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Abstract: An efficient path integral (PI) model for the accurate analysis of curved dielectric structures
on coarse grids via the two-dimensional nonstandard finite-difference time-domain (NS-FDTD)
technique is introduced in this paper. In contrast to previous PI implementations of the perfectly
electric conductor case, which accommodates orthogonal cells in the vicinity of curved surfaces, the
novel PI model employs the occupation ratio of dielectrics in the necessary cells, providing thus
a straightforward and instructive means to treat an assortment of practical applications. For its
verification, the reflection from a flat plate and the scattering from a cylinder using the PI model
are investigated. Results indicate that the featured methodology can enable the reliable and precise
modeling of arbitrarily shaped dielectrics in the NS-FDTD algorithm on coarse grids.

Keywords: electromagnetic analysis; finite-difference time-domain methods; integral equations;
numerical analysis; radar cross section

1. Introduction

The nonstandard finite-difference time-domain (NS-FDTD) method is a high-accuracy
analysis tool of the finite-difference (FD) type, proposed by Cole [1–3], to improve the
performance of the FDTD algorithm [4,5]. The scheme, based on an FD Laplacian featured
via the nonstandard (NS) concept, introduced by Mickens [6], can reduce the overall
propagation error of a typical FDTD implementation by a factor of 10−4 on a coarse grid at
a desired frequency [1,2]. Through these excellent characteristics, the NS-FDTD method
is particularly suitable for the accurate computation of the radar cross section (RCS) of
electrically large objects. Amid the most prominent applications of the NS-FDTD method,
one may discern the full-scale analysis of aircrafts—whose electrical size is very large,
namely, more than 500 λ (λ is the wavelength)—with partially non-metal parts, including
the radome, the canopy, the windows, and several radar-absorbing materials.

Nevertheless, the NS-FDTD method uses discrete space points to simulate electromag-
netic wave propagation on orthogonal grids as in the FDTD technique [1–5]. Therefore, the
discrete space treatment is unsuitable for realistic problems with arbitrarily shaped objects
and fine details, not aligned to the grid axes [4,5,7–11], owing to the use of the insufficient
staircase approximation on orthogonal grids in an effort to model the realistic object under
study. Such structures can be, frequently, encountered in various applications, ranging from
electromagnetic compatibility configurations [12–14] and microwave devices [15–17] to
antennas [18–20], optical arrangements [21–25], and designs of low observability, including
RCS scenarios. To circumvent such a drawback, a path integral (PI) model, based on the
path integral form of Ampere’s and Faraday’s laws, has been previously presented [26–28].
The specific path integral scheme can effectively handle real-world objects on orthogonal
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meshes, as the integral path may be intuitively placed on the object’s surface. Thus, and ow-
ing to the PI model, the applicability of the NS-FDTD technique can be drastically expanded.
However, the prior technique has been formulated only for the case of perfectly electric
conductors (PECs); a fact that prohibits the analysis of various dielectric components found
in many contemporary avionic and microwave telecommunication systems.

In this paper, a robust PI model for the rigorous treatment of dielectric objects, whose
shape does not fit to any orthogonal grid, via the 2-D NS-FDTD method is developed. The
proposed PI concept launches a simple scheme that considers the occupation ratio of all
dielectrics at a specific cell. In this way, the manipulation of realistic dielectric structures
becomes feasible on a coarse lattice. Firstly, to certify the key competence of the proposed
PI model, we perform a reflection analysis of a flat plate and compare it with the exact
solution. Next, an RCS problem is comprehensively explored via a real-world application. It
is emphasized that for the NS-FDTD method, a practical grid width, ∆, is ∆ ≤ λ/8. On the
other hand, if dielectrics are involved in the computational domain, the modified grid width
should be ∆′ ≤ λ/(8

√
εr) (εr is the relative dielectric permittivity). Furthermore, the use of

a much finer lattice, i.e., ∆′ ≪ ∆, in order to satisfactorily treat the shape of a complicated
structure, poses prohibitive issues in the implementation of the NS-FDTD method due
to the unduly increase of the necessary system memory requirements and the extremely
prolonged simulation times. These considerable drawbacks can be drastically circumvented
by means of the proposed PI method, without the need for any additional conventions or
non-physical assumptions, as occurs in existing schemes. Finally, all numerical outcomes
reveal that the featured technique exhibits superior accuracy and convergence, as opposed
to other computational approaches (with much finer spatial resolutions), for the trustworthy
study of dielectric devices with intricate shape and elaborate geometrical features.

2. The PI Model at a Dielectric Boundary
2.1. Basics and Formulation

First, let us review the concept of the PI model for the NS-FDTD method [26–28]. The
model uses both basic and complementary paths, as depicted in Figure 1, for the evaluation
of the Hz magnetic-field component. Herein, we intend to establish a complementary
relation between these two paths. The idea is based on the wave propagation characteristics
of the Yee algorithm [1,2,5], where maximum and minimum errors occur at an angle of 45◦

on a square lattice. This indicates that we can mutually cancel these errors by means of
two meshes for one node calculation. In an effort to attain the optimal cancellation of the
inevitable discretization errors, the complementary (C) path is rotated 45◦ with respect to
the basic (B) one. Specifically, the two integral paths are expressed as

µ
∫

∂H
∂t

· dS = −
∫

E · dl ⇒ µ
∂HB

z (x, y)
∂t

∆2

= −
[
Ey(x + ∆/2, y)− Ex(x, y + ∆/2)− Ey(x − ∆/2, y) + Ex(x, y − ∆/2)

]
∆, (1)

for the basic path, with S = ∆2 (Figure 1a), and

µ
∂HC

z (x, y)
∂t

2∆2 =−
[

EC
y (x + ∆/2, y + ∆/2)− EC

x (x − ∆/2, y + ∆/2)

−EC
y (x − ∆/2, y − ∆/2) + EC

x (x + ∆/2, y − ∆/2)
]√

2∆, (2)

for the complementary path (Figure 1b). Note that in (1) and (2), we have replaced ∆
with the nonstandard correction function sk(∆) = 2 sin(k∆/2)/k, where k is the physical
wavenumber [1,2]. Based on this substitution, the propagation accuracy, (kn − k)/k, of the
basic and complementary path model is shown in Figure 2 for two lattice resolutions and
kn, representing the numerical wavenumber of the proposed PI model. The results are
obtained via the method presented in [3,27], and as can be promptly observed, both models
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exhibit opposite propagation errors for the desired mutual cancellation. In this manner, the
new PI model is derived by means of

∂Hz(x, y)
∂t

= β0
∂HB

z (x, y)
∂t

+ (1 − β0)
∂HC

z (x, y)
∂t

, (3)

where, for homogeneous media, β0 is given by [26]

β0 ≈ 2
3
− (k∆)2

90
. (4)Sensors 2023, 23, x FOR PEER REVIEW 2 of 10 
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Figure 1. The two paths involved in the proposed integral NS-FDTD form on a square grid for the 49 
Hz magnetic field component. The two paths are rotated 45o , one with respect the other, in order 50 
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Figure 1. The two paths—(a) basic and (b) complementary—involved in the proposed integral
NS-FDTD form for the calculation Hz magnetic-field component on a square lattice. The two paths
are rotated 45◦, one with regard to the other, in order to mutually cancel their discretization errors.
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Figure 2. Propagation accuracy of the basic and complementary PI model using the nonstandard
correction function sk(∆) = 2 sin(k∆/2)/k for (a) ∆ = λ/10 and (b) ∆ = λ/20.
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On the dielectric surface, we select the first term of (4), i.e., β0 = 2/3, which is
independent of the k, as the latter varies across the dielectric boundary. Additionally,
in (3), we consider ∂Hz/∂t = (Hn+1

z − Hn
z )/sω(∆t), with sω(∆t) = 2 sin(ω∆/2)/ω, from

the nonstandard formulation of [1,2], ω is the angular frequency, ∆t is the time step, and
n = t/∆t. On the other hand, the EC

y term in (2) is obtained from the already known Ex,y
values on the basic path as

EC
y (x + ∆/2, y + ∆/2) =

1
2
{[Ex(x, y + ∆/2) + Ex(x + ∆, y + ∆/2)]ex

+
[
Ey(x + ∆/2, y) + Ey(x + ∆/2, y + ∆)

]
ey
}
·
−ex + ey√

2
, (5)

where ex,y are the corresponding unit vectors. Bear in mind that an analogous expression
for the EC

x term can be similarly obtained.

2.2. Treatment of the Magnetic-Field Components

The new PI model of (1) and (2) is, now, extended to the treatment of the definitely
more demanding dielectric boundaries. Therefore, based on the geometric depiction of the
proposed PI for such a scenario, the µ

∫
(∂H/∂t) · dS = −

∫
E · dl along the basic path in

Figure 3 is given by

µ
∂HB

z
∂t

(SB0 + SB1) =−
[
Ey(x + ∆/2, y)l0 − Ey(x − ∆/2, y)l1

− Ex(x, y + ∆/2)ε0(1 − δB1)l0 − Ex(x, y + ∆/2)ε1 δB1l1

+Ex(x, y − ∆/2)ε0(1 − δB2)l0 + Ex(x, y − ∆/2)ε1 δB2l1], (6)

where l0,1 ≡ sk0,1(∆) = 2 sin(k0,1∆/2)/k0,1 with k0,1 as the wavenumber of the ε0,1 dielectric
medium, SB0,B1 are the areas occupied by the ε0,1 dielectric medium inside the basic path,
and δB1,B2 are path lengths along the basic path in the ε1 medium. Also, the Ex,y(x, y)ε0,1

notation refers to the Ex,y component in the ε0,1 dielectric medium. Note that if Ex,y is
not available at a specific node on the grid, we use the Ex,y extrapolation values at the
nearest-neighbor node; for example, Ex(x, y + ∆/2)ε1 ∼ Ex(x − ∆, y + ∆/2). Similarly, the
∂HC

z /∂t term using the complementary path in Figure 3 is given by

µ
∂HC

z
∂t

(SC0 + SC1) = −
[

EC
y (x + ∆/2, y + ∆/2)ε1

√
2l0 − EC

y (x − ∆/2, y − ∆/2)ε0 δC2l0

− EC
y (x − ∆/2, y − ∆/2)ε1(

√
2 − δC2)l1 − EC

x (x − ∆/2, y + ∆/2)ε1(
√

2 − δC1)l1

−EC
x (x − ∆/2, y + ∆/2)ε0 δC1l0 + EC

x (x + ∆/2, y − ∆/2)ε1 l0
]
. (7)

It should be stressed that for the practical application of (7), we assume that the EC
x,y(x, y)ε0,1

terms exist on the integral path that straddles the dielectric boundary. In this man-
ner, we can project the already known Ex,y(x, y) values to the corresponding ex,y direc-
tional unit vector on the integral path. For illustration, the EC

x (x − ∆/2, y + ∆/2)ε0 term
in (7) is obtained from the Ex(x, y + ∆/2)ex · (ex + ey)/

√
2 projection. Then, and simi-

larly to (5), the EC
x (x − ∆/2, y + ∆/2)ε1 term in (7) is acquired from the inner product

of
{

Ex(x − ∆, y + ∆/2)ex +
[
Ey(x − ∆/2, y) + Ey(x − ∆/2, y + ∆)

]
ey/2

}
· (ex + ey)/

√
2,

with an analogous treatment holding for the other EC terms, as well. Having determined
the ∂HB

z /∂t and ∂HC
z /∂t quantities from (6) and (7), respectively, the required ∂Hz/∂t

derivative is evaluated by means of (3).
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Figure 3. The proposed PI model for the calculation of the Hz component at a ∆ × ∆ lattice in the case
of a dielectric boundary between an ε0 and an ε1 medium. The path length is measured via the sk(∆)
nonstandard correction function [1,2]. Moreover, SB0,B1 are the areas occupied by the ε0,1 dielectric
medium inside the basic path, δB1,B2 are path lengths along the basic path in the ε1 medium, and
δC1,C2 are path lengths along the complementary path in the ε0 medium.

2.3. Treatment of the Electric-Field Components

The most frequently encountered cases for the computation of electric-field quantities
at a dielectric boundary are those of a normal Ex and a parallel Ey component with regard
to the boundary, as described in Figure 4. In particular, concentrating on Figure 4a and in
terms of ε

∫
(∂E/∂t) · dS =

∫
H · dl, we derive

En+1/2
x (x, y + ∆/2) = En−1/2

x (x, y + ∆/2) + chn[Hn
z (x, y + ∆)− Hn

z (x, y)], (8)

for

chn = δch1 + (1 − δ)ch0, ch1 =
sω(∆t)

ε1sk1(∆)
, ch0 =

sω(∆t)
ε0sk0(∆)

. (9)

Moreover, for the scenario of Figure 4b, one acquires

En+1/2
y (x+∆/2, y)=En−1/2

y (x+∆/2, y)−chp
[
Hn

z (x+∆, y)sk0(∆)−Hn
z (x, y)sk1(∆)

]
, (10)

for

chp =
sω(∆t)

δε1s2
k1
(∆) + (1 − δ)ε0s2

k0
(∆)

. (11)

On the other hand, when the case of an obliquely aligned, with respect to the lattice,
dielectric boundary is taken into account, we introduce the cell division scheme of Figure 5,
where Aδ,ε is the occupied area ratio. Explicitly, Figure 5a is considered as the parallel case
of Figure 4b, while the entire model in Figure 5a,b is treated as the normal case of Figure 4a.
Hence, the corresponding ∂Ex/∂t can be expressed as

En+1/2
x (x, y + ∆/2) = En−1/2

x (x, y + ∆/2)− δxcha
[
Hn

z (x, y + ∆)sk0(∆)− Hn
z (x, y)sk1(∆)

]
+ (1 − δx)ch0[Hn

z (x, y + ∆)− Hn
z (x, y)], (12)
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for

cha =
sω(∆t)

ε1sk1(∆)Aδ,ε1 + ε0sk0(∆)Aδ,ε0

, (13)

with a similar formula holding for the ∂Ey/∂t temporal derivative. In addition, the EC
x,y

components on the complementary path can be extracted through the inner products
of these Ex,y components with the respective unit vector ux,y = (ey ± ex)/

√
2. Notice

that (8)–(13) are the best models, derived theoretically and numerically from the previous
analysis. Finally, as a supplement, a special case of the right-angle edge can be treated by (i)
selecting the ∆ width, so that the edge fits on the grid, (ii) moving the edge to the grid line,
so that it fits on, and (iii) applying the modified PI models of Figures 4 and 5.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 10

0 1

1/ 2 1/ 2
p( /2, ) ( /2, ) ch [ ( , ) ( ) ( , ) ( )]n n n n

y y z k z kE x y E x y H x y s H x y s+ −+∆ = +∆ − ⋅ +∆ ∆ − ∆ .  (8a) 122 
with 123 

1 0p 1 0ch ( ) /( (1 ) )s t S Sω ε εε δ ε δ= ∆ + − ,    (8b) 124 

1 1

2 ( )kS sε = ∆  and 
1 1

2 ( )kS sε = ∆ .  (8c) 125 
126 

127 
(a) (b) 128 

129 
Figure 4. Typical dielectric boundary cases for Ex and Ey components. 130 

131 
132 

133 

134 
135 

Figure 5. Division model of an Ex cell in the presence of an oblique dielectric boundary. 136 
137 

Furthermore, for an obliquely-placed boundary, we adopt the cell division scheme 138 
of Figure 5, where ,Aδ ε is the occupied area ratio. Explicitly, the in Figure 5(a) is con- 139 
sidered as the parallel case of Figure 4(b), while the entire model in Figure 4(a) and 4(b) 140 
is treated as the perpendicular case of Figure 4(a). Hence, the corresponding t xE∂ term 141 
can be expressed as 142 

0 1

1/ 2 1/ 2
a( , /2) ( , /2) ch [ ( , ) ( ) ( , ) ( )]n n n n

x x x z k z kE x y E x y H x y s H x y sδ+ −+∆ = +∆ − ⋅ +∆ ∆ − ∆  143 

Figure 4. Treatment of a (a) normal Ex component and (b) parallel Ey component with respect to the
dielectric boundary. Here, δ is the occupation ratio equal to the area of the ε1 medium over the entire
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3. Numerical Results and Discussion
3.1. Reflectivity Analysis of a Flat Dielectric Plate

In order to substantiate the merits of the featured PI model, we focus on the reflectivity
analysis of a flat dielectric plate as a basic example with an analytic solution. The computa-
tional domain is shown in Figure 6, whereas the PI models of (5)–(13) are employed only
on the dielectric surface. Moreover, the plate is infinite along the ±y directions, and an
incident plane wave impinges from the right side in Figure 6. Therefore, the sine–cosine
method [29] is used for our oblique incidence calculations. For our (TM = (Hx, Hy, Ez)
and TE = (Ex, Ey, Hz)) analysis, we examine two dielectric media, namely, an acrylic resin
with ε1 = 3ε0 and a glass epoxy with ε1 = 4ε0. The remaining implementation aspects
are: λ = 1 m, ∆ = λ/20, and ∆t = T/30, with T as the corresponding wave period,
while open-space truncation is conducted in terms of a 15∆-thick perfectly matched layer
(PML) [30]. To facilitate our comparisons, we use, as our reference, the analytical solution
of the specific problem described in [31]. In this context, Figure 7 illustrates the reflectivity
of the flat dielectric plate for the aforementioned materials and two ∆w configurations,
i.e., ∆w = 0 (the right-hand side of the plate surface is aligned to the grid) and ∆w = ∆/4
(the plate surface is not aligned to the grid). As observed, all the outcomes derived via the
enhanced PI models are in promising agreement with the reference solution, thus proving
the competence of the new scheme to effectively treat arbitrary dielectric boundaries. In
this case, the flat plate model can be treated accurately for a geometrical integral path
length and occupied ratio in the cell since the dielectric boundary is straight and parallel to
the grid line (y-axis). Hence, we can detect that the PI model closely follows the analytic
solution if we utilize an exact path length and occupied ratio in the PI cell. This fact proves
the validity of the proposed PI model in the analysis of arbitrary dielectric boundaries.

 

Figure 6. Reflectivity evaluation of a flat dielectric plate by means of the proposed PI model, where,
except for the PI area, the rest of the domain is a differential type NS-FDTD region. Note that ∆w is
the distance between the grid line of the basic path and the plate edge, with ∆w = 0 at the left side.
The dielectric plate is infinite along the ±y directions with a thickness of λ/4 + ∆w.

   
 (a) (b) 

   
 (c) (d) 

Figure 7. Cont.
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 (a) (b) 

   
 (c) (d) 

Figure 7. Reflectivity (TM =(Hx, Hy, Ez) and TE = (Ex, Ey, Hz)) analysis versus the incidence angle,
θ, for the flat dielectric plate of Figure 6, performed in terms of the proposed PI model and compared
to the analytical (reference) solution of [31]. The analysis involves two dielectric media (acrylic resin
and glass epoxy) in conjunction with two ∆w arrangements (∆w = 0: the right-hand side of the plate
surface is aligned to the grid and ∆w = ∆/4: the plate surface is not aligned to the grid). (a) Acrylic
resin with ε1 = 3ε0 and ∆w = 0, (b) glass epoxy with ε1 = 4ε0 and ∆w = 0, (c) acrylic resin with
ε1 = 3ε0 and ∆w = ∆/4, and (d) glass epoxy with ε1 = 4ε0 and ∆w = ∆/4.

3.2. RCS Analysis of a Dielectric Cylinder

Probing further, we proceed to a more realistic application and compute the RCS of an
infinite dielectric cylinder with a radius of 5∆ and a relative permittivity of εr = 3. For the
curved boundary, we utilize the oblique dielectric models of Figure 5, formulated in (6)–(13).
The grid layout is given in Figure 8, where the novel PI model is applied only on the cylinder
surface and the rest of the domain is a regular NS-FDTD region. In particular, Figure 8a
depicts the PI model of the Hz component, expressed via (3), (6), and (7), while Figure 8b
presents the PI model for the Ex component, described by (8)–(13). This configuration is
attributed to the occupation ratio of the dielectrics and the direction of the electric field in
the shaded (cyan) cells. Note that the treatment of the Ey component is the same as the Ex
one, owing to the rotational symmetry of the problem. Furthermore, for the excitation of
the structure through an incident plane wave (impinging with an angle of θ = 45◦) and the
evaluation of the scattered waves from the dielectric cylinder, the total-field/scattered-field
formulation [5] is employed. Finally, the scattered waves, so obtained, are converted to the
appropriate RCS data by means of the near-to-far-field transformation technique [5,31].

In this framework, Figure 9 illustrates the comparative results between our model
(PI model combined with the NS-FDTD technique: PI+NS-FDTD) and other approaches
(typical FDTD and NS-FDTD method without the PI model) for λ = 1 m, ∆ = λ/14,
and ∆t = T/20. Also, the outcomes of a much finer FDTD implementation (∆ = λ/84,
∆t = T/120) serve as our reference solution. It becomes apparent that the PI+NS-FDTD
method agrees very well with the reference data within the range of 0.5 dBm, which
is, actually, a negligible difference in most real-world RCS configurations. Herein, the
reduction effect is (14/84)2 for the overall computer memory and the same analysis space
size since the reference FDTD solution uses a ∆ = λ/84 and the NS-FDTD simulation with
the PI model employs a ∆ = λ/14. Additionally, our method achieves a reduction effect of
(14/84)2 × (20/120) for the total CPU time, compared with the FDTD algorithm, because
the reference FDTD solution uses a ∆t = T/120, while the NS-FDTD simulation with the
PI model employs a ∆t = T/20. In Figure 9, a small fluctuation of 0.5 dBm is observed in
the PI results for the observation angle θ. This small discrepancy can be attributed to the
geometrical layout of the PI cell in Figure 8, as the PI models periodically vary regarding
the cylinder surface position. To mitigate this RCS fluctuation, one may use finer cells,
as deduced from the FDTD results with ∆ = λ/14 and ∆ = λ/84, since the specific PI
model robustly replaces the complicated scattering phenomena on the cylinder surface
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(smaller than ∆ × ∆) with one cell calculation on the coarse grid. However, it should be
emphasized that the RCS fluctuation versus the observation angle is much smaller than
that of the NS-FDTD simulation without the PI model. Lastly, regarding the bistatic RCS for
θ = 45◦, our scheme offers, again, a very satisfactory performance, as shown in Figure 10,
for the same set of implementation parameters as in the prior example. It should be stated
that only a small RCS fluctuation is detected in the PI outcomes. Bear in mind that if a
sufficiently fine (i.e., ∆ = λ/20) cell is selected in Figure 8, such fluctuations are not at all
observed. This implies that the fluctuations in Figure 10 are attributed to the use of the
∆ = λ/(8

√
εr)|εr=3 ∼ λ/14 maximum grid size [1,2] and the geometrical layout of the PI

cell, as already mentioned in the monostatic case. Consequently, the novel formulation
can reliably and accurately treat the curved shape of dielectric structures, even when their
surface is not aligned to the axes of orthogonal NS-FDTD grids.

Figure 8. The PI model of an infinite dielectric cylinder (first quadrant) for the TE mode with
the positions of the involved (a) Hz components, computed through (3), (6), and (7), and (b) Ex

components, calculated via (8)–(13). The proposed scheme is used solely on the cylinder surface,
while the remaining domain is a typical NS-FDTD region. Note that due to rotational symmetry, the
Ey case is similar to the Ex one.
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Figure 9. Monostatic RCS results derived from the proposed (PI+NS-FDTD) technique, the conven-
tional FDTD method, and the NS-FDTD algorithm without the PI model. The reference solution is
acquired from an FDTD realization with a very fine (∆ = λ/84, ∆t = T/120) lattice resolution.
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Figure 10. Bistatic RCS results derived from the proposed (PI+NS-FDTD) technique and the NS-FDTD
algorithm without the PI model. The reference solution is acquired from an FDTD realization with
a very fine (∆ = λ/84, ∆t = T/120) lattice resolution. The incidence angle of the impinging plane
wave is 45◦, while the geometric PI cell data of the cylinder are depicted in Figure 8.

4. Conclusions

Conventional grid-based computational methods exhibit significant precision issues
since they are not able to efficiently model curved media boundaries. To alleviate these
shortcomings and accurately handle dielectric objects of an arbitrary shape, not aligned to
the grid axes, a consistent and efficient PI form for the 2-D NS-FDTD technique has been
presented in this paper. The key idea of the proposed PI scheme is to utilize the occupation
ratio of dielectrics in the necessary cells, surrounded by basic and complementary paths,
thus attaining a notable reduction of the overall system burden. Conducting the numerical
RCS analysis of a dielectric plate and cylinder, it has been validated that the new concept im-
proves the accuracy of the regular NS-FDTD algorithm in the case of dielectric boundaries,
considerably curved interfaces, and fine geometric characteristics. Thus, the universality of
the NS-FDTD technique can be seriously expanded, even on coarse grids, without having to
resort to any additional complicated approaches or artificial assumptions. Specifically, for
the demanding RCS study of electrically large configurations (partially occupied by various
dielectrics), which opt for excessive memory requirements and elongated simulations, the
new PI model is proven to offer remarkable computational savings. Nonetheless, it should
be stated that generating the appropriate geometrical data for the PI model is a laborious
task from a calculation point of view. Therefore, for a beneficial real-world use of the
featured scheme, the development of a CAD tool is deemed necessary.
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