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Abstract: We develop an extended Kalman filter-based vehicle tracking algorithm, specifically de-
signed for uniform planar array layouts and vehicle platoon scenarios. We first propose an antenna
placement strategy to design the optimal antenna array configuration for precise vehicle tracking in
vehicle-to-infrastructure networks. Furthermore, a vehicle tracking algorithm is proposed to improve
the position estimation performance by specifically considering the characteristics of the state evolu-
tion model for vehicles in the platoon. The proposed algorithm enables the sharing of corrected error
transition vectors among platoon vehicles, for the purpose of enhancing the tracking performance for
vehicles in unfavorable positions. Lastly, we propose an array partitioning algorithm that effectively
divides the entire antenna array into sub-arrays for vehicles in the platoon, aiming to maximize
the average tracking performance. Numerical studies verify that the proposed tracking and array
partitioning algorithms improve the position estimation performance.

Keywords: vehicle-to-infrastructure; vehicle tracking; extended Kalman filter; millimeter wave;
vehicle platoon systems

1. Introduction

Vehicle-to-everything (V2X) is expected to connect vehicles to the internet, creat-
ing a market for connected car technology by offering innovative wireless services such
as autonomous and platoon driving [1,2]. Connected car technology enables intelligent
transportation services by providing access to traffic information beyond onboard sensors
through wireless networks [3,4]. The evolution of fifth/sixth-generation (5G/6G) com-
munication technologies can facilitate the high-capacity transmission and reception of
data between vehicles and transmit infrastructure along roads [5]. In dynamic vehicular
communication environments, the precise localization of vehicles is paramount in reliably
transmitting substantial volumes of traffic information with low latency [6]. Moreover, the
accurate perception of road surroundings by vehicles not only mitigates traffic congestion
but also facilitates energy-efficient driving, leading to reduced power consumption [7].

Platoon driving is regarded as a promising service in connected car networks for its
potential in enhancing road capacity [8,9]. Achieving ultra-reliable wireless connectivity in
vehicle-to-infrastructure (V2I) networks is a crucial challenge for the evolution of vehicle
platoon systems [10,11]. Although transmission and reception technologies for V2X net-
works have been developed based on 5G/6G, the communication environment for platoon
driving scenarios exhibits distinct characteristics from typical vehicular communication
networks [12,13]. To fully leverage the benefits of platoon driving, it is essential to consider
diverse scenarios of platooned traffic when developing practical vehicular communication
networks. Moreover, the increasing number of vehicles connected through V2I highlights
the necessity of energy-efficient wireless connectivity methods utilizing limited resources.
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It is necessary to reevaluate vehicle tracking systems to ensure a seamless wireless con-
nection in an energy-efficient manner and ultimately offer vehicle platoon services in V2X
networks [14].

To transmit a significant volume of real-time data on road environments to vehicles, a
transmitting infrastructure installed along the road must swiftly and accurately acquire
the position information of the vehicles. Extensive research has been conducted on the
application of Kalman filtering techniques to vehicle tracking systems. In previous studies,
beacon-based vehicle tracking systems have been developed based on the extended Kalman
filter (EKF) algorithm [15,16]. Additionally, the unscented Kalman filter (UKF) algorithm
in [17–19] can be readily extended to develop vehicle tracking systems in small-sized V2I
networks. To predict the trajectories of each vehicle individually, conventional tracking
systems investigate the angular variations in a single spatial frequency domain using a
sounding sample obtained from the ULA architecture. Although conventional tracking
systems are well suited for vehicle tracking scenarios in V2I networks, several issues have
not been addressed in previous studies on such systems.

In small-sized V2I networks, the distance between the roadside unit (RSU) and vehicles
is significantly shorter along the y-axis than along the x-axis, leading to high sensitivity
in the estimation performance regarding the x-axis distance [20]. Therefore, the tracking
performance of RSUs significantly varies depending on the positions of the vehicles within
the platoon [20]. Since the vehicles move as a group in a coordinated fashion, they share
common error transitions in their transition models. Therefore, it is necessary to develop a
tracking strategy that improves the average tracking performance by considering the shared
transitions among vehicles. The limited wireless resources necessitate the development
of a resource distribution strategy based on channel conditions for the vehicle platoon
scenario [21].

Moreover, designing a cost-effective vehicle tracking system is crucial, considering the
tight budget constraints of V2I networks [22]. Utilizing multiple antennas is essential in
harnessing spatial beamforming gains, which is crucial in mitigating the lower expected
signal-to-noise ratio (SNR) of received samples [23]. A two-dimensional (2D) uniform
planar array (UPA) is considered an effective solution to accommodate multiple antennas
within a limited area [24]. The vehicle tracking performance can be enhanced by exploiting
angular variations in the 2D spatial frequency domains. To leverage the advantages of
the 2D UPA layout, it is necessary to redesign the conventional vehicle tracking system
in [16,20]. It is also imperative to develop a comprehensive analytical guideline for the
design of the optimal array structure.

In this paper, we focus on developing a vehicle tracking system that is specifically
tailored to the 2D antenna array layout and the state evolution model for vehicle platoon
scenarios. The contributions of this paper are summarized as follows:

• We redesign a beacon signal-assisted vehicle tracking system to leverage angular vari-
ations in 2D spatial frequency domains by taking the UPA layout into consideration.
Moreover, we present an analytical framework for the design of the optimal antenna
array configuration from the perspective of the vehicle tracking performance. To the
best of the authors’ knowledge, the analytical framework for an array configuration
has not been explored with the aim of optimizing the vehicle tracking performance.

• We develop a method to fully exploit the benefits stemming from the similarities in
the state transitions among the vehicles within a driving platoon. In the proposed
algorithm, we focus on enhancing the tracking performance for secondary vehicles,
particularly those in unfavorable positions, by leveraging the estimated information
of the primary vehicle.

• We develop a strategy to effectively allocate wireless resources in a scenario whereby
the vehicles in a platoon share a common frequency band for uplink channel sounding.
We propose an array partitioning algorithm that adaptively subdivides the array into
sub-arrays for the vehicles in the platoon by considering dynamic channel conditions.
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The paper is organized as follows. In Section 2, we present the system and channel
models. In Section 3, the EKF-based vehicle tracking system is proposed by considering
the 2D UPA layout. In Section 4, we propose the vehicle tracking algorithm specialized for
platoon driving scenarios. In Section 5, the proposed vehicle tracking systems are evaluated
through numerical studies, and Section 6 details our conclusions.

Notation: C is the field of complex numbers, R is the field of real numbers, N is
the semiring of natural numbers, and N (m, C) is the Gaussian distribution with mean
vector m and covariance matrix C. Additionally, diag[·, ·] is the diagonal matrix; E[·] is the
expectation operator; [a, b) is the left-closed, right-open interval between a and b; ∥ · ∥p
is the p-norm; \ is the set minus operator; Re[·] is the real part of a variable; Im[·] is the
imaginary part of a variable; Tr{·} is the trace of the matrix; v{·} is the principal eigenvector
of the matrix; e{·} is the principal eigenvalue of the matrix; and ⊗ is the Kronecker product,
0 is the all-zeros column vector; 0a×b is the a × b all-zeros matrix; IM is the M × M identity
matrix; and (a)ℓ is the ℓ-th element of the column vector a. Lastly, A−1, AT , AH , A(a, b), and
A(:, b) denote the inverse, transpose, conjugate transpose, (a, b)-th entry, and b-th column
of the matrix A, respectively.

2. System Model

We consider a platoon-based driving scenario in a small-sized V2I network, in which
a vehicle platoon consists of multiple vehicles, u ∈ U = {1, . . . , U}. From a signal-plus-
angular-derivative-to-noise-ratio (SANR) perspective [20], a vehicle in a favorable position
is called the primary vehicle (u = 1), while vehicles in unfavorable positions are called
the secondary vehicles. As depicted in Figure 1, the transmit infrastructure, i.e., the RSU,
employs M and N antenna elements in the horizontal and vertical domains (T = MN) and
each vehicle employs a single antenna element. A transceiver mounted on the roof of each
vehicle transmits beacon signals with low power [25] for the purpose of sounding uplink
channels. A substantial number of vehicles in the V2I network restricts the utilization
of the available frequency spectrum primarily for vehicle tracking purposes. Therefore,
we assume that the vehicles in the platoon share a common frequency band for uplink
sounding to conserve frequency resources.

Figure 1. Overview of RSU communication system employing UPA.

The received sounding sample at discrete time ℓ is combined by using zu = Re[zu] +
jIm[zu] ∈ C1×T at the RSU. Assuming that each vehicle in the driving platoon transmits
beacon signals with power ϱu for uplink sounding, the combined sample for the u-th
vehicle is defined in the complex domain

rℓu = zu ∑
v∈U

√
ρvhℓ

v + nℓ
u ∈ C, (1)
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where hℓ
v = Re[hℓ

v] + jIm[hℓ
v] ∈ CM is the channel vector between the RSU and the v-th

vehicle with Re[hℓ
v], Im[hℓ

v] ∈ RM, and nℓ
u = Re[nℓ

u] + jIm[nℓ
u] is the normalized Gaussian

noise sample with Re[nℓ
u], Im[nℓ

u] ∼ N (0, 1
2 ). Assuming that the path loss exponent param-

eter is set to two, the average SNR is defined by ρv = ϱv
(

λ
4πσndv

)2, where σ2
n is the power

of average noise, λ is the wavelength of the radio signal, and dv is the distance between
the RSU and the v-th vehicle. As outlined in [16], the position and velocity estimation
process will be performed in the real domain. To utilize the acquired sample in the real
domain, the sounding sample must be expressed in the real domain. Based on the domain
transformation framework between real and complex domains in [26], the sounding sample
in (1) is rewritten as

r̃ℓu =
[
Re[rℓu], Im[rℓu]

]T
= Z̃u ∑

v∈U

√
ρvh̃ℓ

v + ñℓ
u ∈ R2. (2)

In (2), the combiner, the channel vector, and the noise vector are, respectively, defined in the

real domain, such that Z̃u =

[
Re[zu] −Im[zu]
Im[zu] Re[zu]

]
∈ R2×2T , h̃ℓ

v =
[
Re[hℓ

v]
T , Im[hℓ

v]
T]T ∈

R2T , and ñℓ
u =

[
Re[nℓ

u], Im[nℓ
u]
]T ∈ R2.

In a 2D UPA layout, the antenna elements are spaced by νλ
2 , where ν is the element

spacing parameter. Assuming that the antenna elements are arranged in a grid pattern, the
spatial frequencies in the horizontal and vertical domains are defined as in [27]:

ψℓ
u = νπ sin ϕℓ

u cos θ ℓu =
νπyu

du

.
= ψ(tℓu), (3)

φℓ
u = νπ cos ϕℓ

u =
νπh
du

.
= φ(tℓu). (4)

According to [16], the spatial frequencies are written in terms of variables in the state vector,
tℓu = [xℓ

u, vℓ
u]

T . In (3) and (4), θ ℓu is the horizontal angle-of-departure (AoD), ϕℓ
u is the vertical

AoD, xℓ
u is the position on the x-axis, yu is the position on the y-axis, and vℓ

u is the velocity
of the vehicle, while h is the height difference between the RSU and the tops of the vehicles,

and du =
√
(xℓ

u)2 + y2
u + h2 is the distance between the RSU and the u-th vehicle.

For analytical studies, we consider a single beam channel having a line-of-sight (LoS)
radio path. Although we consider the simplified channel model for analysis, realistic
channel vectors consisting of multiple radio paths will be used in Section 5. In the real
domain, the channel vector in (2) is approximated by

h̃ℓ
u ≃ h̃

(
ψℓ

u, φℓ
u
) .
=

√
K

1 + K

[
Re[βu]Re[d(ψℓ

u, φℓ
u)]− Im[βu]Im[d(ψℓ

u, φℓ
u)]

Im[βu]Re[d(ψℓ
u, φℓ

u)] +Re[βu]Im[d(ψℓ
u, φℓ

u)]

]
∈ R2T , (5)

where the small-scale fading parameter is modeled by βu = Re[βu] + jIm[βu] with
Re[βu], Im[βu] ∼ N (0, 1

2 ). The real and imaginary parts of the array response vector
for the ULA layout are defined in [16]. In this paper, the procedure to define the array
response vector in the real domain is extended to encompass the characteristics of the array
response vectors for the UPA layout. Assuming the UPA layout, the real and imaginary
parts of a ray-like beam are defined by using the real and imaginary parts of the array
response vectors in both the horizontal and vertical domains, such that

Re[d(ψ, φ)] = Re[dM(ψ)]⊗Re[dN(φ)]− Im[dM(ψ)]⊗ Im[dN(φ)] ∈ RT ,

Im[d(ψ, φ)] = Im[dM(ψ)]⊗Re[dN(φ)] +Re[dM(ψ)]⊗ Im[dN(φ)] ∈ RT .

The array response vector in the real domain is defined by considering the Kronecker
product three-dimensional (3D) channel model in [24,27]. For a given spatial frequency
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ϑ ∈ [−π, π), the real and imaginary parts of the array response vector having L antenna
elements are given by

Re[dL(ϑ)] =
[

cos(0), cos(ϑ), . . . , cos((L − 1)ϑ)
]T ∈ RL,

Im[dL(ϑ)] =
[

sin(0), sin(ϑ), . . . , sin((L − 1)ϑ)
]T ∈ RL.

The trajectory of the vehicles in the platoon is determined using the linear transition
model outlined in [16,18]. Assuming that the sampling period is Ts, the state evolution of
the u-th vehicle at discrete time ℓ is modeled by

tℓu = Atℓ−1
u + oℓ

u, (6)

where tℓu = [xℓ
u, vℓ

u]
T ∈ R2 is the state vector at discrete time ℓ, A =

[
1 Ts
0 1

]
∈ R2×2 is

the state transition matrix, and oℓ
u ∈ R2 is the error transition vector of the u-th vehicle,

which the RSU cannot predict. We now model the unpredictable movements of the vehicles
in the platoon based on a Gaussian distribution [28,29]. The unpredictable movement
that is common for all vehicles in the platoon is modeled by bℓ ∼ N (0, Qb). Although
the vehicles in the platoon move as a group in a coordinated fashion, sudden changes
in road environments can lead to the unpredictable movement of individual vehicles.
The unpredictable movement that is specialized for the secondary vehicle is modeled
by cℓ ∼ N (0, Qc). By considering the unpredictable movements of vehicles, the error
transition vectors of the primary and secondary vehicles are modeled as oℓ

1 = bℓ and
oℓ

2 = bℓ+ cℓ, respectively. In accordance with [16,20], the covariance matrices are modeled
by the following.

Qb = σ2
bdiag[T2

s , 1] and Qc = σ2
c diag[T2

s , 1].

Notice that Qo1 = Qb and Qo2 = Qb + Qc. We assume that the error variances follow
σ2

b ≫ σ2
c .

In this paper, we utilize the classical Kalman filtering algorithm to address the Gaussian
error model. Future research could explore practical vehicle tracking systems capable of
handling non-Gaussian error models using non-Gaussian Kalman filtering techniques as
in [30,31]. Additionally, it would be an intriguing future research topic to develop vehicle
tracking systems based on the extended H-infinity filter, considering scenarios where the
distributions of the state transition and observation errors are not known at the RSU,
and scenarios involving cyber-attacks that interfere with the accurate state estimation of
vehicles [32–34].

3. EKF-Based Vehicle Tracking System Using 2D UPA Layout

Our goal is to enhance the tracking performance of beacon-based vehicle tracking
systems. First, we aim to improve the effective SNR of the received sounding samples in (2).
A transceiver installed on a vehicle is designed using cost-effective, low-power components
by considering tight budget constraints. The lower expected SNR of the received samples at
the RSU necessitates the utilization of a larger-sized antenna array. The UPA is considered
to be a solution for the efficient deployment of a large number of antenna elements in a
limited area. Second, we seek to precisely monitor the variations in the spatial frequency
domains. In the beacon-based vehicle tracking framework [16,20], these variations in the
spatial frequency domains are employed to track vehicle movements on the road. The
2D structure of the UPA layout can be utilized to fully exploit the angular variations by
monitoring both the horizontal and vertical spatial frequency domains.

The objective of this section is to develop a beacon-based vehicle tracking system
that can enhance the vehicle tracking performance by exploiting the full benefits of the
2D antenna array layout. In Section 3.1, we first redesign the EKF-based vehicle tracking
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algorithm in [16,20] by taking the UPA layout into consideration. In Section 3.2, we next
establish an analytical framework to optimize the UPA layout to maximize the vehicle
tracking performance.

Before presenting the proposed algorithms, we provide a summary of the symbols
used to denote the key variables.

• The symbol ṽ is used to denote the variable in the real domain, transformed from the
variable v in the complex domain.

• The symbol v̇υ is used to denote the derivative of ṽ with respect to υ.
• The symbol ·̂ℓ|ℓ−1 is used to denote the predicted variables following the ℓ-th state

prediction process.
• The symbol ·̂ℓ is used to denote the estimated variables following the ℓ-th state

update process.
• The symbols ·̆ and ·̌ are used to denote, respectively, the dummy variables in an

optimization problem and the solution to the problem.

3.1. Proposed UPA-Based Vehicle Tracking System Sharing Common Frequency

In this section, we review the previously reported vehicle tracking systems in [16].
Before initiating the Kalman filtering process, an initial state vector, t0

u = [x0
u, v0

u]
T , is

transmitted to the RSU through the feedback link. To address the initial feedback error
stemming from the time delay of the feedback process, we include a Gaussian error term
in the initial state vector. The Gaussian error term is modeled as eϵ

u = ϵt0
u, where ϵ ∼

N(0, σ2
ϵ T2

s ). The RSU then begins the EKF-based vehicle tracking process by using the
contaminated initial state vector, t̂0

u = t0
u + eϵ

u.
In the state prediction process, the state vector and the covariance are predicted based

on the Kalman filter-based tracking framework in [35], such that

t̂ℓ|ℓ−1
u = At̂ℓ−1

u and Q̂ℓ|ℓ−1
u = AQ̂ℓ−1

u AT + Qou ,

where Qou denotes the covariance of the error transition vector. The channel is then pre-
dicted based on the approximated channel vector formulation in (5), such that

ĥℓ|ℓ−1
u = h̃(ψ, φ)

∣∣∣
(ψ,φ)=

(
ψ(t̂ℓ|ℓ−1

u ),φ(t̂ℓ|ℓ−1
u )

) ∈ R2T . (7)

In (7), the spatial frequencies are as defined in (3) and (4) by using position variables in the
predicted state vector, t̂ℓ|ℓ−1

u .
Based on the Kalman filtering framework in [35,36], in the state update process, the

predicted state vector and the covariance matrix are updated by using the received sample,
r̃u, in (2), such that

t̂ℓu = t̂ℓ|ℓ−1
u + K̃u

(
r̃u − Z̃u ∑

v∈U

√
ρvĥℓ|ℓ−1

v

)
, (8)

Q̂ℓ
u =

(
I2 −

√
ρuK̃uZ̃uD̃u

)
Q̂ℓ|ℓ−1

u , (9)

where K̃u is the Kalman gain matrix. However, the channel sounding model in (2) is not a
linear system because the channel vector, t̂ℓu, cannot be defined linearly in terms of position
variables in the state vector. In the EKF framework, the single beam channel is thus linearly
approximated by h̃ℓ

u ≃ ĥℓ|ℓ−1
u + D̃ueℓ|ℓ−1

u , where eℓ|ℓ−1
u = tℓu − t̂ℓ|ℓ−1

u represents the error of
the predicted state vector.

Next, to expand the existing system to incorporate the use of the UPA layout, we
compute the Jacobian matrix of the approximated channel, D̃u =

[
Re[Du]T , Im[Du]T

]T , by
considering both the horizontal and vertical spatial frequency domains. The Jacobian matrix
of the approximated channel for the ULA is defined in [16]. In this paper, the procedure to
define the Jacobian matrix is extended to encompass the characteristics of the approximated
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channel for the UPA layout. For a given predicted state vector t̂ℓ|ℓ−1
u , the Jacobian matrix is

defined by using the derivatives of the channel vector that represents the angular variations
in both the horizontal and vertical spatial frequency domains, such that

D̃u = ḣψ(ψ, φ)
∣∣∣
(ψ,φ)=

(
ψ(t̂ℓ|ℓ−1

u ),φ(t̂ℓ|ℓ−1
u )

)ψ̇t(t)T
∣∣∣
t=t̂ℓ|ℓ−1

u

+ ḣφ(ψ, φ)
∣∣∣
(ψ,φ)=

(
ψ(t̂ℓ|ℓ−1

u ),φ(t̂ℓ|ℓ−1
u )

) φ̇t(t)T
∣∣∣
t=t̂ℓ|ℓ−1

u
. (10)

In (10), the derivatives of the spatial frequencies over the state vectors are, respectively,
defined by

ψ̇t(t) =
−νπxy

(x2 + y2 + h2)
3
2

[
1
Ts

]
and φ̇t(t) =

−νπxh

(x2 + y2 + h2)
3
2

[
1
Ts

]
.

Furthermore, the derivatives of the channel vector over the spatial frequencies are de-
fined by

ḣψ(ψ, φ) =

√
K

1 + K

[
Re[β]Re[ḋψ(ψ, φ)]− Im[β]Im[ḋψ(ψ, φ)]
Re[β]Im[ḋψ(ψ, φ)] + Im[β]Re[ḋψ(ψ, φ)]

]
∈ R2T ,

ḣφ(ψ, φ) =

√
K

1 + K

[
Re[β]Re[ḋφ(ψ, φ)]− Im[β]Im[ḋφ(ψ, φ)]
Re[β]Im[ḋφ(ψ, φ)] + Im[β]Re[ḋφ(ψ, φ)]

]
∈ R2T .

The derivatives of the real and imaginary parts of the ray-like beam over ψ are defined by

Re[ḋψ(ψ, φ)] = Re[ḋM
ψ (ψ)]⊗Re[dN(φ)]− Im[ḋM

ψ (ψ)]⊗ Im[dN(φ)] ∈ RT , (11)

Im[ḋψ(ψ, φ)] = Im[ḋM
ψ (ψ)]⊗Re[dN(φ)] +Re[ḋM

ψ (ψ)]⊗ Im[dN(φ)] ∈ RT , (12)

where the real and imaginary parts of the derivatives of the array response vectors are
given by

Re[ḋL
ϑ(ϑ)] = −

[
0, sin(ϑ), . . . , (L − 1) sin((L − 1)ϑ)

]T ∈ RL,

Im[ḋL
ϑ(ϑ)] =

[
0, cos(ϑ), . . . , (L − 1) cos((L − 1)ϑ)

]T ∈ RL.

The derivatives of the real and imaginary parts of the ray-like beam over φ can be defined
by using a similar method as in (11) and (12).

Lastly, we design the Kalman gain matrix and the combiner in (8) and (9) to correct the
unpredictable movement of a vehicle while suppressing the interference signals. Similar
to [36,37], the Kalman gain matrix is designed to minimize the trace of the error covariance
matrix, Q̂ℓ

u = E[eℓ
u(eℓ

u)
T ] with eℓ

u = tℓu − t̂ℓu, such that

K̃u =
√

ρuQ̂ℓ|ℓ−1
u D̃T

u Z̃T
u

(
Z̃u

(
∑

v∈U
ρvD̃vQ̂ℓ|ℓ−1

v D̃T
v

)
Z̃T

u +

(
∑v∈U ρv

K + 1
+ 1

)
I2

2

)−1

.

The combiner at the RSU is designed to maximize the power of the desired sounding
signal for each vehicle, while suppressing the interference signals from other vehicles
and the signals through the non-line-of-sight (NLoS) radio paths. In this paper, we aim
to compute a combiner that can minimize the updated covariance matrix, Q̂ℓ

u, in (9).
The minimization problem of Q̂ℓ

u can be reformulated as the maximization problem
arg minZ̆u

Tr{
(
I2 −

√
ρuK̃uZ̆uD̃u

)
Q̂ℓ|ℓ−1

u } = arg maxZ̆u
Tr{√ρuK̃uZ̆uD̃uQ̂ℓ|ℓ−1

u }, as in [16].
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Therefore, the combiner is computed to maximize the trace of the following matrix, which
can be defined by plugging the Kalman gain matrix, such as

Tr
{

ρuΛ̃−1Z̃uD̃u(:, 1)(Q̂ℓ|ℓ−1
u (1, 1))2D̃u(:, 1)TZ̃T

u

}
, with (13)

Λ̃ = Z̃u

(
∑

v∈U
ρvD̃v(:, 1)Q̂ℓ|ℓ−1

v (1, 1)D̃v(:, 1)T

︸ ︷︷ ︸
(a)

)
Z̃T

u +

(
∑v∈U ρv

K + 1︸ ︷︷ ︸
(b)

+1
)

I2

2
,

where ∑v∈U\{u} ρvD̃v(:, 1)Q̂ℓ|ℓ−1
v (1, 1)D̃v(:, 1)T in (a) denotes the power of the inter-user

interference terms that must be suppressed by using a combiner at the RSU, and ∑v∈U ρv
K+1

in (b) denotes the power of the interference signal that is transmitted through NLoS radio
paths. In this paper, we select the (1, 1)-th component of the covariance matrix and the first
column vector of the Jacobian matrix to focus on minimizing the position error. It is difficult
to compute the optimal combiner in the real domain so we reformulate the optimization
problem in the complex domain [16]. Based on the Rayleigh quotient method in [38], the
combiner is computed by solving the reformulated maximization problem defined in the
complex domain,

zu = Re[zu] + jIm[zu] = arg max
z̆∈C1×T

z̆
(
ρuDu(:, 1)(Q̂ℓ|ℓ−1

u (1, 1))2Du(:, 1)H)
z̆H

z̆Λz̆H

= v
{

ρuΛ−1Du(:, 1)(Q̂ℓ|ℓ−1
u (1, 1))2Du(:, 1)H

}
∈ C1×T , (14)

where Λ = ∑v∈U ρvDv(:, 1)Q̂ℓ|ℓ−1
v (1, 1)Dv(:, 1)H +

(∑v∈U ρv
K+1 + 1

)
IT, and Du = Re[Du]+ jIm[Du].

The combiner in the real domain is then computed as Z̃u =

[
Re[zu] −Im[zu]
Im[zu] Re[zu]

]
∈ R2×2T.

We assume that the RSU computes the combining vector in (1) for every ΩTs seconds, where Ω
represents the combiner switching parameter. In this paper, we adopt the partially connected
hybrid beamforming systems from [39,40]. Throughout this paper, all combining vectors
will be redefined to adhere to the power constraints of hybrid beamforming systems.

3.2. Optimal Configuration of Antenna Array for Vehicle Tracking

The antenna elements comprising the antenna array can be arranged in various config-
urations. It is required to develop an analytical framework that can evaluate antenna array
configurations from the perspective of the vehicle tracking performance. Assuming that the
total number of antennas is T = MN and the area of the antenna array is limited, we aim
to design the optimal antenna array structure that maximizes the vehicle tracking perfor-
mance. In [20], the SANR metric is derived to assess vehicle tracking systems that estimate
vehicle positions by leveraging the angular variations resulting from vehicle movements. It
is confirmed that the SANR metric is effective in evaluating the variations in the spatial
frequency domains caused by vehicle movement. In this paper, the procedure to define
the SANR metric for the ULA is extended to monitor the angular variations in both the
horizontal and vertical domains, assuming the UPA layout. In the following proposition,
we derive the SANR metric to evaluate configurations of 2D antenna arrays, by taking the
UPA layout into consideration.

Proposition 1. Assuming that an RSU employs M and N antenna elements in the horizontal and
vertical domains, the SANR of the sounding sample is defined by

γ(M, N) = κ
(
(M − 1)(2M − 1)y2 + (N − 1)(2N − 1)h2),

where κ = ϱKν2λ2x2Q̂(1,1)
6(K+1)(4σn)2(x2+y2+h2)4 .
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Proof of Proposition 1. We take a closer look at the difference between the sounding sam-
ple and the predicted sample in (8) to quantify the angular variations owing to vehicle
movements. Similar to [20], we derive the SANR of the UPA-installed vehicle tracking
system by computing the expectation of the norm square of the state-error-correction
component,

√
ρZ̃D̃e (the index of the vehicle is dropped to simplify the presentation),

such that

γ = ρE
[
∥Z̃D̃e∥2

2
]
= E

[
eTD̃TZ̃TZ̃D̃e

]
=

ρ

NM
E
[
eT(ψ̇tḣT

ψ + φ̇tḣT
φ)(ḣψψ̇T

t + ḣφ φ̇T
t )e

]
(a)
=

ρ

NM
(
E
[
eTψ̇tḣT

ψḣψψ̇T
t e

]
+ E

[
eT φ̇tḣT

φḣφ φ̇T
t e

])
(b)
=

ρK
6(K + 1)

(
(M − 1)(2M − 1)E

[
eTψ̇tψ̇

T
t e

]
+ (N − 1)(2N − 1)E

[
eT φ̇t φ̇T

t e
])

(c)
≃ ρKν2x2π2Q̂(1, 1)

6(K + 1)(x2 + y2 + h2)3

(
(M − 1)(2M − 1)y2 + (N − 1)(2N − 1)h2)

(d)
=

ϱKν2x2Q̂(1, 1)
6(K + 1)(4σn)2(x2 + y2 + h2)4

(
(M − 1)(2M − 1)y2 + (N − 1)(2N − 1)h2). (15)

In (15), (a) is derived with E
[
ḣT

ψḣφ

]
= 0, (b) is derived with

E
[
ḣT

ψḣψ

]
= E

[
|Re[β]|2 + |Im[β]|2

](
∥Re[ḋψ(ψ, φ)]∥2

2 + ∥Im[ḋψ(ψ, φ)]∥2
2
)

= ∥Re[ḋM
ψ (ψ)]⊗Re[d̃N(φ)]∥2

2 + ∥Im[ḋM
ψ (ψ)]⊗ Im[d̃N(φ)]∥2

2

+∥Im[ḋM
ψ (ψ)]⊗Re[d̃N(φ)]∥2

2 + ∥Re[ḋM
ψ (ψ)]⊗ Im[d̃N(φ)]∥2

2

=

( N−1

∑
ℓ=0

cos2 ℓφ + sin2 ℓφ

)(
Re[∥ḋM

ψ (ψ)]∥2
2 + ∥Im[ḋM

ψ (ψ)]∥2
2
)

=

( N−1

∑
ℓ=0

cos2 ℓφ + sin2 ℓφ

)( M−1

∑
m=0

m2(sin2 mψ + cos2 mψ)

)
=

NM(M − 1)(2M − 1)
6

,

and E
[
ḣT

φḣφ

]
= MN(N−1)(2N−1)

6 with ∑n
ℓ=0 ℓ

2 = n(n+1)(2n+1)
6 . In addition, (c) is derived with

ψ̇tψ̇
T
t ≃

[ ν2π2x2y2

(x2+y2+h2)3 0
0 0

]
and φ̇t φ̇T

t ≃
[ ν2π2x2h2

(x2+y2+h2)3 0
0 0

]
,

which are approximated by assuming Ts ≪ 1 [20]. Lastly, (d) is derived because the average
SNR is given by ρ = ϱ

(
λ

4σnd
)2 with d =

√
x2 + y2 + h2. Finally, the SANR in (15) is rewritten as

γ(M, N) = κ
(
(M − 1)(2M − 1)y2 + (N − 1)(2N − 1)h2),

where κ = ϱKν2λ2x2Q̂(1,1)
6(K+1)(4σn)2(x2+y2+h2)4 .

The vehicle tracking performance of the system in Section 3.2 is proportional to the
value of the SANR metric in Proposition 1. The optimal configuration of the antenna array
can be determined by maximizing the SANR, such that
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M̌ = arg max
M̆∈M

γ

(
M̆,

T
M̆

)
= arg max

M̆∈M
(2M̆2 − 3M̆ + 1)ȳ2 +

(
2T2

M̆2
− 3T

M̆
+ 1

)
h2, (16)

where the object function is written by plugging N̆ = T
M̆

into the SANR. In (16), M denotes
the set of possible divisors of the number of antenna elements, T, and the squared position
variable in the y-axis is replaced by its arithmetic mean, ȳ2 = E

[
y2]. Notice that the common

term κ is dropped for simplicity.
We now compute the second derivative of an object function to check the convexity of

the function. The second derivative of the object function is computed as

d2
(
(2M2 − 3M + 1)ȳ2 +

( 2T2

M2 − 3T
M + 1

)
h2
)

dM2 =
d
(
(4M − 3)ȳ2 − ( 4T2

M3 − 3T
M2 )h2)

dM

=
6Th2(2T − M)

M4 + 4Mȳ2 (a)
> 0,

where (a) is derived because 2T > M > 0. The object function is convex because its second
derivative is nonnegative. Therefore, the maximum value of the SANR will be obtained
when M̌ = 1 or M̌ = T.

First, we determine the optimum configuration of a one-dimensional (1D) ULA layout,
such that

(M̌, Ň) =

{
(T, 1), ȳ2 ≥ h2

(1, T), ȳ2 < h2 , (17)

because the feasible set of the optimization problem in (16) is rewritten as M ∈ {1, T}.
Second, the optimal configuration of the 2D UPA layout is determined as

Horizontal UPA (M̌ > Ň > 1), ȳ2 ≥ h2

Vertical UPA (Ň > M̌ > 1), ȳ2 < h2 , (18)

because the feasible set of the optimization problem in (16) is rewritten as M̆ ∈ M\ {1, T}.
If there is ample space for antenna element deployment, it would be more advan-

tageous to use a 1D ULA for vehicle tracking compared to a 2D UPA. Furthermore, it
is verified that the horizontal ULA (M̌ = T) is better than the vertical ULA (Ň = T) in
enhancing the vehicle tracking performance because ȳ2 > h2 in most realistic road environ-
ments. If there were no restrictions on the space available for antenna array installation, it
would be better to utilize the ULA for vehicle tracking. However, the limited area of the
antenna necessitates the use of the 2D UPA, which can host many antenna elements in
a grid pattern.

In this paper, we consider the rectangular horizontal UPA with a longer length hor-
izontally than vertically, i.e., M > N > 1. To provide a detailed description of the UPA
designed based on the proposed array configuration framework, Figure 2 gives a close-up
view of the antenna array at the RSU, extracted from Figure 1, where the small square
represents the antenna elements and the circled arrow indicates the radio frequency (RF)
phase shifters.

Furthermore, we consider the partially connected hybrid beamforming architecture
using the UPA with N RF chains, in which M antenna elements in each row of the hori-
zontal domain are connected to a single RF chain [40]. It should be noted that the hybrid
beamforming architecture is regarded as the beamforming and sensing solution for the de-
velopment of integrated communication and sensing systems [39]. As depicted in Figure 2,
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each row of the horizontal domain contains an RF chain, enabling individual analog beam-
forming/combining through a set of phase shifters.

Figure 2. Partially connected hybrid beamforming architecture using UPA.

4. Vehicle Tracking Algorithm for Platoon Systems

In small-sized V2I networks, the distance between the RSU and vehicles is signifi-
cantly shorter on the y-axis compared to the x-axis. This disparity leads to the heightened
sensitivity of the vehicle estimation performance to the distance on the x-axis. The vehicle
tracking system in [16] demonstrates excellent estimation performance for the primary
vehicle in tracking-friendly positions, but its accuracy notably declines when applied to
secondary vehicles in unfavorable positions.

Before discussing the vehicle tracking performance, we discuss the state transition
model specifically designed for vehicle platoon scenarios. The platoon vehicles are synchro-
nized with each other, resulting in similarities in their driving state transitions. Therefore,
the state transition vector of the secondary vehicle can be written in terms of the state vector
of the primary vehicle and the state difference vector, such that

tℓ2 = tℓ1 + tℓd = A(tℓ−1
1 + tℓ−1

d ) + (bℓ+ cℓ)

= (Atℓ−1
1 + bℓ) + (Atℓ−1

d + cℓ), (19)

where the error transition vectors of the primary and secondary vehicles are, respectively,
modeled by oℓ

1 = bℓ and oℓ
2 = bℓ + cℓ with bℓ ∼ N (0, Qb) and cℓ ∼ N (0, Qc). The

covariance matrix of the secondary vehicle can then be rewritten as

Q̂ℓ
2 = E

[
(tℓ2 − t̂ℓ2)(t

ℓ
2 − t̂ℓ2)

T
]
= E

[(
(tℓ1 − t̂ℓ1) + (tℓd − t̂ℓd)

)(
(tℓ1 − t̂ℓ1) + (tℓd − t̂ℓd)

)T
]

(a)
= E

[
(tℓ1 − t̂ℓ1)(t

ℓ
1 − t̂ℓ1)

T
]
+ E

[
(tℓd − t̂ℓd)(t

ℓ
d − t̂ℓd)

T
]
= Q̂ℓ

1 + Q̂ℓ
d,

where (a) is derived because tℓ1 and tℓd are statistically independent.
The vehicle tracking performance, after conducting the ℓ-th state update process, can

be evaluated by using the traces of the updated error covariance matrices. Based on the
Kalman filtering framework in [35,36], the covariance matrices are updated as

Q̂ℓ
1 =

(
I2 −

√
ρ1K̃1Z̃1D̃1

)(
AQ̂ℓ−1

1 AT + Qb︸ ︷︷ ︸
Q̂ℓ|ℓ−1

1

)
, (20)

Q̂ℓ
2
(a)
=

(
I2 −

√
ρ2K̃2Z̃2D̃2

)(
AQ̂ℓ−1

1 AT + Qb︸ ︷︷ ︸
Q̂ℓ|ℓ−1

1

+AQ̂ℓ−1
d AT + Qc︸ ︷︷ ︸

Q̂ℓ|ℓ−1
d

)
, (21)
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where (a) is derived because the state difference vector and the covariance matrix are
predicted as

t̂ℓ|ℓ−1
d = At̂ℓ−1

d and Q̂ℓ|ℓ−1
d = AQ̂ℓ−1

d AT + Qc. (22)

In the state update process of the conventional system in Section 3.1, the error terms in
Q̂ℓ|ℓ−1

1 of the primary vehicle will be corrected by using the high SANR sounding sample,

while the error terms in Q̂ℓ|ℓ−1
2 = Q̂ℓ|ℓ−1

1 + Q̂ℓ|ℓ−1
d of the secondary vehicle will be corrected

by using the low SANR sounding sample.
The values of the updated error covariances at discrete time ℓ depend on the SANR

values of the vehicles in the platoon and the error covariances at the previous discrete time
ℓ− 1. The trace of the updated covariance matrix for the secondary vehicle is expected to
be much larger than that of the primary vehicle. This is attributed to the fact that the SANR
of the sounding sample for the secondary vehicle is smaller than that of the primary vehicle.
Consequently, this difference in the updated covariance matrices will continue to grow
due to the unsuppressed errors that accumulate during the state transition processes. The
estimation errors of the secondary vehicle could significantly impact the average vehicle
tracking performance.

To address the expected lower estimation performance for the secondary vehicle, we
propose a vehicle tracking algorithm that leverages the shared driving plans among platoon
vehicles. In this section, we consider a platoon consisting of two vehicles. Although we
focus on a scenario with two vehicles, the proposed algorithm can be readily extended
to scenarios with more than two vehicles in the platoon. The first objective is to develop
a strategy that exploits the state estimation results for the primary vehicle during the
state estimation process for the secondary vehicles. As demonstrated in (20) and (21), the
error covariance term, Q̂ℓ|ℓ−1

1 , is common to both the primary and secondary vehicles. In
Section 4.1, we propose a method to use the updated covariance matrix of the primary
vehicle in (20) when the RSU corrects the error terms in the predicted covariance matrix for
the secondary vehicle in (21). The second objective is to adaptively control the quality of
the received sounding samples by considering the accumulated error covariances of the
vehicles. In Section 4.2, we propose an array partitioning algorithm that efficiently divides
the array into sub-arrays for each vehicle, aiming to obtain sounding samples suitable for
enhancing the average tracking performance.

4.1. Proposed Vehicle Tracking Algorithm for Vehicle Platoon System

First, the RSU focuses on correcting the common error, bℓ, by using the high SANR
sounding sample transmitted from the primary vehicle. As shown in Figure 2, the lower sub-
UPA with dimensions M × N1 is utilized to obtain sounding samples to track the primary
vehicle, while the upper sub-UPA with dimensions M × N2 is used to obtain sounding
samples to track the secondary vehicle. In this sub-section, we assume that N1 = N

2 and
N2 = N

2 RF chains are used to obtain sounding samples for the primary vehicle and the
secondary vehicles, among N = N1 + N2 RF chains in the hybrid beamforming architecture
of Figure 2. The state vector and the covariance matrix of the primary vehicle, (t̂ℓ1, Q̂ℓ

1), are
estimated based on the vehicle tracking algorithm in Section 3.1. Notice that the channel
vector of the secondary vehicle in (8) is predicted by using the temporary state vector of
the secondary vehicle, At̂ℓ−1

2 . The state vector of the primary vehicle is then modeled by
using (t̂ℓ1, Q̂ℓ

1), such that

tℓ1 = t̂ℓ1 + eℓ
1 with eℓ

1 ∼ N (0, Q̂ℓ
1). (23)

Second, the RSU estimates the state vector of the secondary vehicle in (19), expressed
in terms of the state vector of the primary vehicle and the state difference vector. The state
vector of the primary vehicle has already been estimated in (23) by correcting the common
error with a high SANR sounding sample. Therefore, the RSU can concentrate on estimating
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the state difference vector by utilizing the low SANR sounding sample from the secondary
vehicle. The correction of the common error can be applied to the state prediction process
of the secondary vehicle by substituting the updated state vector of the primary vehicle,
t̂ℓ1, into (19). Then, the state vector and the covariance matrix of the secondary vehicle are
predicted as

t̂ℓ|ℓ−1
2 = t̂ℓ1 + t̂ℓ|ℓ−1

d and Q̂ℓ|ℓ−1
2 = Q̂ℓ

1 + Q̂ℓ|ℓ−1
d , (24)

where t̂ℓ|ℓ−1
d and Q̂ℓ|ℓ−1

d are defined in (22). Continuing with the Kalman filtering process,
the state vector and the covariance matrix of the secondary vehicle are updated as in [36,37],

t̂ℓ2 = t̂ℓ|ℓ−1
2 + K̃2

(
r̃2 − Z̃2(

√
ρ1ĥℓ

1 +
√

ρ2ĥℓ|ℓ−1
2 )

)
, (25)

Q̂ℓ
2 =

(
I2 −

√
ρ2K̃2Z̃2D̃2

)
(Q̂ℓ

1 + Q̂ℓ|ℓ−1
d ), (26)

where ĥℓ
1 is predicted by using t̂ℓ1 in (23) and ĥℓ|ℓ−1

2 is predicted by using t̂ℓ|ℓ−1
2 in (24).

Before computing the Kalman gain matrix, we take a closer look at the predicted
covariance matrices in (21) and (26). The main difference between the covariance matrices
is that Q̂ℓ−1

1 is replaced with Q̂ℓ
1 in the predicted covariance matrix Q̂ℓ|ℓ−1

2 . Notice that
Tr
{

Q̂ℓ
1
}
≪ Tr

{
Q̂ℓ−1

1
}

because Q̂ℓ
1 represents the residual errors that remain after correcting

the errors in Q̂ℓ−1
1 through the state update process of the primary vehicle. In the proposed

algorithm, the RSU can focus on mitigating the additional errors in Q̂ℓ|ℓ−1
d , instead of cor-

recting the common errors in Q̂ℓ|ℓ−1
1 . For this reason, it is expected that the state prediction

performance of the proposed algorithm would surpass that of the conventional tracking
algorithm in (7). This improvement is attributed to the correction of the common error
during the state update process of the primary vehicle.

We now compute the Kalman gain matrix in (25) and (26). The objective of the state
update process is to correct the additional error, cℓ, by designing a Kalman matrix that
minimizes the error between the real state vector in (19) and the updated state vector in (25):

eℓ
2 = tℓ2 − t̂ℓ2 = (tℓ1 − t̂ℓ1) + (tℓd − t̂ℓ|ℓ−1

d )− K̃2
(
r̃2 − Z̃2(

√
ρ1ĥℓ

1 +
√

ρ2ĥℓ|ℓ−1
2 )

)
(a)
≃

(
I −√

ρ2K̃2Z̃2D̃2
)
(eℓ

1 + eℓ|ℓ−1
d )− K̃2Z̃2

(
√

ρ1D̃1eℓ
1 +

∑v∈U
√

ρvd̃nlos
v√

1 + K

)
+ K̃2ñ2, (27)

where d̃nlos
v ∈ R2T is the NLoS path of the v-th vehicle. In (27), (a) is derived by using

eℓ1 = tℓ1 − t̂ℓ1, eℓ|ℓ−1
d = tℓd − t̂ℓ|ℓ−1

d , and the linearized received sample that is approximated by

r̃2 ≃ Z̃2

(
√

ρ1

(
ĥℓ

1 + D̃1eℓ1 +
d̃nlos

1√
1 + K

)
+
√

ρ2

(
ĥℓ|ℓ−1

2 + D̃2(eℓ1 + eℓ|ℓ−1
d ) +

d̃nlos
2√

1 + K

))
+ ñ2.

We define the error covariance matrix by using the error vector in (27), such that

Q̂ℓ
2 = E

[
eℓ

2(e
ℓ
2)

T] = (
I −√

ρ2K̃2Z̃2D̃2
)
(Q̂ℓ

1 + Q̂ℓ|ℓ−1
d )

(
I −√

ρ2K̃2Z̃2D̃2
)T

+ K̃2

(
ρ1Z̃2D̃1Q̂ℓ

1D̃T
1 Z̃T

2 +

(
∑v∈U ρv

K + 1
+ 1

)
I2

2

)
K̃T

2 , (28)

because E
[
d̃nlos

v (d̃nlos
v )T] =

I2MN2
2 , E

[
Z̃2d̃nlos

v (d̃nlos
v )TZ̃T

2
]
= I2

2 , and E[ñ2ñT
2 ] =

I2
2 . Similar

to [36,37], the Kalman gain matrix must be designed to minimize the trace of the error
covariance matrix in (28). The derivative of the trace of the covariance matrix is computed as
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∂Tr
{

Q̂ℓ
2
}

∂K̃2
=− 2

√
ρ2(Q̂ℓ

1 + Q̂ℓ|ℓ−1
d )D̃T

2 Z̃T
2 + 2K̃2Z̃2(ρ1D̃1Q̂ℓ

1D̃T
1 ρ2D̃2(Q̂ℓ

1 + Q̂ℓ|ℓ−1
d )D̃T

2 )Z̃
T
2

+ 2K̃2

(
∑v∈U ρv

K + 1
+ 1

)
I2

2
= 0.

The Kalman matrix is computed to solve the above equation:

K̃2 =
√

ρ2(Q̂ℓ
1 + Q̂ℓ|ℓ−1

d )D̃T
2 Z̃T

2

(
Z̃2

(
ρ1D̃1Q̂ℓ

1D̃T
1

+ ρ2D̃2(Q̂ℓ
1 + Q̂ℓ|ℓ−1

d )D̃T
2

)
Z̃T

2 +

(
∑v∈U ρv

K + 1
+ 1

)
I2

2

)−1

.

Lastly, the state difference vector and the covariance matrix are updated by using the
updated information of the primary and secondary vehicles, such that

t̂ℓd = t̂ℓ2 − t̂ℓ1 and Q̂ℓ
d = Q̂ℓ

2 − Q̂ℓ
1.

4.2. Antenna Array Partitioning Algorithm

The vehicle tracking performance improves with the increase in the size of the chan-
nels for uplink sounding because the RSU can leverage the enhanced spatial multiplex-
ing gains with more antennas. Assuming that the number of antenna elements in the
horizontal domain is fixed as M̌, the SANR in Proposition 1 is monotonically increas-
ing over the number of RF chains because its first derivative is always positive, such as
∂γ(M̌,N)

∂N = κ(4N − 3) ≥ 0, because N > 0 and κ ≥ 0. In the proposed vehicle tracking sys-
tem, vehicles in a platoon share a limited number of RF chains used to obtain sounding
samples because they utilize a common frequency band for uplink sounding. Since the
number of RF chains is limited as N = N1 + N2, as depicted in Figure 2, if the RSU utilizes
the increased sub-array to enhance the tracking performance of the primary vehicle, the
tracking performance of the secondary vehicle deteriorates, and vice versa. The optimal
scenario for RF chain allocation, denoted as (Ň1, Ň2), should be defined to maximize the
expected average vehicle tracking performance at the next discrete time. To minimize the
average error probability (maximize the average tracking performance), the quality of
the received sounding samples should be adaptively controlled by considering the accu-
mulated error covariances of the vehicles in the platoon, (Q̂ℓ−1

1 , Q̂ℓ−1
2 ). In the proposed

beamforming architecture, we can control the SANRs by allocating the RF chains in Figure 2
to the vehicles in the driving platoon.

In this paper, we predict the average vehicle tracking performance based on the sum
of trace of the updated error covariance matrices. In the proposed algorithm, the optimal
scenario for RF chain allocation is defined by solving the following optimization problem.
(Similar to the training model in [41], an array partitioning algorithm can be implemented
based on deep Q-networks to alleviate the computational burden associated with solving
optimization problems in rapidly changing environments.)

Ň1 = arg min
N̆∈{1,...,N−1}

Tr
{
(Q̂ℓ

1)
N̆}

+ Tr
{
(Q̂ℓ

2)
N−N̆}

(a)
= arg max

N̆∈{1,...,N−1}
Tr
{√

ρ1K̃N̆
1 Z̃N̆

1 D̃N̆
1 Q̂ℓ|ℓ−1

1
}
+ Tr

{√
ρ2K̃N−N̆

2 Z̃N−N̆
2 D̃N−N̆

2 Q̂ℓ|ℓ−1
2

}
(b)
≃ arg max

N̆∈{1,...,N−1}
e
{

ρ1(ΛN̆)−1DN̆
1 (:, 1)(Q̂ℓ|ℓ−1

1 (1, 1))2DN̆
1 (:, 1)H

}
+ e

{
ρ2(ΛN−N̆)−1DN−N̆

2 (:, 1)(Q̂ℓ|ℓ−1
2 (1, 1))2DN−N̆

2 (:, 1)H
}

, (29)
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where ΛL = ∑v∈U ρvDL
v (:, 1)Q̂ℓ|ℓ−1

v (1, 1)DL
v (:, 1)H +

(∑v∈U ρv
K+1 + 1

)
IML, and Ň2 = N − Ň1.

Assuming that L RF chains are allocated to the v-th vehicle, the updated covariance ma-
trix, combiner, and Jacobian matrix are, respectively, denoted by (Q̂ℓ

v)
L, Z̃L

v , D̃L
v . In (29),

(a) is derived because

arg min
1≤N̆<N

(
I2 −

√
ρuK̃N̆

u Z̃N̆
u D̃N̆

u
)
Q̂ℓ|ℓ−1

u = arg max
1≤N̆<N

√
ρuK̃N̆

u Z̃N̆
u D̃N̆

u Q̂ℓ|ℓ−1
u ,

and (b) is derived by reformulating the object function in the complex domain, as in (14).
The object function in (b) is written by plugging the complex combiners and the Kalman
matrices into (29).

It is necessary to obtain the updated covariance matrix of the primary vehicle, Q̂ℓ
1, in order

to realize the predicted covariance matrix for the secondary vehicle Q̂ℓ|ℓ−1
2 = Q̂ℓ

1 + Q̂ℓ|ℓ−1
d .

However, the covariance of the primary vehicle cannot be updated at the time of allocating
the RF chains in (29). In the state update process of the secondary vehicle, the RSU should
focus on mitigating the individual error transition vector. For these reasons, in the proposed
algorithm, the predicted covariance in (29) is rewritten as Q̂ℓ|ℓ−1

2 = Q̂ℓ|ℓ−1
d , without considering

the updated covariance matrix of the primary vehicle.
Lastly, the RSU exploits the selected set of RF chains, (Ň1, Ň2) = (Ň1, N − Ň1), to

obtain sounding samples from the vehicles in the platoon. We assume that the RSU recon-
structs the set of RF chains for ΩTs seconds. The proposed tracking methods in Section 4
are summarized in Algorithm 1.

Algorithm 1 Vehicle tracking algorithm for driving platoon.

I. Initialization
1: Initial state vector, t̂0

u = t0
u + eϵ

u with t0
u = [x0

u, v0
u]

T , u ∈ {1, 2}
2: Initial difference vector, t̂0

d = t̂0
2 − t̂0

1 = [△0
x,△y]T + (eϵ

2 − eϵ
1)

3: Initial covariance matrix, Q̂0
u = (σϵTs)2t0

u(t0
u)

T

II. RF chain allocation, (N1, N2), in Section 4.2
III. State prediction and estimation for primary vehicle using N1 RF chains
4: Predict state vector and covariance, t̂ℓ|ℓ−1

1 = At̂ℓ−1
1 & Q̂ℓ|ℓ−1

1 = AQ̂ℓ−1
1 AT + Qb

5: Update state vector, t̂ℓ1 = t̂ℓ|ℓ−1
1 + K̃1

(
r̃1 − Z̃1(

√
ρ1ĥℓ|ℓ−1

1 +
√

ρ2ĥℓ|ℓ−1
2 )

)
6: Update covariance matrix, Q̂ℓ

1 =
(
I2 −

√
ρ1K̃1Z̃1D̃1

)
Q̂ℓ|ℓ−1

1
IV. State prediction and estimation for secondary vehicle using N2 RF chains
7: Predict difference vector and covariance, t̂ℓ|ℓ−1

d = At̂ℓ−1
d & Q̂ℓ|ℓ−1

d = AQ̂ℓ−1
d AT + Qc

8: Predict state vector and covariance, t̂ℓ|ℓ−1
2 = t̂ℓ1 + t̂ℓ|ℓ−1

d & Q̂ℓ|ℓ−1
2 = Q̂ℓ

1 + Q̂ℓ|ℓ−1
d

9: Update state vector, t̂ℓ2 = t̂ℓ|ℓ−1
2 + K̃2

(
r̃2 − Z̃2(

√
ρ1ĥℓ

1 +
√

ρ2ĥℓ|ℓ−1
2 )

)
10: Update covariance matrix, Q̂ℓ

2 =
(
I2 −

√
ρ2K̃2Z̃2D̃2

)
(Q̂ℓ

1 + Q̂ℓ|ℓ−1
d )

V. State difference estimation
11: Update state difference vector, t̂ℓd = t̂ℓ2 − t̂ℓ1
12: Update covariance matrix, Q̂ℓ

d = Q̂ℓ
2 − Q̂ℓ

1

5. Simulation Results

This section presents simulation results to validate the proposed vehicle tracking and
array partitioning algorithms. We first present the system and channel parameters considered
in the channel sounding system of (1). For the uplink channel sounding, each vehicle transmits
radio signals at a center frequency of 27 GHz, utilizing a bandwidth of 20 MHz. The transmit
power of each vehicle, ϱ, is distributed over 20 MHz. The power of average noise over the
20 MHz bandwidth is computed as σ2

n = −174 + 10 log10(20 × 106) ≃ −101 dBm. The
average SNR is then calculated by assuming that the path loss exponent parameter is set
to two. We consider a UPA with T = 48, 96 antenna elements and N = 6, 8 RF chains, in
which M = 8, 12 antenna elements in each row of the horizontal domain are connected to a
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single RF chain. The antenna element spacing parameter is ν = 2 and the combiner switching
parameter is Ω = 4. For the numerical studies, we randomly generate 50,000 sets of millimeter
wave (mmWave) channels consisting of an LoS path and an NLoS path with a Rician K-factor,
K = 11 dB.

We next present the parameters in the street geometry model, depicted in Figure 1. We
consider a realistic street geometry with four-lane roads and RSU deployment, in which the
position of the ℓ-th lane in the y-axis is 5 + 3.5ℓ m and the height difference between the
RSU and the tops of the vehicles is h = 10 m. The platoon consists of two vehicles driving
with an initial velocity of v0 = 60 km/h (16.67 m/s). The primary vehicle is in the first lane
and the secondary vehicle is in the third lane. The initial positions of the vehicles are set
to (x0

2, y2) = (x0
1 +△0

x, y1 +△y), with △0
x = 80 m, △y = 3.5 × 2 m, and y1 = 8.5 m. We

consider two different initial positions of the primary vehicle on the x-axis, i.e., x0
1 = 50 m

and x0
1 = 100 m. Note that x0

u and yu are the initial positions of the u-th vehicle on the
x-axis and y-axis. We also present the parameters in the state transition model of (6). The
sampling period is set to Ts = 10 ms. Furthermore, the error transition parameters are set
to {σb, σc} = {10−0.5, 10−1} and the feedback error parameter is set to σϵ = 10−1.

We next validate the proposed array configuration framework presented in Section 3.2.
The vehicle tracking performance is averaged through 50,000 Monte Carlo simulations. We

consider the four-lane road so that ȳ2 =
∑4

ℓ=1(5+3.5ℓ)2

4 m2, which is greater than h2 = 102 m2.
The vehicle tracking performance is evaluated by using the mean squared position error,
Υx = E[|xℓ

u − x̂ℓ
u|2], and the probability of mistracking, Ψx = Pr(|xℓ

u − x̂ℓ
u|2 < 1 m2), with

u ∈ U .
= {1, 2}. In Figure 3, the system using the horizontal ULA shows the best vehicle

tracking performance, as expected in Section 3.2. It is also verified that the horizontal UPA
with more columns than rows outperforms the vertical UPA with more rows than columns.
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Figure 3. Tracking performance against antenna array layout.

The position estimation performance of the vehicle tracking systems is evaluated in
Figures 4 and 5. The details of the vehicle tracking systems are summarized in Table 1. It
must be noted that the Conv. 1 and Conv. 2 systems exploit an M × N size antenna array for
the sounding of each vehicle, while the Conv. 3 and Prop. 1 systems exploit an M × N

2 size
antenna array for the sounding of each vehicle, and the Prop. 2 and Prop. 3 systems exploit
an M × Nu size antenna array for the sounding of the u-th vehicle. The Conv. 1 and Conv. 2
systems utilize two frequency slots, while the other systems utilize a single frequency slot.
Because the Conv. 1 and Conv. 2 systems allocate each frequency slot to track a vehicle, N
sounding samples, obtained by using all M × 1 size horizontal ULAs in Figure 2, can be
used to track a single vehicle. Assuming N1 = N2 = N

2 , the Conv. 3 system, exploiting an
M × 1 horizontal ULA, uses N

2 sounding samples to track the trajectories of a vehicle in the
platoon. Furthermore, the Prop. 1 and Prop. 2 systems exploit the M × N

2 sub-UPA to update
the state vector of a vehicle in the platoon (a set of N

2 RF chains is used to obtain a single
sounding sample). The Prop. 3 system is designed based on the vehicle tracking algorithm
in Section 4.1 and the array partitioning algorithm in Section 4.2. Assuming N = N1 + N2,
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the Prop. 3 system adjusts the sizes of the sub-UPAs, (N1, N2), to obtain sounding samples
for vehicles in the platoon based on the estimated covariance matrices.
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Figure 4. Performance evaluation of vehicle tracking systems, (M, N) = (8, 6).
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Figure 5. Performance evaluation of vehicle tracking systems, (M, N) = (12, 8).
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Table 1. Vehicle tracking systems for numerical results in Figures 4 and 5.

Tracking System Reference Array Layout
Number of Freq.

Slots for Channel
Sounding

Array Size Number of
Sounding Samples

Conv. 1 UKF in [18] ULA 2 M × 1 N

Conv. 2 EKF in [15] ULA 2 M × 1 N

Conv. 3 EKF in [16] ULA 1 M × 1 N
2

Prop. 1 EKF in Section 3.1 UPA 1 M × N
2 1

Prop. 2 EKF in Section 4.1 UPA 1 M × Nu 1

Prop. 3

EKF in Section 4.1
with array

partitioning in
Section 4.2

UPA 1 M × Nu 1

As depicted in Figures 4 and 5, the tracking performance of the systems utilizing the
UKF and EKF is negligible. The Prop. 1 system using the UPA outperforms the Conv. 3
system using the ULA with multiple samples because it can fully exploit the benefits of
spatial multiplexing gains and utilize angular variations in both the horizontal and vertical
domains. Furthermore, the Prop. 2 system enhances the estimation performance of the
secondary vehicle because the common error has been corrected in the state update process
of the primary vehicle. The proposed tracking algorithm enhances the position estimation
performance for secondary vehicles, thereby contributing to an overall improvement in
the average estimation performance. Lastly, the proposed array partitioning algorithm in
the Prop. 3 system further improves the average estimation performance by adjusting the
sizes of the sub-UPAs according to the SANRs and the accumulated transition errors of
the vehicles in the platoon. For example, in the case of (M, N) = (12, 8), ϱ = 0 dB, and
x0

1 = 100 m as shown in Figure 5d, the probability of beam mistracking in the Conv. 3, Prop.
1, Prop. 2, and Prop. 3 systems is given by 0.172, 0.152, 0.115, and 0.0758, respectively. It is
confirmed that the Prop. 2 system, designed for platooned traffic scenarios, enhances the
tracking performance by 6.88% and 4.36% compared to the Conv. 1 and Prop. 1 systems,
respectively. From the perspective of the probability of correct tracking, the performance
enhancements are calculated as (1−0.115)−(1−0.172)

(1−0.172) × 100% and (1−0.115)−(1−0.152)
(1−0.152) × 100%,

respectively. It is also verified that the proposed antenna array partitioning algorithm in the
Prop. 3 system further enhances the tracking performance by an additional 4.43% compared
to the Prop. 2 system, which does not incorporate the antenna array partitioning algorithm.

6. Conclusions

We developed EKF-based vehicle tracking algorithms by considering the 2D UPA
layout and the vehicle platoon scenario. First, we established an analytical framework
to guide the optimal configuration of the UPA for effective vehicle tracking within V2I
networks. Following the proposed analytical guideline, we confirmed that the most suit-
able UPA layout to maximize the vehicle tracking performance in a variety of real-world
road environments is a horizontally elongated rectangular UPA, with a length along the
horizontal axis greater than that along the vertical axis. Second, we developed a method
for the effective tracking of vehicle trajectories by leveraging the similarity of the paths
among the vehicles forming the driving platoon. The EKF-based vehicle tracking system
was redesigned to harness the advantages of the UPA by considering the specialized state
transition model for vehicle platoon scenarios. The proposed vehicle tracking system,
customized for platoon driving scenarios, demonstrated improved position estimation
performance compared to conventional systems that independently estimate the trajectory
of each vehicle. Lastly, an array partitioning algorithm was proposed to efficiently divide
the array into sub-arrays for each platoon vehicle, with the goal of enhancing the average
tracking performance. Numerical studies confirmed that the proposed vehicle tracking
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for platoon driving scenarios enhances the accuracy of the tracking system by leveraging
shared driving plans. Furthermore, it was verified that the proposed array partitioning
algorithm improves the average tracking performance by judiciously allocating limited
wireless resources, considering the accumulated estimation errors and channel conditions.
While this paper focused solely on the UPA, future research could explore the development
of an analytical framework for the design of 2D array layouts beyond the rectangular
UPA. Moreover, it would be an interesting future research topic to develop physical layer
techniques that can enhance the security of the state estimation process in V2I networks,
without relying on cryptography.
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