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Abstract: Classifying the flow subsequences of sensor networks is an effective way for fault detection
in the Industrial Internet of Things (IIoT). Traditional fault detection algorithms identify exceptions by
a single abnormal dataset and do not pay attention to the factors such as electromagnetic interference,
network delay, sensor sample delay, and so on. This paper focuses on fault detection by continuous
abnormal points. We proposed a fault detection algorithm within the module of sequence state
generated by unsupervised learning (SSGBUL) and the module of integrated encoding sequence
classification (IESC). Firstly, we built a network module based on unsupervised learning to encode the
flow sequence of the different network cards in the IIoT gateway, and then combined the multiple code
sequences into one integrated sequence. Next, we classified the integrated sequence by comparing the
integrated sequence with the encoding fault type. The results obtained from the three IIoT datasets of
a sewage treatment plant show that the accuracy of the SSGBUL–IESC algorithm exceeds 90% with
subsequence length 10, which is significantly higher than the accuracies of the dynamic time warping
(DTW) algorithm and the time series forest (TSF) algorithm. The proposed algorithm reaches the
classification requirements for fault detection for the IIoT.

Keywords: Industrial Internet of Things; deep learning; subsequence classification; fault detection

1. Introduction

In the Industry 4.0 era, the IIoT has become increasingly important to industrial
production [1,2]. It is very useful to detect faults in a timely and accurate manner, which
can help us more quickly identify the problems and take effective action. Various faults may
have occurred during the operation of the IIoT [3], such as sensor disconnection, remote
I/O offline, illegal system access [4], cyber-attacks, and so on.

Currently, there are several methods for fault diagnosis. Zhou, X. [5] realized the
level-aware black-box adversarial attack strategy, targeting the graph neural network
(GNN)-based intrusion detection in the IoT systems, with a limited budget. A. Pasyuk [6]
provided an analysis and comparison of sequential feature selection methods for training
machine learning models intended to classify network traffic flows. Yuri S [7] proposed
a framework called Detection and Alert State for Industrial Internet of Things Faults
(DASIF). Alberto G [8] proposed an approach to detect and classify faults that are typical
in these devices, based on machine learning techniques that use energy, processing, and
main application use as features. Jammalamadaka R K S [9] proposed an algorithm that
uses deep learning techniques to forecast failures in smart home applications by analyzing
each device’s log of events and calculating its failure rate per attempt. Qing Liu [10]
proposed an innovative failure detection and diagnosis model for intelligent instruments in
an IoT system using a Bayesian network, with a focus on handling uncertainties in expert
knowledge and IoT monitoring information.
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Anomalies in the IIoT are often caused by accidental factors, such as electromagnetic
interference, network delay, system maintenance, sensor replacement, sensor sample delay,
and so on. If each exception is to be handled, it will be time consuming and that reduces the
capacity to handle the true exception. So, we planned to promote an algorithm to determine
the fault by continuous abnormal points. Always, the IIoT gateway includes multiple
network cards, such as the sensor data collection network card Ethernet 0 (Eth0), the system
maintenance network card Ethernet 1 (Eth1), the point-to-point protocol card 0 (PPP0), and
the virtual network card 0 (VPN0). We can acquire relevant information to evaluate the
performance of the IIoT by analyzing the flow subsequences of the IIoT gateways.

At present, subsequence classification algorithms can be divided into four categories:
(1) distance-based, (2) interval-based, (3) dictionary pattern-based, and (4) neural network-
based subsequences. In terms of distance-based classification, Bagnall [11] proposed
an algorithm called DTW [12] that adopts the KNN classifier for sequence classification.
DTW requires defining a large number of subsequence models for pattern matching, which
is always time consuming. In terms of interval-based classification, Deng H, Lines J,
and Middlehurst M proposed the TSF, random interval spectrum ensemble [13], and
typical interval forest [14] algorithms, which utilize statistical features such as the mean,
variance, and slope of the subsequences for matching, and use random forest models
for classification. Due to the large fluctuations in the numerical characteristics of the
network flow subsequences, it is difficult to adapt the fixed patterns of statistical features
to all types of subsequences. In terms of dictionary pattern-based classification, Lin J,
Radford A, and He K, respectively, proposed a pattern packet algorithm [15], a symbol
aggregation approximation algorithm [16], and a time series classification based on a word
extraction algorithm [17]. These algorithms convert time series data into pattern packets
and distinguish subsequence categories based on the relative frequency of a pattern packet’s
appearance. Because the data span of the network flow is enormous, lots of patterns need to
be defined. In terms of the neural network-based classification, Wang [18] and Fatwas [19]
validated the performance of convolutional neural networks (CNNs) and residual neural
networks in classification tasks [20].

For industrial IoT gateways, they always connect different amount sensors so that
the flow features are variations that block the analysis of the flow sequence features. So,
we encoded the flow sequence first, and then performed the fault diagnosis. Based on the
above analysis, we proposed the IIoT fault detection algorithm SSGBUL–IESC. It consists
of the SSGBUL module for sequence state generation and the IESC module for sequence
classification. The main contributions of this work are as follows:

1. We designed a code generator model, SSGBUL, to encode flow value and utilized
the subsequence calibration function to reduce the prediction error during the
encoding process.

2. We identified the detail fault type by encoding the flow sequence. Firstly, we redefined the
fault type tables by encoding sequences. And then, we converted the multi-dimensional
flow sequences into one integrated code sequence. Finally, we identified the fault type
using the integrated sequence and compared it with the encoding fault types.

2. SSGBUL–IESC Algorithm

The SSGBUL–IESC fault detection algorithm consists of the SSGBUL encoding module
and the IESC classification module. There are three submodules within the SSGBUL
encoding module: (1) the submodule of the network flow prediction based on unsupervised
learning (NFPBUL); (2) the unified coding module (UCM) that is used to encode the
network flow sequence; (3) the submodule of the calibrate the input subsequence (CIS). In
the classification module, we combined the coding sequences of different network cards
into one complete sequence. And then, we detected the fault type by comparing the
complete coding sequence with the encoding fault type. Figure 1 shows the diagram of the
overall network architecture.
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Figure 1. Overall network architecture of SSGBUL–IKNN.

2.1. SSGBUL Model
2.1.1. NFPBUL Prediction Model

For a fixed network card of the IIoT gateway, the network flow is sampled within
a specified time cycle according to Equation (1):

D = [d1, d2, . . . , dm] (1)

where m is the collection time and dm is the network flow amount. The network flow
sequence D is divided into a collection Cd with a sliding window length l according to
Equation (2).

Cd =



[d1 d2 . . . dl ]

[d2 d3 . . . dl+1]

. . .

[dm−l dm−l+1 . . . dm]


(2)

The label collection Cl for the flow subsequence is constructed according to Equation (3).

Cl = [dl+1, dl+2, . . . , dm]
T (3)

The NFPBUL module consists of four parts: (1) the input layer, (2) the CNN layer,
(3) the LSTM layer, and (4) the output layer. The input layer contains a set of network flow
subsequences and a set of labels. The CNN layer has two parts: double one-dimensional
convolutional components (1D-CNN) [21] and one max pooling component. The first
convolutional component extracts the features from the input flow subsequence. The
second convolutional component performs the extraction again to obtain an enlarged
feature. The max pooling component simplifies the feature and uses it as an input in
the decoder. These extracted features will be passed on to the LSTM layer to capture the
long-term dependencies of the network flow. The LSTM layer consists of a single LSTM [22]
component. The periodicity and regularity of the data are extracted through the LSTM [23]
layer. The output layer contains two fully connected components. The first fully connected
component is used to enhance the nonlinear ability of the LSTM model, and the second
fully connected component is used to output the set of predicted values. Figure 2 shows
the network structure of the NFPBUL.
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Figure 2. NFPBUL network structure diagram.

We trained the NFPBUL model with the data from the subsequence collection Cd and
labelled the collection Cl [24]. After the training was completed, the NFPBUL module was
used for the prediction purpose. The calculation formula for network flow prediction is
as follows:

Cp = N(Cd, Cl) (4)

where the function N is the NFPBUL prediction model and Cp is the prediction result set.

2.1.2. Coding Model

According to Equation (2), the input sequence is constructed by using a sliding window
on the test dataset, according to Equation (5).

Pt = {[dt−1−l , dt−l , . . . , dt−1]} (5)

where dt is the network flow number. The future network flow can be predicted by the
NFPBUL network, according to Equations (6) and (7).

Cp = N(Pt) (6)

pt = Cp[0] (7)

The UCM module encodes the network flow with the values of 1, 0, and−1 [25]. When
the difference between the prediction value and the actual value is within the threshold ε,
the value of the network flow is set to 0. When the difference exceeds the threshold ε, it
means that several system faults have occurred, such as illegal access, cyber-attacks, etc.,
and the value of the network flow is set to 1. When the difference is below the threshold
ε, several faults are predicted to occur, such as sensor disconnection, remote I/O module
offline, etc., and the value of the network flow is set to −1. The calculation function of
encoding is expressed in Equation (8):

Fcode(dt, pt, ε) =


1, dt ∈ [pt + ε,+∞]

0, dt ∈ [pt − ε, pt + ε]

−1, dt ∈ [0, pt − ε]

(8)

where dt is the actual network flow at time t and pt is the prediction value at time t.
The network flow coding sequence can be generated by multiple steps of predicting and
encoding according to Equation (9).

St = [st, st+1, . . . , st+m] (9)

2.1.3. Subsequence Calibration

At the NFPBUL model training stage, we always utilized the correct data. During
the predicting stage, the NFPBUL model can predict the next data correctly for normal
data. If one were to input abnormal data, the NFPBUL model will generate the future data
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according to the correct data trend. When the data returns to normal, the prediction value
will still be generated by abnormal data, and that will lead to the system mis-encoding
the normal data with abnormal data according to Equation (9). To resolve this issue,
we proposed a subsequence calibration method to adjust anomalous data based on the
difference between the actual value and the predicted value. The steps of this method are
listed as follows:

(1) Calculate the fixed position flow threshold value in a single data cycle on the training
dataset according to Equation (10). Firstly, calculate the maximum network flow at
each position. Then, subtract the average network flow to determine the error value
ε∆ according to Equation (10):

ε∆ = max(d1∗l , d2∗l , . . . , dn∗l)−

n
∑

i=0
di∗l

n
(10)

where di∗l is the flow value at a fixed position within the data circle.
(2) Select the maximum threshold value as the whole sequence threshold according to

Equation (11):
ε = max(ε1

∆, ε2
∆, . . . , εl

∆) (11)

where εl
∆ is the threshold at a fixed position within the data circle.

(3) Calibrate the network flow. If the sequence is too regular, we can add a fixed value
to ε prevent the model becoming too sensitive. Based on the difference between the
actual value and predicted value, dynamically adjust the sequence item according to
Equation (12). If the absolute difference value is greater than the threshold ε, it means
that the actual value is abnormal, and construct the network flow subsequence with
the predicted value. Otherwise, construct the network flow subsequence with the
actual value according to Equation (12):

at =

{
pt, |dt − pt|> ε
dt, |dt − pt|≤ ε

(12)

where at is the reconstructed network flow value at time t.
(4) Obtain the prediction value using the NFPBTSN network model [26] through a newly

constructed network flow subsequence [27] based on the calibration function according
to Equation (13).

pt+1 = Cp[0] = N(At) = N([at−l , at−l+1, . . . , at]) (13)

(5) Generate the network flow code sequence according to Equation (8).
(6) Repeat steps 3 to 5 to generate the final code sequence after multiple rounds of

prediction and encoding.

2.2. Classification Algorithm
2.2.1. Integrated Module

We integrated multiple flow subsequences into a one-dimensional encoding sequ-
ence [28] that can display the whole IIoT gateway running information [29] according to
Equations (14) and (15).

Sall = Con([S1, S2, S3, S4, S5, S6, S7, S8]) (14)

Si = Con([s1, s2, . . . , sl ]) (15)

In Equation (14), S1, S2, S3, S4, S5, S6, S7, and S8 represent the coding subsequence of
the received or sent flow sequence. In Equation (15), sl is the encoded value of one point,
l is the length of the sliding window, and Con is a connection function. Figure 3 shows
the network flow sequences integrated diagram for Eth0, Eth1, PPP0, and VPN0 at the
receiving and sending dimension.
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2.2.2. Encoding Fault Definition

Due to the varying quantity of sensors connected to the IIoT gateway, it is tedious to
define the fault sequences for each gateway [30]. Thus, we proposed a new way to define the
fault type by the encoding sequence [31] according to Equation (14) in Table 1. The encoding
sequence includes eight subsequences, such as Eth0 receive subsequence, Eth0 send
subsequence, Eth1 receive subsequence, Eth1 send subsequence, PPP0 receive subsequence,
PPP0 send subsequence, VPN0 receive subsequence, and VPN0 send subsequence. The
code of the lower position in the trend diagram in Table 1 is −1, which refers to the
abnormal point where the flow value is lower than the normal value. The code of the higher
position is 1, which refers to the abnormal point where the flow value is higher than the
normal value. The code of the flat position is 0, which refers to the point where the flow
value is normal. When the anomaly ends, the position of the point will return to a flat area
from a lower or higher position. Currently, we can define 13 kinds of fault definitions, and
can also append the new fault type.

Table 1. Faults definition table based on coding sequence.

No. Type Trend Diagram

0 Normal
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8 Illegal system access  
9 Illegal system access end  

10 Cyber-attacks start  
11 Cyber-attacks   
12 Cyber-attacks end  

6 Remote I/O fault end
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2.2.2. Encoding Fault Definition 

Due to the varying quantity of sensors connected to the IIoT gateway, it is tedious to 

define the fault sequences for each gateway [30]. Thus, we proposed a new way to define 

the fault type by the encoding sequence [31] according to Equation (14) in Table 1. The 
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No. Type Trend Diagram 

0 Normal  
1 Sensor disconnected start  
2 Sensor disconnected  
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4 Remote I/O fault start  
5 Remote I/O fault  
6 Remote I/O fault end  
7 Illegal system access start  
8 Illegal system access  
9 Illegal system access end  

10 Cyber-attacks start  
11 Cyber-attacks   
12 Cyber-attacks end  

7 Illegal system access start

Sensors 2024, 24, 2210 6 of 17 
 

 

1 2 3 4 5 6 7 8
([ , , , , , , , ])Con

all
S S S S S S S S S=  (14) 

1 2
([ , , ..., ])Con

i l
S s s s=  (15) 

In Equation (14), S1, S2, S3, S4, S5, S6, S7, and S8 represent the coding subsequence of 

the received or sent flow sequence. In Equation (15), 𝑠𝑙 is the encoded value of one point, 

l is the length of the sliding window, and Con is a connection function. Figure 3 shows the 

network flow sequences integrated diagram for Eth0, Eth1, PPP0, and VPN0 at the receiv-

ing and sending dimension. 

 

Figure 3. State of whole network card flow integration diagram. 

2.2.2. Encoding Fault Definition 

Due to the varying quantity of sensors connected to the IIoT gateway, it is tedious to 

define the fault sequences for each gateway [30]. Thus, we proposed a new way to define 

the fault type by the encoding sequence [31] according to Equation (14) in Table 1. The 

encoding sequence includes eight subsequences, such as Eth0 receive subsequence, Eth0 

send subsequence, Eth1 receive subsequence, Eth1 send subsequence, PPP0 receive sub-

sequence, PPP0 send subsequence, VPN0 receive subsequence, and VPN0 send subse-

quence. The code of the lower position in the trend diagram in Table 1 is −1, which refers 

to the abnormal point where the flow value is lower than the normal value. The code of 

the higher position is 1, which refers to the abnormal point where the flow value is higher 

than the normal value. The code of the flat position is 0, which refers to the point where 

the flow value is normal. When the anomaly ends, the position of the point will return to 

a flat area from a lower or higher position. Currently, we can define 13 kinds of fault def-

initions, and can also append the new fault type. 

Table 1. Faults definition table based on coding sequence. 

No. Type Trend Diagram 

0 Normal  
1 Sensor disconnected start  
2 Sensor disconnected  
3 Sensor disconnected end  
4 Remote I/O fault start  
5 Remote I/O fault  
6 Remote I/O fault end  
7 Illegal system access start  
8 Illegal system access  
9 Illegal system access end  

10 Cyber-attacks start  
11 Cyber-attacks   
12 Cyber-attacks end  

8 Illegal system access
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2.2.2. Encoding Fault Definition 

Due to the varying quantity of sensors connected to the IIoT gateway, it is tedious to 

define the fault sequences for each gateway [30]. Thus, we proposed a new way to define 

the fault type by the encoding sequence [31] according to Equation (14) in Table 1. The 

encoding sequence includes eight subsequences, such as Eth0 receive subsequence, Eth0 

send subsequence, Eth1 receive subsequence, Eth1 send subsequence, PPP0 receive sub-

sequence, PPP0 send subsequence, VPN0 receive subsequence, and VPN0 send subse-

quence. The code of the lower position in the trend diagram in Table 1 is −1, which refers 

to the abnormal point where the flow value is lower than the normal value. The code of 

the higher position is 1, which refers to the abnormal point where the flow value is higher 

than the normal value. The code of the flat position is 0, which refers to the point where 

the flow value is normal. When the anomaly ends, the position of the point will return to 

a flat area from a lower or higher position. Currently, we can define 13 kinds of fault def-

initions, and can also append the new fault type. 

Table 1. Faults definition table based on coding sequence. 

No. Type Trend Diagram 

0 Normal  
1 Sensor disconnected start  
2 Sensor disconnected  
3 Sensor disconnected end  
4 Remote I/O fault start  
5 Remote I/O fault  
6 Remote I/O fault end  
7 Illegal system access start  
8 Illegal system access  
9 Illegal system access end  

10 Cyber-attacks start  
11 Cyber-attacks   
12 Cyber-attacks end  

9 Illegal system access end
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2.2.2. Encoding Fault Definition 

Due to the varying quantity of sensors connected to the IIoT gateway, it is tedious to 

define the fault sequences for each gateway [30]. Thus, we proposed a new way to define 

the fault type by the encoding sequence [31] according to Equation (14) in Table 1. The 

encoding sequence includes eight subsequences, such as Eth0 receive subsequence, Eth0 

send subsequence, Eth1 receive subsequence, Eth1 send subsequence, PPP0 receive sub-

sequence, PPP0 send subsequence, VPN0 receive subsequence, and VPN0 send subse-

quence. The code of the lower position in the trend diagram in Table 1 is −1, which refers 

to the abnormal point where the flow value is lower than the normal value. The code of 

the higher position is 1, which refers to the abnormal point where the flow value is higher 

than the normal value. The code of the flat position is 0, which refers to the point where 

the flow value is normal. When the anomaly ends, the position of the point will return to 

a flat area from a lower or higher position. Currently, we can define 13 kinds of fault def-

initions, and can also append the new fault type. 

Table 1. Faults definition table based on coding sequence. 

No. Type Trend Diagram 

0 Normal  
1 Sensor disconnected start  
2 Sensor disconnected  
3 Sensor disconnected end  
4 Remote I/O fault start  
5 Remote I/O fault  
6 Remote I/O fault end  
7 Illegal system access start  
8 Illegal system access  
9 Illegal system access end  

10 Cyber-attacks start  
11 Cyber-attacks   
12 Cyber-attacks end  

10 Cyber-attacks start
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2.2.2. Encoding Fault Definition 

Due to the varying quantity of sensors connected to the IIoT gateway, it is tedious to 

define the fault sequences for each gateway [30]. Thus, we proposed a new way to define 

the fault type by the encoding sequence [31] according to Equation (14) in Table 1. The 

encoding sequence includes eight subsequences, such as Eth0 receive subsequence, Eth0 

send subsequence, Eth1 receive subsequence, Eth1 send subsequence, PPP0 receive sub-

sequence, PPP0 send subsequence, VPN0 receive subsequence, and VPN0 send subse-

quence. The code of the lower position in the trend diagram in Table 1 is −1, which refers 

to the abnormal point where the flow value is lower than the normal value. The code of 

the higher position is 1, which refers to the abnormal point where the flow value is higher 

than the normal value. The code of the flat position is 0, which refers to the point where 

the flow value is normal. When the anomaly ends, the position of the point will return to 

a flat area from a lower or higher position. Currently, we can define 13 kinds of fault def-

initions, and can also append the new fault type. 

Table 1. Faults definition table based on coding sequence. 

No. Type Trend Diagram 

0 Normal  
1 Sensor disconnected start  
2 Sensor disconnected  
3 Sensor disconnected end  
4 Remote I/O fault start  
5 Remote I/O fault  
6 Remote I/O fault end  
7 Illegal system access start  
8 Illegal system access  
9 Illegal system access end  

10 Cyber-attacks start  
11 Cyber-attacks   
12 Cyber-attacks end  

11 Cyber-attacks
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2.2.2. Encoding Fault Definition 

Due to the varying quantity of sensors connected to the IIoT gateway, it is tedious to 

define the fault sequences for each gateway [30]. Thus, we proposed a new way to define 

the fault type by the encoding sequence [31] according to Equation (14) in Table 1. The 

encoding sequence includes eight subsequences, such as Eth0 receive subsequence, Eth0 

send subsequence, Eth1 receive subsequence, Eth1 send subsequence, PPP0 receive sub-

sequence, PPP0 send subsequence, VPN0 receive subsequence, and VPN0 send subse-

quence. The code of the lower position in the trend diagram in Table 1 is −1, which refers 

to the abnormal point where the flow value is lower than the normal value. The code of 

the higher position is 1, which refers to the abnormal point where the flow value is higher 

than the normal value. The code of the flat position is 0, which refers to the point where 

the flow value is normal. When the anomaly ends, the position of the point will return to 

a flat area from a lower or higher position. Currently, we can define 13 kinds of fault def-

initions, and can also append the new fault type. 

Table 1. Faults definition table based on coding sequence. 

No. Type Trend Diagram 

0 Normal  
1 Sensor disconnected start  
2 Sensor disconnected  
3 Sensor disconnected end  
4 Remote I/O fault start  
5 Remote I/O fault  
6 Remote I/O fault end  
7 Illegal system access start  
8 Illegal system access  
9 Illegal system access end  

10 Cyber-attacks start  
11 Cyber-attacks   
12 Cyber-attacks end  12 Cyber-attacks end
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2.2.2. Encoding Fault Definition 

Due to the varying quantity of sensors connected to the IIoT gateway, it is tedious to 

define the fault sequences for each gateway [30]. Thus, we proposed a new way to define 

the fault type by the encoding sequence [31] according to Equation (14) in Table 1. The 

encoding sequence includes eight subsequences, such as Eth0 receive subsequence, Eth0 

send subsequence, Eth1 receive subsequence, Eth1 send subsequence, PPP0 receive sub-

sequence, PPP0 send subsequence, VPN0 receive subsequence, and VPN0 send subse-

quence. The code of the lower position in the trend diagram in Table 1 is −1, which refers 

to the abnormal point where the flow value is lower than the normal value. The code of 

the higher position is 1, which refers to the abnormal point where the flow value is higher 

than the normal value. The code of the flat position is 0, which refers to the point where 

the flow value is normal. When the anomaly ends, the position of the point will return to 

a flat area from a lower or higher position. Currently, we can define 13 kinds of fault def-

initions, and can also append the new fault type. 

Table 1. Faults definition table based on coding sequence. 

No. Type Trend Diagram 

0 Normal  
1 Sensor disconnected start  
2 Sensor disconnected  
3 Sensor disconnected end  
4 Remote I/O fault start  
5 Remote I/O fault  
6 Remote I/O fault end  
7 Illegal system access start  
8 Illegal system access  
9 Illegal system access end  

10 Cyber-attacks start  
11 Cyber-attacks   
12 Cyber-attacks end  

According to the subsequence trend, the integrated code sequence is divided into
linear subsequences and nonlinear subsequences. A linear subsequence means that the
state values of each part remain relatively stable, such as the sensor disconnected exception,
remote I/O fault, illegal system access exception, and cyber-attacks exception in Table 1.
Nonlinear subsequences refer to sequences that undergo trend changes when one abnormal
point begins or ends.
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2.2.3. IESC Classification Algorithm

We classified the fault type point by point [32]. There are two steps for the IESC
classification algorithm. The first one is to obtain the integrated sequence for a point. And
the second one is to classify the integrated sequence by comparing the integrated sequence
with the fault type.

To obtain the integrated sequence, we chose the related encoding point according to
the data point index. At the beginning, we obtained the different dimension encode values
of the network cards by the data point index, such as Eth0 receive dimension, Eth0 send
dimension, Eth1 receive dimension, Eth1 send dimension, PPP0 receive dimension, PPP0
send dimension, VPN0 receive dimension, and VPN0 send dimension. Next, we achieved
the fixed length subsequences according to the sliding window by backtracking the dataset
for each dimension. Finally, we combined different dimension encoding sequences into
one integrated coding sequence that can display the IIoT gateway running information
according to Figure 3.

For the classification stage, we compared the integrated encoding sequence with the
fault definitions in Table 1 to obtain the exact anomaly category. At the beginning of the
classification, we set the fault type −1 to mean fault unknown. During the comparing
process, if one fault type had been matched, we then changed the fault type with the
matched one. That can prevent the mis-adjustment problem when no fault type matched.
The specific algorithm is shown in Algorithm 1.

Algorithm 1. IESC Algorithm.

1: Input: integrated encoding sequence
2: Output: fault type
3: Start:
4:
5: function compareSequence (sourceSequence, targetSequence)
6: flag← 1
7: for i = 1: sourceSequence.length do
8: if sourceSequence[i] != targetSequence[i] then
9: flag = 0
10: break
11: end if
12: end for
13: return flag
14: end function
15:
16: function IESC (inputEncodingSequence)
17: faultType←−1
18: for i = 1: faultList.size do
19: if compareSequence (inputEncodingSequence, faultList[i]) == 0 then
20: faultType = i
21: break
22: end if
23: end for
24: end function
25: End

3. Data Acquisition

The datasets used in this article were sourced from a sewage treatment plant in 2023.
The IIoT platform of the sewage treatment plant [33] consisted of four parts: sensors, remote
I/O units [34], gateways, and a cloud server shown in Figure 4.
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3.1. IIoT Architecture of Sewage Treatment Plant

As Figure 4 shows, sensors are used to sample the information of the devices and instru-
ments such as thermometers, flow meters, water level meters, pH concentration meters,
frequency converters, and so on. The remote I/O unit collects sensor data and provides
the sensor data to gateways [35] based on the different industrial control protocols [36–38].
The IIoT gateway is responsible for sending sensor data to the cloud server via the MQTT
format. The cloud server is used to analyze and display the sensor data.

3.2. Network Flow Collection Model

There are four different purposes of the network cards in the IIoT gateway: Eth0,
Eth1, PPP0, and VPN0. Eth0 is used to collect sensor information from the remote I/O
unit. Other industrial control protocols are converted to the Modbus TCP [39], providing
a unified interface for data sampling. After data collection is completed, the sensor data
will be transformed to the cloud server by the MQTT [40] protocol format through the
PPP0 network card. System administrators can view system data through the VPN0 or
Eth1 network cards. Figure 5 shows the network card functions.
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3.3. Sensor Network

The first gateway was deployed at the sewage treatment workshop. The second one
was deployed at the automatic dosing workshop. And the third one was deployed at the
production workshop. The specific sensor connected information is shown in Table 2.
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Table 2. Connected sensors amount for gateway table.

Gateway Remote I/O
Amount

Sensor
Amount Sensor Type

1 5 100 water level meter, frequency converter, water pump

2 3 55 pH concentration meter, flow meter, frequency
converter, water pump

3 3 35 CO meter, CO2 meter, blower fan

4. Experimental Results

We conducted four experiments based on three datasets from a sewage treatment plant:
an ablation experiment, a linear fault detection experiment, a non-linear fault detection
experiment, and an accuracy experiment with different lengths of sequence.

4.1. Dataset Introduction

Each dataset contains about 10,000 records. Figure 6 shows the flow sequences of
several dimensions in Dataset1. The first half of each subgraph includes normal data that
can be used to train the network model NFBUL. In the latter half of each subgraph, it
includes the anomalies data that can be used for anomaly detection.
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There are a different number of abnormal sequences in each dataset. Table 3 shows
the abnormal sequence quantity in those datasets.

Table 3. Abnormal sequences amount table.

Fault Type Dataset1 Dataset2 Dataset3

Sensor disconnected 54 54 27
Remote I/O fault 54 66 81

Illegal system access 15 27 27
Cyber-attacks 15 27 15

Total 138 174 150

4.2. Typical Abnormal Sequence

Various types of failures may occur in the IIoT [41]. Several typical abnormal sequences [42]
are listed below:

1. Sensor disconnection. Sensor data are always sent to cloud servers in MQTT format.
The content of MQTT includes data name and data value. Data value is obtained by
converting different types of sensor values into character types, such as long, double,
int, and so on. When this fault happens, the sensor data will become 0. So, the length
of the converted MQTT transmission packet will be smaller than normal. And that
will lead to the send flow amount of the network card PPP0 to decrease. Figure 7
shows the network flow diagram of sensor disconnection.

2. Remote I/O offline. When this fault occurs, the IIoT gateway cannot collect sensor
information connected to this remote I/O unit. So, the received network flow of the
Eth0 will be decreased. Figure 8 shows the network flow diagram of the remote I/O
offline fault.

Illegal access. When the system is being illegally accessed, the received and sent
flow amount of Eth1 will increase a lot. Figure 9 shows the network flow diagram of
illegal access.
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4.3. Experimental Metric

In this paper, we estimated the algorithm’s accuracy by comparing the original flow
sequences of the sensor network and predicted flow sequences according to Equation (16).
The annotate flow sequence is obtained by annotating the original subsequence of the
sensor network, and the predicted flow sequence is obtained using the SSGBUL–IESC
algorithm as follows:

P =
1
n

n

∑
k=0

Compare(Raw(Dt), Detail_Classification(Dt)) (16)

where Dt is the original data subsequence, Raw is the function that obtains the annotation
of the subsequence, and Detail_Classification is a function specific to the subsequence
classification method.
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4.4. Ablation Experiment

Figure 10a shows part of the Eth0 flow data in IIoT Dataset 1. During T1 and T2, one
remote I/O unit disconnected, so the Eth0 receive flow decreased relatively. Figure 10(b.1)
shows the coding result of the NFPBUL–UCM model. It can be observed that, during T1
and T2, the abnormal network flow is encoded as −1, 0, or 1. During T2 and T3, the normal
network flow is encoded as 1 or 0. Figure 10(b.2) shows the encoding result of the SSGBUL
model. We can see that all abnormal network flows during T1 and T2 are encoded as low
threshold outliers −1, and the regular data are correctly encoded as 0.
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To sum up, the NFPBUL–UCM encoding module has an incorrect coding problem. The
SSGBUL encoding module generated the correct code within the subsequence calibration
function when abnormalities occurred.

4.5. Compare Experimental Results

The length of the subsequence has a certain impact on fault diagnosis. In the experiment
of linear subsequence classification and nonlinear subsequence classification, we set the
subsequence length to 10.

4.5.1. Linear Subsequences Classification

Figure 11 shows the fault detection accuracy for linear subsequences, such as sensor
disconnection, remote I/O fault, illegal system access, and cyber-attacks.
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From Figure 11, we can see that the linear fault detection accuracy of SSGBUL–IKNN
is significantly higher than the accuracy of DTW and TSF.

Due to DTW’s inability to define enough subsequences for matching, the accuracy of
identifying abnormal network flow subsequences decreases. Moreover, as the mathematical
features of the network flow sequence cannot be efficiently extracted by TSF, the classification
accuracy is reduced. Conversely, SSGBUL–IESC only needs to define the fault sequence
based on the coding sequence of 1, 0, and −1, thus narrowing the scope of subsequence
definition and improving the fault detection accuracy.

4.5.2. Nonlinear Subsequences Classification

By identifying nonlinear subsequences, we can determine the start time or finish time
of the anomalous. Figure 12 shows the accuracy of classifying nonlinear subsequences for
the three algorithms.
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As shown in Figure 12, the nonlinear subsequence classification accuracy for SSGBUL–
IESC is significantly higher than DTW and TSF. When a cyber-attack or instance of illegal
access occurs, the network flows of Eth1 and PPP0 change significantly, which is a big
challenge for feature extraction. For DTW, the flow sequences are always outside of the
matching subsequence models, which results in misclassifications. For TSF, the flow features
are always beyond the boundaries of the original definition, which leads to decreases
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in accuracy. For SSGBUL–IKNN, the numerical sequences of network flow have been
converted to code sequences, which can be compatible with various abnormal situations of
data fluctuations.

4.5.3. Different Subsequence Length Results

Table 4 shows the fault detection accuracies with different subsequence length, such
as 5, 10, and 20.

Table 4. Comparison table of accuracy with different subsequence length (%).

Subsequence Length Dataset1 Dataset2 Dataset3

5 96.42 92.96 94.41

10 92.75 90.22 91.66

20 93.58 83.00 81.11

We can find that with increasing the subsequence length, most of the accuracy in each
dataset decreased a little, except the case for the subsequence length of 20 for Dataset 1,
where due to some minor anomalies that existed in the dataset, our algorithm was not
able to accurately detect. So, as the length of the subsequence increases, the accuracy of
the algorithm’s detection decreases slightly. For the case of subsequence length of 20 for
Dataset 1, it is because the total amount of sequence decreases when the length of sequence
enlarges. So, we should prevent such long sequences in the application.

5. Discussion

Our initial focus was to study the continuous traffic characteristics of the IIoT for fault
detection. At the beginning, we proposed the SSGBUL that is used to convert the flow
data to code value. And then, we redesigned the classification module for flow sequence
according to code fault definitions. Finally, we trained the SSGBUL model by the normal
stage data in different datasets and verified the performance and compatibility for different
IIoT gateways.

Our proposed method has certain advantages. Compared with the DTW algorithm,
the code sequence only includes the values −1, 0, and −1, so the classification model
becomes more efficient. Compared with the TSF algorithm, the statistical features
of the code sequence are more apparent than the original network flow sequence.
Therefore, the SSGBUL–IESC algorithm achieves the best fault detection results on
the three IIoT datasets.

However, our proposed method does have several limitations. Firstly, this algorithm
SSGBUL–IESC can only be used for specific flow datasets. These datasets only contain
some features related to prediction, such as Modbus TCP, MQTT, and so on. In addition,
the algorithm SSGBUL–IESC is sensitive to parameters, such as ε in the coding model, and
the subsequence length in the IESC model. This will have a certain impact on the accuracy
of the algorithm. Finally, the algorithm SSGBUL–IESC can detect limited quantity fault yet.
Despite these limitations, all the results confirm that the SSGBUL–IESC algorithm can be
successful for continuous abnormal sequence discovery for the IIoT.

6. Conclusions

Our research focused on fault detection by continuous abnormal sequence. We proposed
a fault detection algorithm called SSGBUL–IESC based on unsupervised learning encoding.
It effectively improves the accuracy and compatibility of fault detection in three IIoT
datasets. The main results of the research in this paper are listed as follows:

1. We designed a code generator model, SSGBUL, to translate the flow value to the
unified code value and utilized the subsequence calibration function to reduce errors
during the encoding process.
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2. We identified the detail fault type by encoding sequence type. Firstly, we redefined the
fault type tables by encoding sequences. And then, we converted the multi-dimensional
flow sequences into one integrated code sequence representing the operational status
of the IIoT gateway. Finally, we identified the fault type by the integrated sequence by
comparing it with the elements in the redefined fault type tables.

The experimental results show that the SSGBUL–IESC algorithm achieves an accuracy
of over 90% with sequence length 10 on three IIoT datasets from a sewage treatment plant,
thus meeting the requirements of IIoT applications.

In the future work, we will improve our algorithm to identify more types of faults.
In addition, we will further consider other factors of IIoT gateways for fault diagnosis,

such as CPU usage, memory usage, system logs, and so on.
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