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Abstract: In order to guide orchard management robots to realize some tasks in orchard production
such as autonomic navigation and precision spraying, this research proposed a deep-learning net-
work called dynamic fusion segmentation network (DFSNet). The network contains a local feature
aggregation (LFA) layer and a dynamic fusion segmentation architecture. The LFA layer uses the
positional encoders for initial transforming embedding, and progressively aggregates local patterns
via the multi-stage hierarchy. The fusion segmentation module (Fus-Seg) can format point tags by
learning a multi-embedding space, and the generated tags can further mine the point cloud features.
At the experimental stage, significant segmentation results of the DFSNet were demonstrated on the
dataset of orchard fields, achieving an accuracy rate of 89.43% and an mIoU rate of 74.05%. DFSNet
outperforms other semantic segmentation networks, such as PointNet, PointNet++, D-PointNet++,
DGCNN, and Point-NN, with improved accuracies over them by 11.73%, 3.76%, 2.36%, and 2.74%,
respectively, and improved mIoUs over the these networks by 28.19%, 9.89%, 6.33%, 9.89, and 24.69%,
respectively, on the all-scale dataset (simple-scale dataset + complex-scale dataset). The proposed
DFSNet can capture more information from orchard scene point clouds and provide more accurate
point cloud segmentation results, which are beneficial to the management of orchards.

Keywords: semantic segmentation; point clouds; deep learning; tree protection robot

1. Introduction

In recent years, in the context of the modern agricultural industrial base and the
rapid development of smart agriculture, the orchard industry has created substantail
economic value, and it has become more prominent in agriculture [1–3]. However, with
their limitations in perception capacity, some orchard management machines still rely on
manual evaluation of tree growth and management, which is labor intensive and time
consuming [4]. To ensure high-quality production in orchards, the implementation of
perceptive technology is necessary for monitoring environments at any time for the efficient
management of orchards. The unmanned orchard management robot, with some automatic
functions such as object detecting, tree planting, protecting, variable spraying, fruit picking,
and other tasks, has been widely used in the productive process of agroforestry [5,6].
The high-precision semantic segmentation technology of unstructured scenes is a key
technology for orchard management robots, which need to understand the surrounding
environment to achieve positioning and autonomous navigation [7]. The point cloud has
increasingly been used in visual perception tasks of orchard management robotics [8],
with its insensitivity to variances in lighting, shadows, and other factors. Point cloud-
level semantic segmentation helps visual perception systems realize object recognition and
detection, which greatly improves the operation and production efficiency of robots [9].

In recent years, deep learning technology has widely been used in 3D point clouds
segmentation in agricultural scenes [10,11]. Chen Y et al. (2021) [7] replaced random
sampling with farthest point sampling (FPS) to build local feature aggregation based on
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RandLa-Net. Furthermore, the RoseSegNet [12] was designed to identify phenotypic traits
of roses in garden. RoseSegNet segmented plants into their structural components such
as flowers, stems, and leaves. Although there are many studies for scenes segmentation
in forestry and agriculture, the accuracy and applicability of scene segmentation are still
challenging, such as the problems of point cloud in-homogeneity, sparsity, and permutation
invariance [13,14]. Considering these problems, to enhance the ability of point clouds
segmentation, the prevailing trend has been to add advanced local operators and create
new structures of networks. The local feature aggregation (LFA) module plays a role in
the network to build connections between centroids in point clouds. For example, some
methods regard regular spatial kernels for local pattern encoding [15–19], and a series of
methods utilize local geometry through edges [20–22]. Especially since PointNet++ [15]
and D-PointNet++ [16] use farthest point sampling (FPS) to aggregate the local features
of point clouds, the prevailing trend has been to add local feature aggregation modules
to extract local features. FPS can ensure an even distribution of centroids within the point
cloud and aggregate local features in the point cloud. DGCNN [20] constructs a local
neighborhood graph by exploiting k-nearest neighbor (k-NN), and the updates of dynamic
graphs make the receptive field as large as the diameter of the point cloud. PointMLP [19]
uses a geometric affine module that can extract the local points before and after aggregation
operations. In addition, the architecture of a network is also a necessary part that can
be used to mine the features of point clouds efficiently. PointNet [23] and DGCNN use
a single branch structure to make the network deeper, and concatenate global and local
features to output per point scores. PointMLP uses a deep residual MLP network for
point cloud analysis. PointNet++ uses a hierarchical feature learning architecture, and uses
skip link concatenations to integrate features between layers. D-PointNet++ combines the
architectures of DenseNet and PointNet++ to improve segmentation accuracy. Moreover,
the emergence of transformer-based architectures [24–26] exhibited great success in vision
tasks driven by a new spatial modeling mechanism based on dot product self-attention.
To further utilize spatial characteristics of features in higher-order interactions, HorNet
uses a recursive structure called gnConv [27]. Although the various networks proposed in
the above studies have a good effect on point cloud semantic segmentation, they do not
fully consider the relationships between different layers in the network. The systematic
comparison among representative methods is shown in Table 1.

Table 1. Systematic comparison among some representative methods.

Network Sampling + Grouping
Strategy Principal Operator Basic Architecture

PointNet - MLP 3 Branch
DGCNN k-NN 1 EdgeConv Branch and Dynamic

PointMLP Geometric affine module MLP ResNet
PointNet++ FPS 2 + Region grouping PointNet layer U-Net and Hierarchical

D-PointNet++ FPS + Region grouping Dense PointNet layer DenseNet and
PointNet++

HorNet - gnConv 4 HorBlock and FFN 5

1 k-NN: k-nearest neighbor; 2 FPS: farthest point sampling; 3 MLP: multi-layer perceptron; 4 gnConv: recursive
gated convolution; 5 FFN: feed-forward network.

In this research, an advanced 3D point cloud semantic segmentation neural network
dynamic fusion segmentation network (DFSNet) for orchard scenes is proposed. The
network leverages the local feature aggregation (LFA) module, and presents a fusion
segmentation (Fus-Seg) architecture that fuses the segmental vectors from different layers.
The LFA module was designed by Zhang R et al. (2023) [28], which includes sampling and
grouping layers, trigonometric functions, and pooling operations. The module produces a
high-dimensional local vector for point clouds with raw-point embedding and multi-stage
hierarchy. The encoder conducts initial embedding to transform the raw coordinates of
a point cloud into high-dimensional vectors, and progressively aggregates local patterns
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via the multi-stage hierarchy. The dynamic Fus-Seg architecture fuses two layers of the
network, and generates feature tags of points by a learning multi-embedding space. This
study introduces the construction process of the network in terms of deep mining of point
clouds in detail. The experimental results show that the accuracy the neural network can be
significantly improved by efficiently designing the fusion behavior of the different layers.
To further promote the performance of the presented network, we discuss the impact of the
combination of the different sampling and grouping strategies on LFA in point clouds. The
primary contributions of this research are the following:

• A deep learning network that can perform semantic segmentation on 3D point cloud
data in agricultural scenes.

• A concise but efficient network architecture that can fuse features from different layers
in the network.

• The effect of different sampling strategies of a local feature aggregation module
is discussed.

• Demonstrations of the proposed DFSNet, data labeling, and network training and
prediction, providing end-to-end implementation for semantic segmentation in natural
orchard fields.

2. Materials and Methods

The network is implemented in three phases: (1) The local feature aggregation module
obtains local features of points; (2) the fusion segmentation module fuses different layers of
the network and produces the class label of each point; (3) a dynamic network architecture is
established, which is beneficial to recompute class labels using fusion segmentation modules.

2.1. Local Feature Aggregation Module

The local feature aggregation (LFA) module combines the positional encoding in the
transformer [29] with sampling and grouping strategies, which is shown in Figure 1. The
positional encoder (PosE) transforms the raw coordinates pi = (xi, yi, zi) of the point cloud
into high dimensional vectors to achieve feature embedding without learnable maps. The
PosE utilizes the trigonometric function to encode the low feature vector of the point into a
high dimensional vector during the inherent nature of trigonometric functions. The PosE
can well capture fine-grained structural variations of 3D shapes and well encode relative
positional information between different points in point clouds. Taking the encoding
feature of point i on the x axis as an example, the process can be represented by the
following formula:

f x
i [2t] = sin(µxi/ν

6t
FI )

f x
i [2t + 1] = cos(µxi/ν

6t
FI )

(1)

where f x
i denotes the encoded feature vector on the x axis, t ∈ [0, FI

6 ] denotes the channel
index, FI denotes the dimension of encoded feature vectors, and µ, ν control the magnitude
and wavelengths, respectively. The special process of encoding the point coordinates into a
higher dimensional vector is represented by Formula (2).

PosE(pi) = Concat( f x
i , f y

i , f z
i ) ∈ R1×Fi (2)

where f x
i , f y

i , f z
i ∈ R1× FI

3 denote the encoded vectors on three axes.
The other core of the local feature aggregation module is the set abstraction (SA)

module. The iterative SA layer can process the point cloud in each hierarchical level and
perform dense prediction by propagating point features along the neighbor region. The SA
layer comprises the sampling layer, the positional encoding, and the pooling. The sampling
layer is used to find the neighbor points within a local region of each centroid. Different
methods can be used to obtain the centroid, including farthest point sampling (FPS) and
random sampling (RS). After that, the k-NN is used to group neighbor points among the
centroid. The PosE can reveal the local patterns, and the pooling layer utilizes both max
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and average pooling for local feature aggregation. In each SA layer, we obtain the local
aggregated centers, which are fed into the next stage SA layer. Finally, after all 4 stages, a
local feature map of the input point cloud is acquired.
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Figure 1. The local feature aggregation (LFA) module. Yellow blocks indicate the sampling and
grouping strategies. PosE: positional encoder, FPS: farthest point sampling, RS: random sampling,
k-NN: k-nearest neighbor grouping, Pool: max pooling. An SA (set abstraction) module includes a
sampling and grouping strategies block, a PosE, and a Pool, and there are 4 stages of SA modules in
the LFA.

2.2. Fusion Segmentation Module

In Figure 2, the fusion segmentation module (Fus-Seg) shows an intuitive
synergy [30,31] between different layers in the network. Then, the module generates
labels for every point in the point cloud to extend the expression dimensions of the point
cloud features.

When inputting a batch of (Layer 1 and Layer 2) pairs, the fusion segmentation (Fus-
Seg) module uses segmentation (Seg) blocks to generate the prediction point labels vector
(pre-labels) for each point input. The pre-labels vectors of the same point in the input point
cloud are represented as {F(n)

1 , F(n)
2 , F(n)

3 , · · ·, F(n)
C } and {S(n)

1 , S(n)
2 , S(n)

3 , · · ·, S(n)
C }.

The segmentation (Seg) block is a learnable operation that is trained by finding the best
across pairing in the multi-embedding space [32]. To enhance the interactivity between
feature extraction layers in the network, the Fus-Seg module introduces a multi-embedding
space by two jointly input layers’ pre-labels, which ensures that all pairings that cross two
pre-labels actually occur in the space. The advantage of the multi-embedding space is that
it can maximize the cosine similarity of real pairings in the point cloud, and minimize the
cosine similarity of incorrect pairings. The size of the multi-embedding space is C × C, and
C depends on the number of segmentation parts when the network is training. The across
pairings in the multi-embedding space are represented as F(n)

i · S(n)
j . When i = j, the across

pairings are seen as real pairings, and when i ̸= j, they are incorrect pairings.
In addition to increasing the communication of the feature extraction layers in the

network, the Fus-Seg module tags points to enrich the features of point clouds. After the
multi-embedding space, max pooling is adopted to obtain a label vector for each point.
The size of a label vector is 1 × C, and after max pooling, the size of the label matrix of
the point cloud is N × C. Then, the label matrix is fed back to per point features by matrix
multiplication, with the features of Layer 2 with each of the point features. The label matrix
is regarded as an annotation, which can be used to extend the dimension of the feature
map, which is ( N × f → N × f × C ). Moreover, the label matrix is full of information with
segmentation scores, which means the label matrix can be seen as a weight matrix as well. It
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can be used to sift evaluation factors in the feature maps and enhance the effect of features
that play a more important role in the process of network segmentation.
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Figure 2. Fusion segmentation module (Fus-Seg). While standard convolution jointly trains point
cloud feature segmentation (Seg) to predict point labels, the multi-model embedding space jointly
trains two layers’ segmentation to predict the correct pairings of a batch of (Layer 1 and Layer 2)

training examples.
{

F(n)
1 , F(n)

2 , F(n)
3 , · · · , F(n)

C

}
: the pre-labels of one point in a point cloud are

obtained by Layer 1 Seg;
{

S(n)
1 , S(n)

2 , S(n)
3 , · · · , S(n)

C

}
: the pre-labels of the same point are obtained

by Layer 2 Seg. N × f : feature map size of input point clouds; N × f × C: the feature map size of
output point clouds; C: the segmentation number of DFSNet.

2.3. DFSNet Structure Design

The DFSNet structure is composed of an input layer, a local feature aggregation
module, the dynamic segmentation layer, and the output layer. The details of each part are
as follows:

Input layer: The input data of the network constitute the point clouds of the orchard
scene, which are collective in nature. Each point in point clouds has three column vectors (X,
Y, Z), which represent the 3D coordinates. From the perspective of the input data structure,
the size of the input point is N × f , where N is the number of point clouds and f is the
feature dimension of each data point. Moreover, considering that the point clouds collected
by the LiDAR equipped on the plant protection robot are relatively sparse, the point clouds
need to be down-sampled before entering the training phase.

Local feature aggregation (LFA) layer: The LFA module consists of position encoding
and 3 stages of SA layers. These SA layers are used to aggregate the features of the point
cloud and increase the feature size of each point of each point cloud. In the data of the
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SA layer, the data size of the point cloud data is reduced to 1/2 of the original data size
after each stage. In the network, the input point cloud number is N. After three data SA
layers, the size of the point is ( N → 0.5N → 0.25N → 0.125N ). Then, a reconstruction
operation that is performed on the point cloud makes the number of point clouds back to
N. Meanwhile, the feature of the point size is gradually up, and the dimension of the local
feature is f = 2160.

The dynamic segmentation layer: The dynamic segmentation layer includes a Fus-Seg
module and an inverted residual block [33]. The Fus-Seg module is used in the network
to connect the layers and enhance the expression ability of each point. After the Fus-Seg
module, the change in the feature map of the point cloud is ( N × f → N × f × C ). The
inverted residual block that includes three convolutions is used to learn features of the
point cloud. The inversion operation allows significant reduction in the memory footprint
needed during inference by never fully materializing large intermediate tensors. The block
takes as an input a low dimensional compressed representation, which is first expanded to
a high dimensional representation; then, the feature is subsequently projected back to a
low dimensional representation, that is, ( f → 2 f → f ).

Output layer: The output layer of the network is a fully connected layer, the function
of which is to map the learned features to the sample label space. The output of the network
is the predicted semantics of all points with a size of N × C, where C is the number of
classes in the dataset. In the simple-scale dataset, C = 5. In the complex-scale dataset,
C = 8.

The specific DFSNet architecture is shown in Figure 3 below.
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3. Results
3.1. Dataset Details

In this study, we used a self-made dataset collected in a real nursery scene. The dataset
satisfies the requirements of unstructured forestry scenes, and can be used to measure the
performance of the semantic segmentation network. The experimental site selected for this
study is a nursery located on 32.12◦ N. 119.31◦ E, Zhenjiang, Jiangsu, China. The nursery
provides varieties of common landscape orchards and forestry scenes to make the trained
models of deep learning networks obtain different application scenes. To ensure sufficient
growing space, a distance of 2 to 5 m is maintained between each tree trunk. Moreover,
all of the trees are planted in cultivation pots, and some of the trunks are supported by
sturdy wooden stakes. To create experimental datasets, we utilized the Livox Horizon
scanner to collect the original point clouds. And the CloudCompare (Paris, France) played
an important role on subsequent processing of collected point clouds. The software is
employed to filter the noise point clouds, split the original scene point cloud after filtering
into smaller working scenes, normalize these point clouds of working scenes, and tag
segmented point clouds. Figure 4a to Figure 4b show the processing of a splitting of an
original scene into a working scene. A typical complete point cloud for a working scene
(2–3 trees and other objects in the orchard scene) normally includes 10–60 k points after
split processing. For better trained models of network generalization, working scene point
clouds need to be normalized on coordinate positions. Considering the perspective of
LiDAR when the network is deployed to the orchard robot, we framed the point cloud
of working scenes, and set the lower left point of the box as the origin coordinate, then
calculated the coordinates of points in the point cloud by translation. An example of a
group of normalized point clouds is depicted in Figure 4c. Then, we tagged the point, and
the results of a group of scenes are shown in Figure 4d. The format of the dataset files is
.txt, and the files include 3D coordinates of point clouds and labels of each point shown as
(X, Y, Z, Label).
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To obtain a greater quality of point cloud data for network training based on the
distinction of work scenes complexity, we further divided the segmentation into two cases:
a simple-scale dataset and a complex-scale dataset. The simple-scale dataset contains only
trees and grounds. The complex-scale dataset stands for orchard scenes containing more
objects, such as people, indicators, and other objects. Examples of the raw and labeled point
cloud and semantic segmentation results of the scenes are shown in Figure 5. To realize
the 3D point cloud semantic segmentation of the natural orchard scene, the complex-scale
dataset and simple-scale dataset are used as the training dataset and test dataset. In the
complex-scale dataset, eight semantic labels were applied for the training set, namely,
leaves of trees (leaves), trunks of tree (trunks), pots for planting trees (pots), scaffolds for
protecting the growth of trees (scaffolds), grounds, people, indicators, and other objects
(others). In the program, the corresponding values were set for these eight tags, i.e., 0, 1, 2, 3,
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4, 5, 6, and 7. In the simple-scale dataset, five semantic labels were applied for the training
set, namely leaves, trunks, pots, scaffolds, and grounds. The corresponding values were
set for five tags, i.e., 0, 1, 2, 3, 4, and 5. The trained network can be used to segment tree
phenotypes in orchard environments. In addition, the trained model can also detect some
obstacles in the orchards. The model plays an important role in the perception system of
agricultural robots, and can be used in the autonomous control system and the autonomous
navigation of plant protection robots. The complex-scale dataset used 206 of 309 scenes
to create the dataset for training, and the rest of the scenes were used to perform training
validation and evaluation. And the simple-scale dataset used 360 of 535 scenes to create the
dataset for training. Each dataset includes from 30,000 to 60,000 points, and 4096 randomly
sampled points in every point cloud as pre-processing before input to the network.
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scale segmentation.

3.2. Experimental Hardware Equipment

The network was developed based on PyTorch-1.13.1. The network training and
testing were performed using an NVIDIA RTX-3080Ti (12 GB).

3.3. Training Details

When training a deep learning network, a faster optimizer can improve the efficiency
of network training, which reduces the time cost of implementing the same network
training, or achieves a smaller error under the same budget. We mainly compared SGD,
Adam [34], and AdamW [35] with Sophia [36], which are dominantly used optimizers on
deep learning networks. The hyper parameters of optimizers during the network training
are shown in Table 2. Figure 6 illustrates the training accuracy curve and loss curve on
DFSNet with the same number of hyper parameters. Sophia achieves better accuracy and
better stability loss than SGD, Adam, and AdamW. Thus, we used Sophia as the network
optimizer during training.
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Table 2. Hyper parameters of optimizers during the DFSNet training.

Hyper Parameters Value

lr 1 0.001
betas (0.9, 0.999)
epc 2 1 × 10−8

weight_decay 1 × 10−4

Epoch 150
1 lr: learning rate; 2 epc: error of floating-point calculation.
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3.4. Semantic Segmentation on Benchmarks

In the field of 3D point cloud semantic segmentation, the mIoU and Acc are the two
main indicators used to evaluate the effect of semantic segmentation. The mIoU is an
important indicator for measuring the accuracy of the segmentation. The IoU mainly
calculates the ratio between the intersection and union of the two sets. The mIoU calculates
the IoU according to each class, and then takes the average.

mIoU =
1

C + 1

C

∑
i=0

Sii

∑C
j=0 Sij + ∑C

j=0 Sji − Sii
(3)

Sii is the real quantity, and C + 1 is the number of classes (including empty classes).
Sij represents the number of predictions for the true value of i as j, and Sji represents the
number of predictions for the true value of j as i. Sij and Sji represent false positives and
false negatives, respectively.

The Acc is the simplest metric calculation, the probability that the semantic annotation
result of each sample will be consistent with the actual data annotation type. The accuracy is
the ratio between the model’s correct predictions on all test datasets and the overall number.

Acc =
T
N

(4)

T represents the number of the model’s correct predictions on the test datasets, and N
represents the overall number of all the test datasets.

3.5. Processing of Network Building

We first analyzed the effect of the number of network layers on segmentation perfor-
mance. Table 3 shows the training results for the different number layers of the network.
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The output layer means the number of the dynamic segmentation layer of the network. For
example, if the output layer is three, there are three dynamic segmentation layers. When
the number of the layer is three, the Acc and mIoU reached their optimal values of this
training; the optimal segmentation accuracy is 78.89%, and the mIoU is 73.02%.

Table 3. Comparison of layers on network performance.

Output Layer Acc (%) mIoU (%) Iterate Speed (ms/pc *)

1 72.16 62.28 13.79 ms
2 72.18 63.13 13.88 ms
3 78.89 73.02 14.08 ms

* pc: point cloud.

Figure 7 is the training result of the tensorboard. Figure 6a shows the relationship be-
tween the segmentation accuracy (Acc) and the number of iterations (epoch), and Figure 6b
shows the function graph of the relationship between the loss function and the number of
iterations (epoch).
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It can be seen from the above training log that when the number of epochs is less than
20, the segmentation accuracy already reaches 0.8, and when the number of epochs = 60,
the segmentation accuracy reaches 0.95. In addition, the loss function continues to decrease
with a continuous increase in training times, and finally remains at approximately 0.05.
Compared to the other numbers of layers, the three-layer network is smoother, proving it
is steadier.

3.6. Sampling and Grouping Strategy

DFSNet applies an iterative farthest point sampling (FPS) or random sampling (RS)
strategy to sample ( N → 0.5N → 0.25N → 0.125N ) centroids from a point cloud with
N points, and then uses k-nearest neighbor (k-NN) to gather k = 64 points within the
neighborhood of each centroid. Table 4 shows the evaluation of segmentation accuracy
on centroids sampling and neighbor points grouping strategy by using the complex-scale
dataset (N = 4096) on the three-layer DFSNet. Simultaneously, a line graph is plotted
in Figure 8 to illustrate the training results of the ablation study in the three strategies,
demonstrating the superiority of the sampling layer with FPS and k-NN. Test 1 is the
model that only uses the FPS sampling layer without the grouping strategy. Experimental
results show that grouping strategy is necessary, though the network iterates faster without
it. Test 2 and Test 3 compare the sample layer that uses FPS and RS sampling strategies,
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respectively. The experimental results show that the sample layer with FPS achieves a
higher score compared to the layer using RS.

Table 4. Comparison of sampling and grouping strategies on network performance.

Test Sampling + Grouping Strategy Acc(%) mIoU(%) Iterate Speed

1 FPS 1 37.20 32.17 4.76 ms
2 RS 2 + k-NN 3 75.64 66.70 17.38 ms
3 FPS + k-NN 76.57 69.16 13.98 ms

1 FPS: farthest point sampling; 2 RS: random sampling; 3 k-NN: k-nearest neighbor.
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Figure 9 shows the results of the semantic segmentation of the 3D point cloud obtained
by these three sampling strategies on the simple-scale and complex-scale datasets. The
experiment results show that the semantic tags that the network can segment include leaves
of trees, trunks of trees, trees planted in pots, scaffolds, grounds, people, indicators, and
others. In the orchard scenes, Test 3 shows the best semantic segmentation effect during
these sampling and grouping strategies, and Test 3 has the strongest generalization ability.
From the comparison results of the segmentation in black boxes in the figure, Test 3 can
clearly segment indicators, people, others, and some details in the orchard field.

3.7. Segmentation in Orchards

This section evaluates the network performance in the simple-scale and complex-scale
datasets, and compares it with PointNet, PointNet++, and Point-NN. We first trained the
simple-scale and all-scale dataset (combines the simple-scale dataset and the complex-scale
dataset) separately by these networks, then tested the networks on different datasets via
trained models. According to the quantitative results in Table 5, DFSNet outperforms
these typical networks in orchard fields in the segmentation metrics. Among them, when
networks both train and test on the simple-scale dataset, the accuracy of DFSNet improves
performance by 5.6% over PointNet, and the mIoU improves by 22.32% over PointNet,
1.62% over PointNet++, 1.14% over D-PointNet++, 7.28% over DGCNN, and 25.46% over
Point-NN. When the all-scale dataset is used as the training dataset and networks were
tested on the simple-scale dataset, we see an 8.19% improvement over PointNet, a 1.12%
improvement over PointNet++, a 0.81% improvement over D-PointNet++, and a 1.39%
improvement over DGCNN in Acc; then, we also see a 36.58% improvement over PointNet,
a 9.27% improvement over PointNet++, a 7.78% improvement over D-PointNet++, a 9.06%
improvement over DGCNN, and a 22.12% improvement over Point-NN in mIoU. While
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testing networks on the complex-scale dataset, the proposed network improves orchard
fields segmentation accuracy by 14.14% over PointNet, by 4.96% over PointNet++, by 4.10%
over D-PointNet++, and by 3.91% over DGCNN. The network improves mIoU by 22.77%
over PointNet, 8.41% over PointNet++, 3.44% over D-PointNet++, 8.49% over DGCNN,
and 25.48% over Point-NN. Overall, using networks to segment the scenes on the all-scale
dataset, we obtain a 11.73% improvement in Acc and a 28.19% improvement in mIoU
when compared to PointNet, a 3.76% improvement in Acc and a 9.89% improvement in
mIoU compared to PointNet++, a 2.36% improvement in Acc and a 6.33% improvement
in mIoU when compared to D-PointNet++, a 2.74% improvement in Acc and a 9.89%
improvement in mIoU over DGCNN, and a 24.69% improvement in mIoU over Point-NN.
Figures 10 and 11 show the visualization of the segmentation. As shown in the figures, our
DFSNet can accurately segment tree point clouds and recognize objects from the orchard to
achieve on par or better segmentation results when compared to PointNet and PointNet++.
PointNet produces many false negatives for the points, which is due to the global features
without aggregation. PointNet++ has apparent benefits, as compared to PointNet, for
segmenting the scenes, but it is still experiences interference by the coordinate values of
points, and does not achieve precise edging of different categories. During the experiments,
the ability of DFSNet is significantly the best over PointNet, PointNet++, and Point-NN.
The improvement in the proposed network may be attributed to the pre-processing local
feature aggregation layer and the dynamic segmentation layer, and its ability to better
extract point cloud features of orchard environments through DFSNet learning.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 17 
 

 

  
(a) (b) 

Figure 8. Function graphs of the relationships between (a) the training accuracy and the training 
epochs and (b) the loss function and training epochs. 

Table 4. Comparison of sampling and grouping strategies on network performance. 

Test Sampling + Grouping Strategy Acc(%) mIoU(%) Iterate Speed 
1 FPS 1 37.20 32.17 4.76 ms 
2 RS 2 + k-NN 3 75.64 66.70 17.38 ms 
3 FPS + k-NN 76.57 69.16 13.98 ms 

1 FPS: farthest point sampling; 2 RS: random sampling; 3 k-NN: k-nearest neighbor. 

Figure 9 shows the results of the semantic segmentation of the 3D point cloud ob-
tained by these three sampling strategies on the simple-scale and complex-scale datasets. 
The experiment results show that the semantic tags that the network can segment include 
leaves of trees, trunks of trees, trees planted in pots, scaffolds, grounds, people, indicators, 
and others. In the orchard scenes, Test 3 shows the best semantic segmentation effect dur-
ing these sampling and grouping strategies, and Test 3 has the strongest generalization 
ability. From the comparison results of the segmentation in black boxes in the figure, Test 
3 can clearly segment indicators, people, others, and some details in the orchard field. 

 
Figure 9. Complete semantic segmentation using the different sampling strategies. Different colors
correspond to different segmentation labels. The black boxes mark the segmentation error parts in
the point cloud.



Sensors 2024, 24, 2244 13 of 16

Table 5. Results on semantic segmentation in orchard fields.

Train Dataset Test Dataset Network Acc (%) mIoU (%)

Simple-scale Simple-scale

PointNet 92.02 63.08
PointNet++ 97.24 83.78

D-PointNet++ 97.27 84.26
DGCNN 95.96 78.12
Point-NN - 59.94

Ours 97.62 85.40

All-scale
(Simple-scale

+ Complex-scale)

Simple-scale

PointNet 89.03 49.71
PointNet++ 96.10 77.02

D-PointNet++ 96.41 78.51
DGCNN 95.83 77.23
Point-NN - 64.17

Ours 97.22 86.29

Complex-scale

PointNet 71.69 43.95
PointNet++ 80.87 58.31

D-PointNet++ 81.73 63.28
DGCNN 81.92 58.23
Point-NN - 41.24

Ours 85.83 66.72

All-scale
(Simple-scale

+ Complex-scale)

PointNet 77.70 45.86
PointNet++ 85.67 64.16

D-PointNet++ 87.07 67.72
DGCNN 86.69 64.16
Point-NN - 49.36

Ours 89.43 74.05
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4. Conclusions

Orchards play a crucial role in agricultural production. To facilitate the efficient
management of orchards and the practical applications of agricultural robots, a sensory
perceptual system is necessary. In this research, a 3D point cloud semantic segmentation
network called DFSNet for the unstructured orchard fields was proposed, and some good
semantic segmentation results were achieved. The proposed network utilized a local feature
aggregation (LFA) module and three fusion segmentation (Fus-Seg) modules to improve
the training performance when dealing with imbalanced class problems. Meanwhile,
the impacts of network depth and 3D point cloud sampling and grouping strategies on
the semantic segmentation were compared and analyzed. The test results showed that
deeper deep learning neural network is helpful for improving the accuracy of semantic
segmentation, and the best sampling strategies we studied use FPS to sample and k-NN as
the grouping strategy. The key to semantic segmentation depends on whether the relevant
features in the 3D point cloud data can effectively be extracted. The training experimental
results show that the best accuracy of 3D point cloud semantic segmentation can reach
89.43%, and the mIoU can reach 74.05% on the datasets that combine the simple-scale
dataset and the complex-scale dataset. Comparing DFSNet with the other networks, the
accuracy value of the proposed network is 11.73%, 3.76%, 2.36%, and 2.74% higher than the
PointNet, PointNet++, D-PointNet++ and DGCNN, respectively. Meanwhile, the mIoU of
the proposed network is better by 28.19%, 9.89%, 6.33%, 9.89%, and 24.69% compared with
the PointNet, PointNet++, D-PointNet++, DGCNN, and Point-NN, respectively. Both the
accuracy and mIoU ensure quality segmentation of the orchard scene.

In practical applications, the proposed DFSNet can provide more accurate information
about the orchard scenes such as ground filtering, object identification, tree phenotyping,
and other related information. Ground and object detection is the basis for accurate
identification of tree row paths, with path planning being the key to orchard management.
Additionally, tree phenotype information such as crowns and trunks can be used to realize
target locations, which is beneficial to agricultural robots tasks, for example, autonomous
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variable rate spraying, autonomous fruit picking, and so on. Thus, the proposed network
holds practical significance for orchard management. In subsequent studies, we intend
to obtain more experimental results via our hardware platform and perception algorithm
designed for orchard environments.
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