s24072196

Academic Editors: Kien Nguyen and

Xiaoyan Wang

Received: 22 February 2024

Revised: 22 March 2024

Accepted: 28 March 2024

Published: 29 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Decentralised Global Service Discovery for the Internet
of Things
Ryan Kurte * , Zoran Salcic and Kevin I-Kai Wang

Department of Electrical and Computer Systems Engineering, University of Auckland, 20 Symonds Street,
Auckland 1010, New Zealand; z.salcic@auckland.ac.nz (Z.S.); kevin.wang@auckland.ac.nz (K.I.-K.W.)
* Correspondence: ryan.kurte@auckland.ac.nz

Abstract: The Internet of Things (IoT) consists of millions of devices deployed over hundreds of thou-
sands of different networks, providing an ever-expanding resource to improve our understanding
of and interactions with the physical world. Global service discovery is key to realizing the oppor-
tunities of the IoT, spanning disparate networks and technologies to enable the sharing, discovery,
and utilisation of services and data outside of the context in which they are deployed. In this paper,
we present Decentralised Service Registries (DSRs), a novel trustworthy decentralised approach to
global IoT service discovery and interaction, building on DSF-IoT to allow users to simply create
and share public and private service registries, to register and query for relevant services, and to
access both current and historical data published by the services they discover. In DSR, services
are registered and discovered using signed objects that are cryptographically associated with the
registry service, linked into a signature chain, and stored and queried for using a novel verifiable DHT
overlay. In contrast to existing centralised and decentralised approaches, DSRs decouple registries
from supporting infrastructure, provide privacy and multi-tenancy, and support the verification
of registry entries and history, service information, and published data to mitigate risks of service
impersonation or the alteration of data. This decentralised approach is demonstrated through the
creation and use of a DSR to register and search for real-world IoT devices and their data as well
as qualified using a scalable cluster-based testbench for the high-fidelity emulation of peer-to-peer
applications. DSRs are evaluated against existing approaches, demonstrating the novelty and utility
of DSR to address key IoT challenges and enable the sharing, discovery, and use of IoT services.

Keywords: internet of things; service discovery; distributed systems

1. Introduction

As the Internet of Things (IoT) continues to grow, from small-scale household de-
ployments to larger projects that span organisations, cities, or countries, these systems
provide ever-increasing opportunities to improve our understanding of and interactions
with the physical world. However, in the existing IoT, devices and systems are isolated
and siloed within specific organisations and ecosystems without any mechanisms for shar-
ing, discovering, or interacting with services outside this context [1]. We believe global
service discovery is key to realising the opportunities of the IoT by providing end-to-end
approaches that enable the safe and reliable discovery and use of contextually relevant
services to compose new applications and achieve their goals [2]. For example, in the
modern world, many organisations and individuals deploy environmental monitoring
services using a variety of protocols and networking technologies connected to internet
infrastructures for brokering and data storage. In the future, global registries should allow
users to discover relevant services across the IoT, such as air quality sensors deployed
by different organisations across a city or country, or temperature and humidity sensors
within a campus, and to compose and interact with these services, accessing current and
historical sensor data or (if authorised) affecting the state of actuators.
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However, global service discovery comes with several challenges. The IoT is hetero-
geneous, with devices deployed in different physical locations using a wide variety of
networks, protocols, and supporting infrastructure [3]. Following the previous example, a
personal weather station might be connected directly to the cloud-based infrastructure via
a home Wi-Fi network while air quality sensors deployed across a city may be connected
via low-bandwidth mesh networks bridged to the internet using gateways. Global service
registries must support discovery and interaction, addressing key IoT challenges including
service identification, specification, and communication to allow users to access data from
and assert control over discovered services on disparate networks. Registries must also
be scalable to support ever-growing numbers of IoT devices and users, and they must be
reliable, providing fault tolerance and supporting increasingly critical applications [4]. To
enable future IoT applications, global registries must support trust and privacy, providing
an end-to-end verification of registry operation, resolved services, and service data, as well
as allowing public or private use [5,6].

In the existing IoT, service discovery is primarily supported using centralised service
registries that are deployed at a home or organisational level. These registries must be
deployed as a part of the supporting infrastructure for an IoT system, alongside brokers
for communication between services and databases for data storage and access, posing a
substantial technical barrier to entry as well as requiring ongoing maintenance and support.
Centralised registries support complex queries to allow services to be discovered within
the registry; however, they are typically isolated within their individual or organisational
context, without mechanisms for the sharing or coordination of registries or interaction
with services and access to data. Decentralised registries offer a valuable alternative to cen-
tralised approaches, providing users and device vendors with an alternative to the cost and
complexity of maintaining centralised registry infrastructure. Decentralised approaches of-
fer improved scalability and reliability by distributing processing and storage requirements
over networks of communicating peers. However, these approaches also introduce new
challenges. Where the performance of centralised registries is predominantly a function of
the underlying infrastructure, the operation of a decentralised registry depends on the co-
ordination of and network communication between large numbers of peers, increasing the
challenge of qualifying the correct operation and performance of decentralised approaches.
Due to the use of public and untrusted peer-to-peer (p2p) infrastructure, it is also critical
to provide mechanisms for trust and privacy, ensuring the integrity and confidentiality of
data transiting the peer-to-peer network and allowing for discovered services and data to
be used for real-world applications [7].

In this paper, we present Decentralised Service Registries (DSRs), a novel decentralised
end-to-end approach to global service discovery and interaction simplifying the creation
and sharing of trustworthy service registries to enable new applications using the IoT.
Our approach builds on the service specification and interoperability provided by the
Distributed Service Framework (DSF) [8] and DSF-IoT [9] to allow users to dynamically
share, discover, and interact with contextually relevant IoT services using DSFs common
distributed infrastructure. DSRs utilise a novel S\Kademlia-based [10,11] Distributed Hash
Table (DHT) overlay supporting multiple registries and private or zero-knowledge queries
while retaining the verifiability of overlay objects. In contrast with existing works, DSRs
provide an end-to-end mechanism for discovering and interacting with services while
addressing the need for trust and privacy. The adoption of cryptographically derived
service and registry identifiers enables verifiable linking between registries, services, and
data, mitigating the risks of service impersonation or data alteration. Alongside this, DSRs’
use of signature chains provide registry integrity and non-repudiation as well as support
historic queries and the evaluation of registry operation to establish trust. DSRs’ use
of decentralised infrastructure provides a scalable and reliable alternative to centralised
approaches. This allows users to simply create and share registries, execute context-based
queries to locate relevant services based on well-defined properties such as physical location
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or endpoint types, and interact with these services to subscribe or query for current and
historical data using DSFs peer-to-peer network.

This paper consists of five key contributions:

• First, we identify key IoT challenges relating to global service discovery, highlighting the
advantages and limitations of existing centralised and decentralised service registries.

• Second, we introduce DSRs, detailing the novel DHT and signature chain-based ap-
proach to the provision of trustworthy public and private decentralised service registries.

• Third, we demonstrate the use of DSR to discover real-world IoT devices. This
illustrates the end-to-end operation of DSRs, simplifying the creation and sharing of
registries that allow users to discover and interact with contextually relevant services.

• Fourth, we develop a novel cluster-based testbench for the emulation of peer-to-
peer applications using commodity hardware. This testbench is used to qualify the
operation and performance of DSRs with varying peers and network conditions.

• Finally, DSRs are evaluated against existing approaches to demonstrate the suitability
of decentralised registries to address key IoT challenges and meet the need for global
service discovery in the IoT.

2. Background and Related Works

The context-based global service discovery is key to enabling the real-world sharing
of IoT services and data by allowing users to share, discover, and interact with services
that are relevant to them. Global discovery mechanisms are those spanning physical and
network environments that allow for the sharing of services outside of the physical, logical,
and organisational siloes in which they are deployed. These discovery mechanisms must
support contextual queries, expanding on network-based discovery mechanisms to include
metadata such as service and endpoint types or real-world locations to allow users to search
for relevant services to meet their needs. Registries must also address the need for access
to discovered services and data, allowing users to compose services and retrieve current
and historical information to achieve their goals. To support these end-to-end interactions,
approaches to global service discovery must address the following key IoT challenges:

• Identification, providing globally unique and verifiable addresses allowing for a
service to be consistently identified independently of physical location or underlying
network technologies [12–14].

• Specification, providing unambiguous context-rich descriptions of services and data [15,16].
• Communication, enabling interaction with services across disparate physical and

virtual environments including access to current and historic data [16–21].
• Scalability, suitable for use with ever-growing numbers of IoT devices and

services [12,17–19,22].
• Reliability, supporting the operation of IoT devices in increasingly critical contexts [18,19,22].
• Trust and Privacy, allowing for operation and data to be verified while ensuring these

are accessible only by authorized parties [12,14,18,19,21,22].

Service registries can be split into two key categories. Centralised approaches whereby
registries consist of a database and an API server deployed by a vendor or organisation
with a single point of contact for registration and discovery. Furthermore, decentralised
approaches where registries utilise databases deployed across peer-to-peer networks, dis-
tributing storage and computation across peers while providing each peer with access to
the registry. Figure 1 illustrates the communication between user and IoT devices with
centralised and decentralised registries, highlighting the network of peers (P) supporting
the latter case. Note that for decentralised approaches, both the user and IoT devices must
typically either operate as peers or utilise existing peers to interact with the registry.
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Figure 1. Centralised and decentralised registry infrastructure.

2.1. Centralised Approaches

In the existing IoT, high-level discovery is typically achieved using centralised registry
servers. These provide APIs for service registration and discovery, a database for storing reg-
istered services, and mechanisms for querying using the service database. The IETF frame-
work utilises the Constrained RESTful Environments (CoRE) Resource Directory [23]. Ser-
vices dynamically discover resource directories using DNS Service Discovery (DNS-SD) [24]
and then register their endpoints in the directory to allow these to be discovered by other
users. CoRE resource directories support attribute-based queries; however, Constrained
Application Protocol (CoAP)-based [25] approaches do not provide unambiguous service
specifications or include mechanisms to describe service context [26]. The W3C defines
the WoT Discovery process [27], with an optional Thing Directory to support service reg-
istration which enables querying for services. This approach is split into two stages: an
introduction phase where devices discover relevant directories, and an exploration phase
where Thing Description (TD) [28] is fetched and processed by the registry. To register
a service, a device discovers available local directories and then prompts registration,
allowing for the directory to fetch information for the service and store this for future
querying. Searching is supported using syntactic or SPARQL-based [29] queries over reg-
istered services. Jia et al. [30] present an ontology-based approach to semantic service
matching in the IoT, with a focus on improving query performance. QoDisco [31] supports
semantic service discovery based on the Semantic Sensor Network Ontology (SSNO) [32],
utilising coordinating repositories to store resource models and device data unified by a
common API and supporting queries via SPARQL. QoDisco supports combining multiple
repositories to improve scalability and fault tolerance, allowing for registrations to be split
between servers; however, it fails to address the challenges of identity or interoperability
as required for global use.

These centralised registries are deployed in isolation and are operated at a personal
or organisational level without mechanisms for interoperation between registry hosts or
higher-level coordination across registries. Kamilaris et al. [2] highlight the importance of
registry interoperability, proposing the use of linked data to create a higher-level search en-
gine for IoT services using web-crawling, isolated but internet-connected registry instances.
For global use, registries must address this need for coordination by providing common
interfaces for coordination between registry instances. Deploying centralised registries also
requires the integration of external security mechanisms to provide authentication and
authorisation. Global registries should also support multi-tenancy and privacy, decreasing
the complexity of creating registries by allowing for multiple registries to utilise shared
infrastructure while ensuring only authorised users can interact with a given registry. For
users to effectively utilise discovered services, these centralised registries must be paired
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with infrastructure for communication with services as well as the storage and analysis of
data, which must be deployed and maintained by device vendors.

2.2. Decentralised Approaches

Decentralised registries offer a valuable alternative to more common centralised ap-
proaches, replacing centrally controlled infrastructure with communicating networks of
peers. Decentralised registries typically utilise a distributed database such as a Kademlia [10]
Distributed Hash Table (DHT) to store and resolve service information paired with a spec-
ification for the description of IoT services. DHTs assign unique hash-based identifiers
(IDs) to peers and data and use the logical distance between these identifiers to partition
data storage and routing information, providing a key–value interface for storing and
retrieving values. To interact with the DHT, a peer first performs a recursive search to
locate peers nearest to the identifier of interest, followed by a request to store or fetch
data using these nearby peers. This peer-to-peer approach exacerbates the challenges of
trust and privacy, requiring mechanisms for authorisation to control who can store data
at a given identifier, as well as confidentiality so that private data cannot be accessed by
unauthorised peers. Secure Kademlia (S\Kademlia) [11] modifies Kademlia through the
use of cryptographically-derived peer identities by using signatures to ensure peers can
only publish objects at their own address. DHTs are often extended through the use of
overlays, where hashing is used to translate between values and IDs, allowing for the
construction of searchable indexes using the underlying key–value store.

These overlays enable the use of DHTs for IoT service discovery, supporting the cre-
ation of searchable [33] and contextual or location-aware service registries [34]. However,
as overlays involve storing objects at arbitrary IDs, these are typically incompatible with
S\Kademlia-like approaches to identity and verification. Cirani et al. [35] demonstrate
an approach to the global discovery of CoAP-based services through the use of proxying
gateways that provide a peer-to-peer DHT for service registration and discovery. To com-
municate with a service, a user first queries the overlay to find the appropriate gateway
address; then, the user issues requests to the service via the proxying gateway. The use of
CoAP with CoRE provides an efficient service encoding and enables endpoint discovery
while proxying gateways allow for access to services across different networks. However,
this approach fails to address the need for trust and privacy of both services and registries,
while the lack of a complete and unambiguous specification provides limited interoper-
ability with services and elides mechanisms for trust or access to historic service data.
Zhang et al. [36] propose the Global Data Plane (GDP), a Merkle-Tree-based append-only
database as an intermediate format for IoT data. This approach uses content-based service
addressing and supports the storage and querying of historic data. However, it fails to
address the need for service discovery. Kamel et al. [37,38] construct a DHT-based overlay
to enable attribute-based service discovery using a Region-based DHT (RBDHT). This in-
cludes mechanisms for private registration and masking queries by eliding the lower bits of
DHT identifiers during DHT operations, as well as the enforcement of access policies using
Attribute Based Encryption (ABE). However, it does not address trust or multi-tenancy as
well as requiring the deployment of attribute CAs to manage credentials. Zorgati et al. [39]
present a two-layer approach to decentralised service discovery by first clustering objects
using a Semantic Overlay Network (SON) and then by federating gateways using a DHT.
This approach improves discovery performance by allowing for queries to be routed to
relevant clusters; however, it fails to support communication or address the need for trust
and privacy. Tanganelli et al. [40] present DHT-based discovery using CoAP and CBOR-
based gateways, highlighting the importance of pairing discovery and access mechanisms
to allow for users to interact with the services they discover. Gateways provide access
to registered services; however, again, this approach fails to address the need for access
to historical data, trust, or privacy. Tang et al. [41] propose a discovery mechanism using
the IoTA blockchain, highlighting the utility of a secure and immutable ledger for service
registration. However, while IoTA’s tangle improves on the throughput limitations of
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classical blockchains, the consensus algorithms used in blockchain-based technologies
offer low performance while demanding substantial bandwidth and processing capacity,
rendering these broadly unsuitable for IoT applications.

2.3. DSF and DSF-IoT

The Distributed Service Framework (DSF) [8] is a platform for building and deploying
decentralised applications. DSF utilises an S\Kademlia-based DHT for storing and resolv-
ing service information alongside a peer-to-peer mechanism for publishing, subscribing,
and querying for service data. The DSF network consists of many communicating peers
executing a standard daemon application to provide a common underlying infrastructure
for the deployment of decentralised services. The daemon provides an Application Pro-
gramming Interface for operations using the distributed network, while client libraries and
command-line tooling build on this API to simplify the use of DSF and the development
of DSF applications. Users and other applications interact via the daemon to utilise the
network for service resolution and interaction, providing a peer-to-peer alternative to the
message brokers and databases that are typically used in centralised IoT infrastructure.

DSF services utilise unique Service IDs (SIDs) derived from a cryptographic public key,
providing content-based network- and location-independent addresses. These provide a
verifiable and globally unique alternative to commonly used URLs and IP-based identifiers
to support mobility and cross-network service interaction [42]. Services in DSF publish
service information using pages that are stored in the DHT to support service resolution and
replication, as well as data using data blocks that are distributed between subscribing peers
to support publishing and subscription. This allows for users to resolve SIDs to service
information and then to access and interact with services using a peer-to-peer infrastructure
for communication and storage. Pages and blocks are signed by the publishing service
and linked to the previous object to create an immutable signature chain [43] of objects
associated with a service to support verification and non-repudiation. DSF supports
privacy through the use of partial encryption whereby sensitive fields are encrypted prior
to object signing, allowing for objects to be distributed and verified while limiting access to
privileged information to authorised parties. The signing and encryption of objects allows
subscribers to store and re-publish service data enabling the safe replication (or mirroring)
of services across the peer-to-peer network, providing scalable and reliable access to service
data while maintaining end-to-end privacy and verifiability of published objects.

DSF-IoT [9] extends DSF with an efficient and unambiguous specification for the
description of IoT services, providing a basis for the development and deployment of peer-
to-peer IoT devices and applications. IoT services are represented as a set of endpoints with
associated kinds and units (for example, temperature in °C) coupled with metadata that
describe contextual information for local and global discovery use. Services publish Service
Page (SP) containing endpoint and context information that is stored and retrieved using the
DHT, alongside blocks containing endpoint data that are stored and distributed between
subscribing peers. DSF-IoT provides a consistent location- and network-independent
mechanism for interacting with IoT services, from address resolution using the DHT to
subscribing to real-time data or querying for historic data using the peer-to-peer network.
However, prior to the introduction of DSRs, this fails to address the need for global service
discovery, requiring users to distribute SIDs or use network-based approaches to discover
local services.

2.4. Research Opportunities

While there is a variety of research on global service discovery using both centralised
and decentralised approaches, existing works fail to address the need for trustworthy,
private, end-to-end mechanisms for discovery and interoperability. Future approaches must
support multi-tenancy to simplify the creation and use of registries by decoupling these
from supporting infrastructure as well as privacy to enable authentication and the use of
public and private registries. These approaches should simplify the creation and sharing of



Sensors 2024, 24, 2196 7 of 21

registries while meeting the need for scalability and reliability to suit the growing IoT. New
approaches to global discovery must also provide access to discovered services, allowing
users to execute historical queries as well as to fetch both current and historical service
data. For example, to fetch climate data for an area over the last year, it must be possible to
search for both currently and historically registered services and then to fetch historical
data associated with currently and previously active discovered services. New registries
must also provide trust, ensuring services can only be registered by authorised parties,
allowing registry operation to be validated, and providing provenance for discovered
services and data.

3. Decentralised Service Registries (DSRs)

In order to address the need for global IoT service discovery, we introduce Decen-
tralised Service Registries (DSRs), extending DSF and DSF-IoT to support the creation and
sharing of global service registries using a common decentralised infrastructure. DSRs
provide a trustworthy end-to-end approach allowing for IoT services to be safely registered,
discovered, and interacted with by authorised parties using context-based queries without
the cost or complexity of deploying a centralised registry infrastructure. The use of DSFs
globally unique and verifiable service identities allow for IoT services to be consistently
identified regardless of physical location or underlying network technologies, while the
underlying peer-to-peer infrastructure enables mobility and cross-network communication,
allowing users and services to interact using these identities. The DSF-IoTs specification
provides an unambiguous and context-rich mechanism for describing IoT services that
enable context-based querying as well as human and machine interpretation of service
information and data. Altogether, this provides an end-to-end approach to global IoT
service discovery, enabling the creation and sharing of registries which permit users to
search for contextually relevant services, to resolve these to meaningful service information,
and to interact with the services they discover.

DSRs are identified by Service ID (SID) and are separated using namespaces to support
the use of multiple and overlapping registries. In contrast to hierarchical approaches to
service resolution (such as DNS), this namespacing allows individuals to compose a set
of authoritative sources by choosing a set of registries they trust. An organisation may
elect to provide an authoritative registry, for example, “organisation.com” to match their
web presence, while individuals are free to create overlapping “home” or “local” registries
and to select from available registries to meet their needs. To interact with a registry, users
must have an associated peer which executes the DSF daemon and provides an APIs for
discovering and managing services. This peer communicates with other peers to maintain
the S\Kademlia-based DHT as well as to distribute services and data. Where centralised
registries require registration and searches to be issued using a single point creating a single
point-of-failure and storage and processing bottlenecks, our decentralised approach allows
any peer with appropriate knowledge of the DSR to execute queries and resolve services
using information distributed across the network. This peer-to-peer approach provides
scalability and resilience, distributing the communication and storage requirements across
available peers while only requiring the DSR for maintenance and periodic re-issuance of
the index. Where existing registries must be paired with external mechanisms for security
and privacy, DSRs’ use of signed objects and signature chains supports the evaluation
of registry trust, while encryption and derivation mechanisms ensure privacy, enabling
the safe co-existence of multiple public and private registries using shared peer-to-peer
infrastructure. Registries can be simply created and adopted on any peer via the daemon
APIs or command-line tooling, while it is expected that future applications will provide
user-friendly interfaces using these APIs.

To enable this registry operation, the DSF distributed database has been extended
with support for a novel searchable overlay, using a linked approach to enable field-
based indexing and querying while maintaining the end-to-end privacy and verifiability
of services and objects in the database. To create these overlays, we introduce a new
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tertiary page type for storage in the DHT. Where existing DSF primary pages providing
service descriptions are stored at the address of the service they describe, and secondary
pages supporting annotation (for example, service replica advertisements) are stored at the
address of the service they target, these new tertiary pages are stored in the database at a
deterministic Tertiary ID (TID) derived using the identity of the publishing DSR and the
value of the field to be indexed. DSRs construct an overlay by storing these tertiary pages
in the DHT to provide an index linking TIDs to services matching a given query.

TIDs are derived using a hash of the field to be queried (for example, “room = office”)
combined with the identity of the DSR. This derivation provides a deterministic mechanism
to convert queries into TIDs while ensuring TIDs that belong to different registries are
normalised across identifiers (and, thus, peers) in the DHT. For public service registries,
the registry public key (SRpub_key) is used as a seed for data hashing as per Equation (1).
The one-way hashing of field values allows for queries to include private information
without leaking this to users or registries as well as enabling zero-knowledge registration
of services by providing a registry with pre-hashed field values. However, due to the
deterministic derivation process, it may be possible to brute-force low-entropy private field
values represented by a TID within a public registry. Including the registry public key in the
derivation process increases the cost of these attacks by ensuring TIDs are unique for each
public registry. Private registries utilise key derivation based on the existing registry secret
key (SRsec_key, a credential providing access to private services) as a seed to support secure
hashing, as per Equation (2). This use of secure hashing mitigates the risk of brute-force
collision attacks as TID derivation requires access to the service secret key, while service
links are encrypted and can only be resolved by users with access to these credentials. This
approach provides a basic authentication mechanism to ensure only authorised parties
can infer the location or contents of entries in a private registry, while allowing for private
registry pages to be safely shared between peers using the DHT.

TID = hash(SRpub_key + hash( f ield)) (1)

TID = hash(derive(SRsec_key) + hash( f ield)) (2)

To register a service, the DSR is provided with a Service Page (SP) describing the service
to be registered, including endpoint types and associated metadata. For example, an office
environmental sensor may have endpoints for temperature, pressure, and humidity, as
well as a friendly name for the device and a room location. The DSR then derives a TID for
each of these fields and publishes a Data Block (DB) containing the target service ID and
generated TIDs, creating a verifiable signature-chain of records provided by the registry.
This signature chain provides an immutable history of registry operations similar to the
Certificate Transparency (CT) logs issued by TLS Certificate Authorities (CAs), allowing for
the operation of the registry to be validated as well as enabling queries using the historical
registry state. Finally, the DSR generates a Tertiary Page (TP) for each TID containing the
SIDs of the linked service and publishing DSR as well as a link to the associated DB, and
it stores these in the database at the appropriate TID. Each TP contains an issuance and
expiry date allowing for these to be validated and automatically removed from the DHT
on expiry, and must be periodically re-published by the DSR to maintain the registry. To
refresh or update registry entries, a DSR will publish a new DB and store the new TPs in
the database, automatically replacing previous service information. Figure 2 illustrates this
relationship between an SP containing n queryable fields (Fn) that describe a service (S) for
registration, the DB published by the DSR that contains the derived TIDs for each field, and
the n TPs generated and stored in the database for each TID by the DSR. Subscribers to the
DSR can use any indexed field to search for matching services in a registry. This occurs,
first, by generating a TIDs for the query by combining the field value and DSR information,
and then looking up matching TPs using the distributed database, and, finally, using each
discovered TPs to look up service and replica pages to resolve these to service descriptions
and available replicas for further interaction.
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Where centralised registries store all service information at a single point and require
a single round-trip interaction with the registry service for registration or searching, in-
teractions with DSRs consist of several high-level fetch or store operations to resolve or
emplace data into the DHT, while service information is distributed across the network of
peers. Each DHT operation consists of a recursive search for peers near the identifier of
interest, followed by an operation to obtain or put data using a subset of the closest peers
to the target identifier. DHTs operations utilise a configurable number of peers for each
operation, ensuring data are stored at multiple locations to provide redundancy at the cost
of an increase in storage and maintenance bandwidth. The S\Kademlia-based DHT used
by DSF has two key parameters for tuning the operation of the algorithm:

• k—the size of KBuckets (and, thus, the size of the routing table) used to store peer
routing information;

• α—also known as concurrency, or the number of parallel nodes used for each operation.

Figure 2. Service registry object relationships.

Increased values of k will increase the size of the routing table and the cost of main-
taining routing information while decreasing the number of iterations required to perform
a search for a given network size. Increasing α decreases the number of iterations at the
cost of increased network traffic (and latency) and improves resilience as a given data value
will be stored across more peers in the DHT.

DSRs allow any peer with the appropriate credentials to perform a search operation
using any registry while distributing storage and query operations over available peers
for scalability and reliability. However, decentralised registry operations require internet
connectivity for peer-to-peer communication, even where the querying peer and matching
devices exist on the same local network. Due to the partial nature of the routing information
available to a DHT, the number of recursive iterations required to complete an operation
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depends on factors such as the routing algorithm, configuration, and size and performance
of the network. To efficiently support the registry operation, the S\Kademlia-based DHT is
modified to allow for multiple values to be stored at a given identifier. For example, both
service and replica information objects are located at the SID of the target service, while a
DSR will store multiple tertiary pages for a given query at the same TID. This is in contrast
to typical DHT overlays where annotations are offset to ensure a 1:1 relationship between
keys and values, thus requiring an unbounded number of lookups for each possible offset,
improving the efficiency of registry operations at the cost of some reduction in resilience, as
related data for a TID will be stored on the same subset of peers. Registering a service, thus,
requires one DHT store operation for each corresponding TID, while searching requires
one fetch operation to discover N matching services at a TID followed by further N fetch
operations to resolve information for each matching link.

Tertiary pages are signed by the publishing DSR and linked to the relevant DB, al-
lowing for these to be verified both on insertion into the DHT and when resolved during
querying. As described earlier, these pages may also be encrypted to ensure only autho-
rised parties can resolve links to registered services. As Tertiary Pages must be created
and stored for each searchable field in a service, it is likely that the number of TPs will
substantially exceed those of primary or secondary pages. To minimise storage impact
and opportunities for abuse, TPs may not contain any application-defined data and, like
SP, must be periodically re-issued by the publishing registry to avoid expiry. While the
DHT naturally provides redundancy to mitigate churn (the disconnection and reconnection
of peers), DSRs also periodically check the reachability of registered services and issue
updates to ensure TPs are stored in the DHT with the required level of redundancy.

4. Demonstration

In order to illustrate the end-to-end operation of decentralised service registries, we
demonstrate the creation, sharing, and use of a DSR by a pair of users interacting with
real-world IoT environmental sensors via DSFs command-line tooling. These sensors
consist of a Raspberry Pi Zero 2W paired with a variety of different environmental sensors
with endpoints including temperature, humidity, pressure, and CO2 concentration. Each
sensor publishes a DSF-IoT service and is deployed in a different room in an office building.
Where centralised approaches provide a single point of contact for interacting with a
registry service, decentralised registries are distributed across the network of peers. Each
user has an associated peer that executes the DSF daemon, communicating with existing
DSF peers to maintain the DHT and distribute services and data as well as providing an
API for the discovery and management of services. For the purpose of this demonstration,
each user interacts with their peer via command-line tools built on these APIs.

To set up the registry, the publishing user creates a public DSR using the namespace
“org” which is registered in the DHT as illustrated in Figure 3. Once the registry has been
created, this can be adopted by other users via the registry ID, as shown in Figure 4. Note
the simple creation and sharing of a DSR without the deployment or configuration of
supporting infrastructure as is required for existing centralised approaches. Following the
creation of the registry, the dsf-iot utility can be used to register each IoT service, generating
TIDs for each endpoint kind and metadata field and then publishing the DB containing
this information and storing the corresponding TPs in the DHT to construct the overlay.
This registration process is demonstrated in Figure 5, highlighting the TIDs generated from
the indexed fields and DSR information. As discussed in Section 3, each of these TIDs is
unique to the combination of DSR and the value of the indexed field, while multiple TPs
may be published to a single TID for each service with a matching field.
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1 > dsf -iot ns -register \
2 --id [J8dd1z .. D4LBMx] \
3 --name office -env -01 \
4 [3Xay2j ..3 czUcG]
5
6 Registered service with ns J8dd1z .. D4LBMx
7 Name: office -env -01
8 Service ID: 3Xay2j ..3 czUcG (index: 2)
9 Primary page: 4F823x.. ZjSMZn

10 Endpoints:
11 - 0: temperature in °C
12 - 1: co2 in ppm
13 - 2: humidity in %RH
14 public_options:
15 - pub_key: 13D47z.. HiayBK
16 - prev_sig: 4cLaJL ..4 V4MBY
17 - issued: 2023 -07 -19 T03 :17:31Z
18 - expiry: 2023 -07 -20 T03 :17:31Z
19 - room: office1
20 TIDs:
21 - FbZQjY .. oXEqqt
22 - FUcZzx .. pwnobK
23 - AFur9v ..4 VErLg
24 - 3kMswe.. KiCFLN
25 - DPzwHT .. ZGao5D

1 > dsf -iot ns -search \
2 --id [J8dd1z .. D4LBMx] \
3 --endpoint=temperature
4
5 Search using ns J8dd1z .. D4LBMx
6 TID: AFur9v ..4 VErLg
7 Matching services:
8
9 Service ID: 3Xay2j ..3 czUcG (index: 2)

10 Primary page: 4F823x.. ZjSMZn
11 Endpoints:
12 - 0: temperature in °C
13 - 1: co2 in ppm
14 - 2: humidity in %RH
15 Public options:
16 - [..]
17 - issued: 2023 -07 -19 T03 :17:31Z
18 - room: office1
19
20 Service ID: EPUBTW .. oXtHDw (index: 4)
21 Primary page: 5SMbSZ.. bVFgQk
22 Endpoints:
23 - 0: temperature in °C
24 - 1: pressure in kPa
25 - 2: humidity in %RH
26 Public options:
27 - [..]
28 - issued: 2023 -07 -19 T05 :19:24Z
29 - room: office2

Figure 5. Registering a service using a DSR Figure 6. Searching for services using DSR
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discovered service to provide this to the user. Again the SID-based linking between TPs 470

and SP mitigates the risk of service impersonation. 471

1 > dsf -iot data --id [3 Xay2j ..3 czUcG] --latest
2 Fetching data for service 3Xay2j ..3 czUcG
3 Data:
4 Object: 3HzAuL.. scGms3 index: 102528
5 values:
6 - temperature : 20.32 °C
7 - co2 : 561.30 ppm
8 - humidity : 58.74 %RH
9 public_options:

10 - issued: 2023 -07 -19 T05 :56:22Z
11 - prev_sig: WZHn8D .. cdP56A
12 Object: 5YAtBk.. AHWbfz index: 102529
13 values:
14 - temperature : 20.31 °C
15 - co2 : 559.42 ppm
16 - humidity : 58.79 %RH
17 public_options:
18 - issued: 2023 -07 -19 T05 :57:22Z
19 - prev_sig: 3HzAuL .. scGms3

Figure 7. Fetching the latest data from a discovered IoT service

Following this search operation, users can interact with discovered services using 472

the resolved SIDs by subscribing or issuing requests for data, while DSF manages com- 473

munication with the target service or available replicas utilising the distributed network. 474

Figure 7 illustrates this operation, using the CLI to request data from one of the services 475

discovered in the previous example, which is decoded and displayed to the user. This pro- 476

Figure 5. Registering a service using a DSR.

To search for services, the discovering user must first be provided with the registry ID
(and for private registries, the appropriate credentials) to locate and establish trust with the
DSR. Figure 4 shows this adoption process, using the SID generated at registry creation to
look up registry information using the DHT. The use of cryptographically derived service
identifiers ensures unauthorised parties cannot impersonate a registry with a given SID. To
search the registry, an DSR is selected by name or SID, and then a TID is generated for the
query, and a search is performed for tertiary pages at this location. These tertiary pages
are then resolved to service IDs, which can be used to query for Service Pages containing
descriptions of the matching services and Replica Page describing available replicas for
further communication. Figure 6 demonstrates this use of a DSR to search for registered
services with temperature endpoints. This occurs, first, by deriving a TID for the query
and then locating a pair of TPs matching this TID, and, finally, fetching and decoding the
information for each discovered service to provide this to the user. Again, the SID-based
linking between TPs and SP mitigates the risk of service impersonation.

Following this search operation, users can interact with discovered services using the
resolved SIDs by subscribing or issuing requests for data, while DSF manages communica-
tion with the target service or available replicas utilising the distributed network. Figure 7
illustrates this operation using the CLI to request data from one of the services discovered
in the previous example, which is decoded and displayed to the user. This provides an
end-to-end approach to global service discovery and interaction, addressing the need for
discovery mechanisms that integrate context-based querying with unambiguous specifica-
tions to describe services and data, and then using a DSF-IoT replication layer to access
current and historic data published by discovered services. Published data objects are
signed by the publishing service to provide integrity protection and linked into a signature
chain to provide non-repudiation. In contrast with existing centralised and decentralised
approaches, DSR provides trust and privacy, cryptographically associating registry entries
with services and their data to allow users to verify the operation of registries and the
results of their queries.
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9 Primary page: 4F823x.. ZjSMZn
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12 - 1: co2 in ppm
13 - 2: humidity in %RH
14 public_options:
15 - pub_key: 13D47z.. HiayBK
16 - prev_sig: 4cLaJL ..4 V4MBY
17 - issued: 2023 -07 -19 T03 :17:31Z
18 - expiry: 2023 -07 -20 T03 :17:31Z
19 - room: office1
20 TIDs:
21 - FbZQjY .. oXEqqt
22 - FUcZzx .. pwnobK
23 - AFur9v ..4 VErLg
24 - 3kMswe.. KiCFLN
25 - DPzwHT .. ZGao5D

1 > dsf -iot ns -search \
2 --id [J8dd1z .. D4LBMx] \
3 --endpoint=temperature
4
5 Search using ns J8dd1z .. D4LBMx
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5. Performance and Operation

Verifying the correct operation and performance of peer-to-peer systems remains a
substantial challenge, requiring the simulation or emulation of large networks of peers
to replicate real-world deployments. Performance is also a key concern in decentralised
systems due to increased communication and networking overheads when compared
with centralised approaches. In order to evaluate the operation and performance of DSRs,
we developed a scalable cluster-based testbench for the deployment of a virtual peer-to-
peer infrastructure, decoupling peers and networking from physical hardware to allow
for networks of varying sizes and configurations to be programmatically deployed and
evaluated using commodity hardware. This testbench is used to demonstrate the correct
operation and measure the real-world performance of search operations using DSRs with
varying network sizes and latencies modelled to reflect best- and worst-case internet
operations, illustrating the suitability of DSRs as an alternative to existing centralised and
decentralised IoT service registries.

The testbench consists of a cluster of Raspberry Pi hosts communicating via an IP-
based network. Raspberry Pis were selected as a reasonably available and standard host
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platform for clustering to provide an affordable, if less performant, alternative to ×64 com-
puters, with the cluster consisting of 4× Raspberry Pi 4 and 4× Raspberry Pi 3 devices
running 64-bit Debian Linux (6.1.21). Kubernetes was used for cluster orchestration to
manage the deployment of application containers across available hosts as well as the re-
sources available to each container. Containerd was utilised for isolation and virtualisation,
providing a virtual IP network for communication between containers to emulate peer-
to-peer connectivity via the internet as well as network-based storage to allow each peer
to write and retrieve persistent information. Each peer executes a containerised version
of the full DSF daemon which communicates with other peers using UDP packets and
exposes an HTTP control API for use by the test harness. The Kubernetes API provides a
programmatic mechanism to deploy and manage networks of peers deployed using the
cluster. An overview of this software architecture is provided in Figure 8.

Figure 8. Testbench software architecture.

Where decentralised systems are predominantly evaluated using abstract models or
high-level simulation, offering high scalability with relatively low fidelity to support the
simulation of large-scale networks [44,45], this approach provides a high-fidelity model of
the distributed system to enable both performance and operational evaluation, including
application, communication, and operating-system concerns at the cost of some scalability
due to the increased cost of executing the full peer environment. The test environment
consists of a network of peers deployed onto the cluster using the orchestrator, each
interacting to support the operation of the distributed network. A test harness then
interacts with simulated peers using the HTTP control API to configure and evaluate the
operation of the distributed system. This network is illustrated in Figure 9, consisting of
up to M hosts, each executing up to N peers managed by the orchestration layer, with the
external test harness interacting with each peer. A hypothetical virtual network for peer-to-
peer communication is highlighted with examples of the cluster networking paths used
to support this, though it is important to note that routing is a function of the generated
identities of each peer and the operation of the DHT.

As discussed in Section 3, the performance of a decentralised registry depends both on
the size of the network of peers and communication latencies between each pair of peers.
To evaluate this performance tests are executed for network sizes from 50 to 250 peers with
injected network latencies to reflect peer-to-peer communication over the internet. For the
purpose of this evaluation, injected latencies are constant between any two peers with 50 ms
selected to represent a nominal average and 100 ms as a worst-case average for internet
communication [38,45], and 0 ms provided as a best-case baseline. Real-world networks
will likely experience a variety of communication delays between peers depending on
physical location and network technologies; however, due to the stochastic nature of
the DHT modelling, these point-to-point communication links in more detail would not
significantly improve the fidelity of the simulation. Each test uses a single DSR with a
constant set of services for searching. A test harness is used to emulate user interaction
with the DSR, first by configuring an DSR and registering the set of services for discovery,
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and then by interacting with each peer to execute a search operation for each registered
service. Each test consists of the following sequence:

1. The required number and configuration of peers are deployed onto the cluster as a
Kubernetes service.

2. The network is bootstrapped by instructing each peer to connect to the prior, prompt-
ing a search for nearby peers and establishing the routing table used by the DHT.

3. The DSR and target services are created and registered in the DHT, allowing for these
to be resolved by other peers.

4. The test harness iterates through each available peer and uses the registry to execute
a search for each target service, recording the number of iterations and the time for
each search operation to complete.

Figure 9. Testbench network.

Each DSR search operation begins by deriving a TID and issuing a DHT lookup for
tertiary pages and then the primary page for each discovered service. Per the process
described in Section 3, the number of DHT iterations (and, thus, network transactions)
depends on the number of available peers, the distance between the target and requesting
IDs, and the configuration of the DHT. As peer and service identifiers can be assumed to
be randomly distributed, the superset of all peers and services is used to ensure the best-
and worst-case performances are captured, and the execution time of each operation is
measured and collected for analysis. For this evaluation, we fix the DHT configuration to
k = 16 and α = 4 as values proportional to the scale of the networks under test, and we
elide churn by allowing for the network to reach a steady state prior to executing each test.

Where the performance of centralised approaches typically varies with the complexity
of the query, the size of the database, and the number of coordinating registries, DSFs’
query performance depends primarily on the number of lookups required to perform a
search (and the performance of these lookups). Figure 10 illustrates the average search
operation duration for varying network sizes and latencies, with bars showing standard
deviation to highlight variability between queries, while Figure 11 illustrates the average
query depth required to resolve a query for each network size and latency. As the number
of peers grows, the number of iterations required to locate peers near an ID increases,
causing an increase in both the mean and variation of search durations, while increased
network latencies cause an increase in both the duration and variation of search operations.
This shows that across the tested network sizes, average query durations vary from 0.2
to 0.5 s with no injected network latency, 0.7 to 1.2 s with 50 ms of network latency, or
1.5 to 2.5 s with the worst-case 100 ms of network latency. It is expected that real-world
performance will fall within these best- and worst-case bounds depending on network size
and topologies. Table 1 provides a summary of related approaches to service discovery with
published performance figures. This provides a baseline to contextualise DSRs performance
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against existing approaches; however, due to differences between testing methodologies
and network models, these values are only suitable for broad comparisons. DSR provides
similar query performance to existing works; however, as described in Section 3, DSRs’
trustworthy discovery mechanism requires 1 + N DHT queries (where N is the number
of matching services) to query the registry and then resolve information for each service,
effectively doubling the execution time for a query with a single match when compared to
untrusted approaches. In contrast to the lower-fidelity approaches to simulation typically
used with decentralised technologies, this cluster-based evaluation demonstrates the correct
operation of the distributed registry as well as the suitability of DSR for interactive use,
achieving the performance requirements for real-time user interaction and allowing users
to issue queries and discover IoT services using a decentralised infrastructure.
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Approach Performance Context

Cirani et al. [35] 200–500 ms Location-based DHT, 0–1000 nodes with network delays via Cooja.
Tanganelli et al. [40] 250–320 ms Fog-based DHT, 20–100 nodes with a constant 80 ms network latency.
Jia et al. [30] 230–430 ms Centralised resource matching, algorithm-dependent.
Gomes et al. [31] 250–500 ms Federated, queries executed across 1–5 repositories.
Kamel et al. [38] 50–850 ms Region-based DHT, 10,000 nodes with 2 ms (local)–120 ms (regional) network latency.
Zorgati et al. [39] 190–210 ms Clustered SON + DHT, 50 nodes, network latency not modelled.
DSR 700–1200 ms DHT discovery and fetch, 50–250 nodes with 50 ms nominal network latency.
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6. Evaluation

In contrast to existing centralised and decentralised registries, DSRs provide a trust-
worthy end-to-end approach to global service discovery and interaction. This approach
dramatically simplifies the creation and sharing of service registries by decoupling registry
instances from supporting infrastructure and allowing for multiple public and private
registries to be deployed using the shared peer-to-peer network. Where centralised reg-
istries require the deployment of API and database servers alongside mechanisms for
security and authentication, DSRs can be created using a one-line console command and
then shared by providing users with a registry ID (and credentials for private instances), as
demonstrated in Section 4. Decentralisation also allows for this supporting infrastructure
to be constructed from heterogeneous edge devices in place of centralised cloud-based
computing and storage. Overall, this decreases the cost and complexity of deploying and
maintaining global service registries while addressing key challenges required to enable
a global IoT. These key challenges are summarised in Table 2. DSRs also offer a valuable
alternative to existing decentralised approaches to service discovery, addressing the need
for trust, privacy, and access to data to enable future IoT applications. DSRs are compared
to existing decentralised approaches in Table 3.

Table 2. Centralised vs. decentralised service registries.

Centralised Decentralised (DSR)

Identification
IP or DNS-based, inconsistent and limited to network
or vendor scopes. Requires TLS and supporting infras-
tructure for verification.

Content-based, globally scoped, and cryptographically
verifiable, addressing enabling trust and mobility.

Specification Must be paired with external mechanisms for service
description and data encodings.

Includes unambiguous, self-contained, and verifiable
descriptions of service and data.

Communication
Typically out-of-scope for registry implementations
while existing approaches are limited to interaction
within a network or vendor ecosystem.

Opportunistic local and global service interaction via
peer-to-peer infrastructure while retaining end-to-end
privacy and security properties.

Scalability
Limited by the performance of the registry server, may
be improved by mirroring or sharding servers at the
cost of operational complexity.

Storage and queries are distributed across commu-
nicating peers, allowing constrained peers to create
registries that support high volumes of queries.

Reliability
Centralised registries may be deployed on isolated
or non-internet-connected networks; however, they
typically offer a single point of failure.

Resilient to communication and service interruptions;
however, internet connectivity is required to interact
with the peer-to-peer network to execute queries.

Trust

Must be paired with TLS for transport security, no
object verification or CT-like mechanisms for establish-
ing registry trust or associating registry entries with
services and data.

Registry entries are signed and linked to ensure in-
tegrity and create a verifiable history for each registry
while ensuring the authenticity of services and pub-
lished data.

Privacy Registries have full access to service information and
require out-of-band mechanisms for access control.

Supports the creation of private registries as well as
zero-knowledge registration and querying.

Where centralised registries require complex sharding or mirroring of services for
scalability and reliability, decentralised approaches such as DSRs distribute storage and
querying between peers in the decentralised network. This removes the single point of
failure of centralised registries as well as allows relatively low-performance devices to
create registries that can support high volumes of queries. Health-checking and duplication
of registry data within the DHT ensure registry availability in the face of churn, while the
distribution of data across available peers allows for a degraded operation in the case of
limited connectivity or loss of substantial numbers of peers. However, due to the peer-to-
peer nature of DSRs, internet connectivity is required to create and access registry instances,
rendering these unsuitable for use in isolated networks. While DSF may, in the future, be
extended to support isolated networks, this use case is orthogonal to the need for global
discovery and adequately served by existing centralised registries.
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Table 3. A comparison of decentralised approaches to service discovery.

Registry Service

Approach Trust Privacy History Identification Specification Communication

Paganelli et al. [33] ✗ ✗ ✗ ✗ ✗ ✗

Cirani et al. [35] ✗ ✗ ✗ ✗ ✓ 1 ✓ 2

Li et al. [34] ✗ ✗ ✗ ✗ ✗ ✗

Tanganelli et al. [40] ✗ ✗ ✗ ✗ ✓ 1 ✓ 2

Kamel et al. [37,38] ✗ ✓ ✗ ✗ ✗ ✗

Zorgati et al. [39] ✗ ✗ ✗ ✗ ✗ ✗

DSR ✓ ✓ ✓ ✓ ✓ ✓

✓ meets requirements. ✗ does not meet requirements. 1 Partial CoRE-based specification only. 2 No access to
historic data.

DSRs’ adoption of content-based addressing using globally scoped and cryptograph-
ically verifiable service identifiers means that services can be consistently, uniquely, and
verifiably addressed regardless of physical or network location. In contrast to existing
registries, this provides a cryptographic association between registry entries and services
to address the risk of service impersonation without requiring external certificate infras-
tructure. DSF-IoTs mechanisms for specification provide unambiguous descriptions of
services and data allowing for these to be exchanged and interpreted, while peer-to-peer
communication provides access to services and data across disparate physical networks
and enables service mobility. Where existing registries must be paired with brokering
and database infrastructures for accessing services and data, this provides an end-to-end
approach that allows users to discover, understand, and interact with relevant services
using the decentralised network. This decentralised approach also improves access to and
availability of data by allowing for data queries and subscriptions for discovered services
to be fulfilled by service replicas.

Where existing registries fail to address the need for trust and privacy, DSRs’ use of
signature chains and cryptographic linking allows users to view registration history and
evaluate registry trust by observing the historic operation of the registry. This addresses
the temporal challenge of device discovery, allowing users to discover active devices using
the DHT as well as to execute queries for a specific time period using the registry history.
Object signing provides integrity protection and ensures that registry entries (TPs) can only
be published by the registry service. Field-based encryption and one-way TID derivation
support the creation of private registries on public peer-to-peer infrastructures as well as
zero-trust registry operation whereby the registry has no access to query or registration
information. Overall, this allows users to discover services while ensuring the authenticity
of query results, service identities, and published data, providing end-to-end trust from the
registry down to the data published by the service to allow services to be safely discovered
and utilised for real-world applications.

DSRs allow users to search for relevant services using simple context-based queries;
however, the adoption of a decentralised database does impose a performance cost. Where
centralised registries provide a single omniscient point for query execution and support
complex queries, decentralised approaches require iterative peer-to-peer operations to
resolve queries to services, and DSRs only support exact queries. While the measurements
in Section 5 demonstrate that the DSR’s query performance is suitable for interactive use,
this decentralised approach imposes higher query latencies than are typical of centralised
registries. We believe the benefits of decentralised registries discussed above outweigh this
performance impact; however, it is proposed that future works investigate the optimisation
of query operations to improve the performance of decentralised service discovery.

7. Discussion

DSRs provide a novel alternative to existing centralised and decentralised service
registries. However, the adoption of peer-to-peer technologies introduces several compli-
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cations. Registries depend on internet connectivity for registry operation, leaving these
unsuitable for use on local networks as well as providing less-than-ideal best-case query
performance. It is proposed that future works introduce support for the caching of lo-
cal service information and registry replication to allow for isolated operations and offer
improved query performance on local networks, as well as investigating performance
improvements for the DHT to improve query operation and the integration of techniques
to support range-based and multi-attribute queries via a DHT overlay.

The cluster-based approach to peer-to-peer network emulation used for performance
and operational testing supports the evaluation of distributed systems with relatively large
numbers of peers using available and affordable commodity hardware. In contrast to more
scalable low-fidelity approaches to simulation, this enables the end-to-end operational
verification of distributed applications and provides a basis for the experimentation and
evaluation of DSRs. This approach may be further refined to address several limitations:

• The use of all peers in the network to perform measurements causes test durations
to increase with the size of the network; while the scale of test networks is currently
limited by available hardware, in order to support larger test networks, approaches
to sub-sampling and query parallelisation would enable the timely evaluation of
larger networks.

• The testbench currently elides churn and packet loss which can impact the registry
performance and the bandwidth required to maintain registry entries. Future im-
provements may include network sampling to measure performance and maintenance
bandwidth under varying network conditions as well as the introduction of mecha-
nisms to mitigate churn in the DHT [46,47].

• As network size and communication latencies change, the optimal values of α and k
will vary. It may be desirable to investigate the variation of the DHT configuration
for different networks; however, the general optimisation of the DHTs is considered
outside the scope of this research.

Future expansions of the testbench may include models for the dynamic joining and
leaving of peers to simulate churn while introducing mechanisms to prioritise network
locality when storing and querying from the DHT. Due to the use of the full peer application
and the sharing of computational resources between peers executed on a single host in
the cluster, the size of the simulation is limited by available resources, primarily due to
available memory, with the existing eight-node cluster supporting up to 250 peers. This
resource-sharing is a necessary compromise to provide a scalable approach to evaluating
large networks with limited physical resources and may be mitigated by adding additional
hosts to the cluster as well as prioritising high memory capacity when selecting hosts. Alter-
natively, higher-performance amd64-based hosts could be used; however, this significantly
increases the cost of deploying such a testbed.

8. Conclusions

We present Decentralised Service Registries (DSRs), a decentralised approach to global
IoT service discovery using a novel S\Kademlia-based DHT and overlay. DSR builds on
DSF and DSF-IoT to provide an end-to-end alternative to the existing centralised, siloed,
and vendor-controlled IoT infrastructure for sharing, searching for, and interacting with
IoT services. Where existing centralised registries require the deployment and maintenance
of server infrastructure, and decentralised approaches typically fail to address the need
for multi-tenancy, trust, and privacy, DSRs support the creation and use of public and
private registries using common peer-to-peer DSF infrastructures. This allows users and
organisations to simply and safely create and share public or private registries to best meet
their needs, removing the need for IoT device vendors or other organisations to deploy and
maintain specific registry infrastructure while addressing key IoT challenges to meet the
requirement for context-based global discovery in the IoT.

Coupled with DSFs, support for service interaction and DSF-IoTs’ unambiguous
specification for IoT services, DSRs provide an end-to-end approach to global service
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discovery and interaction, allowing users to safely share, find, and interact with IoT
services in a global context. This operation is demonstrated through the creation and use
of a registry to share and discover real-world IoT devices in Section 4, highlighting the
end-to-end operation from querying for services to accessing service information and data.
A novel cluster-based testbench is developed to enable a high-fidelity emulation of the peer-
to-peer system by allowing virtual networks of varying sizes to be operated and evaluated
using readily available and low-cost hardware. Where low-fidelity modelling provides
scalable predictions of system performance, this cluster-based approach enables high-
fidelity testing and validation of the real-world operation and performance of decentralised
systems. This testbench is used to qualify the operation and performance of DSR across a
variety of network sizes with varying communication latencies, emulating the operation of
real-world peers communicating via the internet and providing a performance baseline for
comparison with existing registries. DSRs have been evaluated against existing centralised
and decentralised approaches, highlighting the functional and performance trade-off of
each approach and demonstrating the suitability of decentralised registries to address the
need for global service discovery in the IoT.

We believe that decentralisation is key to enabling a future pervasive IoT, moving
from centralised, siloed, and isolated infrastructure to reliable and privacy-preserving
peer-to-peer architectures that empower individuals and organisations to safely create and
share services to best meet their goals. DSRs are a step towards that future, enabling the
global sharing and use of services to support future IoT applications that span physical
and organisational siloes. Future works are expected to continue this evolution through the
development of user-friendly interfaces for interacting with registries and services, and
the deployment of wide-scale networks of DSF-IoT devices to collect and share data and
provide a platform for new IoT applications. DSF (with support for DSRs) is published as
open-source software to support further research and real-world applications.
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