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Abstract: The graph neural network (GNN) has shown outstanding performance in processing
unstructured data. However, the downstream task performance of GNN strongly depends on the
accuracy of data graph structural features and, as a type of deep learning (DL) model, the size of the
training dataset is equally crucial to its performance. This paper is based on graph neural networks
to predict and complete the target radio environment map (REM) through multiple complete REMs
and sparse spectrum monitoring data in the target domain. Due to the complexity of radio wave
propagation in space, it is difficult to accurately and explicitly construct the spatial graph structure of
the spectral data. In response to the two above issues, we propose a multi-source domain adaptive
of GNN for regression (GNN-MDAR) model, which includes two key modules: (1) graph structure
alignment modules are used to capture and learn graph structure information shared by cross-domain
radio propagation and extract reliable graph structure information for downstream reference signal
receiving power (RSRP) prediction task; and (2) a spatial distribution matching module is used to
reduce the feature distribution mismatch across spatial grids and improve the model’s ability to
remain domain invariant. Based on the measured REMs dataset, the comparative results of simulation
experiments show that the GNN-MDAR outperforms the other four benchmark methods in accuracy
when there is less RSRP label data in the target domain.

Keywords: graph neural networks; invariant inference; latent space; multi-source domain adaptation;
radio environment map; spatial distribution matching

1. Introduction

In recent years, with the rapid development of wireless communication technology
and mobile internet, wireless spectrum resources have been demanded increasingly, and
the available frequency bands have been allocated. Therefore, it is particularly important
to improve the efficiency of spectrum dynamic utilization [1]. Cognitive Radio (CR) is
considered one of the solutions to solve the contradiction between spectrum supply and
demand [2]. Moreover, the reconstruction of the REM is a crucial technology for CR. REM
reconstruction [3] refers to the process of establishing the distribution of spectrum data
in the spatial domain of the entire cognitive radio network based on the limited spatial
spectrum data obtained by spectrum monitoring stations.

The methods for reconstructing REM can be roughly divided into two categories [4]:
the radiation source parameter estimation method and the electromagnetic wave data
statistical method. The first type of method tends to focus more on the exploration of path
loss prediction models in radio wave propagation, which is not our research content in
this paper. The second type of method commonly includes spatial interpolation algorithms
based on data sparsity (such as Kriging [5], Radial Basic Functions (RBF) [6], and Spline [7]),
and tensor completion methods based on low-rank assumptions [8–10]. The above methods
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all rely on assumptions such as the smoothness, sparsity, and low rank of REM in space.
However, the spatial propagation of electromagnetic waves is a complex process, and those
assumptions cannot achieve an accurate prediction of REM. Researchers have considered
data-driven deep neural networks (DNNs) [11], which can learn complex underlying
structures from data to help address these limitations and challenges. With inspiration from
the powerful image generation capability of the Generative Adversarial Network (GAN),
the REM was transformed into an image and input into a wireless map estimation model
designed based on the GAN [12,13]. However, these methods do not take into account the
complex fading effects of wireless transmission environments, such as multipath effects.
Although they consider geographic information near CR devices, obstacles or scatterers far
away from receiving devices may also significantly affect the receiving power. A model
based on convolutional neural networks (CNNs) was applied to wireless map construction
in [14,15]. The author drew inspiration from the idea of image processing, and treated
obstacles that affect radio wave propagation as a mask matrix added to the network input.
This processing method has the disadvantage of uncertainty in shadow fading effects in
some scenarios, such as non-line-of-sight (NLOS) propagation.

Given the advantages of GNN in processing unstructured data tasks, research on
graph-structured data modeling in the field of wireless communication [16,17] has also
made beneficial explorations in recent years. In [18,19], wireless systems are modeled as
stochastic wireless graph models that are subject to interference and fading effects. The
Random Edge Graph Neural Network (REGNN) is proposed to solve constrained power
control problems. Additionally, ref. [20] utilizes GCN technology to design an algorithm
for traffic prediction in cellular systems. To solve the difficulty of shadow estimation
under NLOS conditions, ref. [21] divides REM into several sub-regions and considers
them as nodes of graph-structured data. The received signal strength measurement values
are expressed by whether there are edges between nodes to represent radio line-of-sight
(LOS)/NLOS propagation, and the label data values of nodes represent spatial distribution.
In [22], the author converted each pixel into a node and constructed a graph structure
based on the “proximity similarity principle” and “ray tracing model” to illustrate the edge
relationship between the receiver and transmitter.

Cognitive radio networks (CRN) can generally be regarded as a complex network
topology structure composed of several nodes (such as wireless spectrum sensing devices or
base stations) and wireless communication links between them. As previously mentioned,
traditional methods have difficulty handling wireless communication networks from the
perspective of graph structure modeling. However, graph representation learning methods
based on GNN can effectively mine the structural and feature information in graph data [1],
to capture the structural and dependency relationships between nodes. This approach
enables a more precise modeling of the topology of wireless networks more accurately.
Motivated by the above observations, we will carry out REM reconstruction research based
on GNN.

However, GNN relies heavily on the input graph structure data, and the accuracy of
the relationships between nodes in the graph data is a key factor affecting the robustness
and universality of the task model. From the above research, it can be observed that, on
the one hand, manually defining the graph structure data unavoidably introduces noise
information, resulting in the presence of excessive or missing edges. On the other hand,
although REM data contains implicit structural information, the spatial complexity of radio
propagation prevents its direct conversion into explicit graph-structured data. These two
issues contribute to the susceptibility of noise data and inaccurate graph structure data
when applying GNN directly to REM construction, ultimately leading to a decrease in the
performance of the GNN model.

Meanwhile, a common challenge faced by DL is also present in the REM prediction
task, which is the significant human and resource cost involved in collecting a sufficient
amount of valid electromagnetic spectrum-labeled data for training network models. Do-
main adaptation (DA) [23] aims to transfer models from labeled source domains to unla-
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beled or sparsely labeled target domains. By leveraging DA techniques, we can effectively
reduce the data collection cost associated with REM annotation. However, unlike the effec-
tiveness of DA algorithms in classification tasks, most DA algorithms struggle to effectively
address regression problems [24]. This is because the continuity of the output space in
regression models results in the absence of clear decision boundaries.

To address the challenges of graph structure noise and insufficient spatial spectrum
data for target REM completion, we propose a REM reconstruction method based on
Graph Neural Network Multi-Source Domain Adaptation Regression (GNN-MDAR). This
approach aims to achieve robustness and regression prediction for cross-domain REM
spatial graph structure data. Specifically, the proposed GNN-MDAR model makes the
following contributions:

(1) Introducing multiple different spatial REMs to enhance training data also leads to
cross-domain drift issues in graph structure data statistical characteristics. To address
this, we introduce the idea of variational graph structure learning into multi-domain
adaptation algorithms and design a cross-domain graph structure (GS) alignment
module based on the theory of variational information bottleneck. This module is
used to learn the spatial graph structure shared information of grid features in source
and target REMs.

(2) In the process of multi-source domain adaptation learning, to avoid the problem
of suppressing target domain task performance caused by the forced migration of
low-correlation grid features from the source domain, we also designed a spatial
distribution matching module. This module achieves alignment of source and target
domain grid features in the latent space, capturing the domain invariance of cross-
domain REM grids. It enhances the generalization capability of the proposed model
for predicting RSRP values in target REM grids.

(3) We constructed a semi-supervised learning loss function related to the multi-domain
adaptive (MDA) REM prediction task. Specifically, we used grid data with RSRP
values from source and target REMs to construct the supervised loss function, ensuring
the consistency of the trained model with the given label data. We also used grid
data without RSRP values from the target REM to construct a semi-supervised loss
function to force the regression model to smoothly fit the RSRP prediction data.

The remainder of this paper is organized as follows. Section 2 reviews the relevant
research on MDA regression tasks. Section 3 formally defines the problem of wireless
environment map prediction based on GNN in this paper. Section 4 introduces the spe-
cific principles and methods of the proposed model. Section 5 evaluates the effectiveness
of GNN-MDAR through comparative analysis with baseline models in simulation ex-
periments. Finally, Section 6 summarizes and discusses the research work conducted in
this paper.

2. Related Works
2.1. Distribution Matching

The idea of distribution matching is a statistical technique used for aligning distributions
and can effectively solve the problem of imbalanced data distribution. Two representative
techniques of distribution matching, namely Variational Inference (VI) [25] and Adversarial
Learning [26], have been extensively studied in various applications such as human pose
estimation [27], few-shot learning [28], long-tail recognition [29], and tracking [30]. VI flexi-
bly matches various forms of distributions for the objective function through probabilistic
calculation, and can utilize more complex higher-order information. Generative adversarial
learning includes a generator and a discriminator, usually requiring a large amount of
computing resources and taking a long time to train. Our GNN-MDAR also operates within
the framework of VI using the Kullback–Leibler (KL) divergence. It is worth noting that,
while VI theory is commonly applied in the distribution matching community, it is rarely
explored in the context of graph-structured data with multi-source domain adaptation for
regression tasks.
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2.2. Domain Adaptation for Regression

In recent years, there has been an increasing amount of research on applying domain
adaptation techniques to regression tasks. One category of algorithms focuses on impor-
tance weighting [31,32], which estimates the weights of training samples to address the
differences in probability distributions between the source and target domains. However,
the computation of these weights mostly relies on heuristic measures, which place higher
demands on the initial conditions of the task and may result in suboptimal accuracy in
regression predictions. Another category explores boosting-based algorithms for domain
adaptation in regression tasks [33,34]. Compared to heuristic-based algorithms, the latter
demonstrates better generalization performance and stability. Therefore, in our optimiza-
tion process for solving spatial feature coefficients of cross-domain grid nodes, we utilize a
boosting-based algorithm and draw inspiration from [35] to construct a semi-supervised loss
function suitable for MDA tasks, aiming to enhance the regression prediction performance.

3. Preliminaries

To structure the REM data graph, it is necessary to perform gridification on the spatial
domain of the map, as shown in Figure 1, where each grid represents a spatial area of c × c.
The value of c is chosen according to the spatial resolution requirements of the REM. The
top-left position of each grid is denoted as a coordinate point. In this paper, the distribution
of electromagnetic signal intensity in the REM is represented by the average RSRP at each
spatial location.
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Figure 1. Grid diagram of the REM. A grid with icon O indicates the presence of monitoring stations,
while an empty grid indicates the absence of monitoring stations.

3.1. Graph Structure Representation for REM

To predict the RSRP value at the grid without monitoring stations, the spatial grid is
considered as a node to form a node-set V = {vi}

|V|
i=1, and |V| represents the number of

grids. The original features (such as longitude and latitude coordinates, building height,
altitude, and land type) of each grid are treated as node feature matrix X ∈ R|V|×d, and d is
the number of original features. Y ∈ R|V| represents the grid RSRP vector. All grid nodes
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establish edge relationships according to certain rules to generate the initial adjacency
matrix A ∈ R|V|×|V|. Ultimately, the graph structure G of REM can be constructed as
G = (V, A, X, Y).

3.2. Graph Neural Networks

Furthermore, after determining the initial graph data G = (V, A, X, Y), the normalized

Laplacian matrix can be calculated by
∼
Lsym =

∼
D
−1/2∼

A
∼
D
−1/2

, where
∼
A = A + I represents

the adjacency matrix containing self-loop and I denotes the identity matrix. The diagonal

elements of the degree matrix
∼
D can be calculated by

∼
Dii = ∑j

∼
Aij. Then, the graph

convolution [36] is performed on the REM graph structure data G by:

H(l+1) = σ
(

L̃symH(l)W(l)
)

, (1)

where W(l) and H(l) denote the parameter matrix and node features matrix of the lth layer
in GNN, respectively. Specially, H(0) = X, and σ(·) represents the activation layer function.
In this paper, we focus on two-layer graph convolutions:

H = GNN(X) = σ
(

L̃symσ
(

L̃symXW0

)
W0

)
. (2)

3.3. Problem Definition

In our work, each REM is treated as a domain. The original features of the grids in K
REMs are denoted as XS = {Xk}K

k=1. These grids are labeled as YS = {Yk}K
k=1. These REMs

with sufficient RSRP data serve as the multi-source domains denoted as GS = {Gk}K
k=1,

where Gk = (Vk, Xk, Ak, Yk), Xk =
(

x(k)1 , x(k)2 , . . . , x(k)|Vk |

)
, and Yk =

(
y(k)1 , y(k)2 , . . . , y(k)|Vk |

)
.

Meanwhile, the target domain is provided with limited RSRP data of REM, denoted as
GT = (VT , XT , AT , YT), where XT = XL

T ∪ XU
T and YT = YL

T ∪ YU
T . Specifically, XL

T and XU
T

are the grids’ feature matrices of the target REM with RSRP and without RSRP, respectively.

YL
T =

(
y(T)1 , y(T)2 , . . . , y(T)|VL

T |

)
∈ R|VL

T | represents a vector composed of
∣∣VL

T
∣∣ RSRP values

from labeled grids, corresponding to YU
T ∈ R|VU

T | representing the vector of unlabeled grids
to be predicted in the target REM. Ak and AT are the initialized adjacency matrices of the
grids in the source domain and the target domain, respectively.

Therefore, the goal of this study is to learn a mapping function Fθ(·), where θ repre-
sents the parameters of the learnable model. This function can reconstruct the target REM
with only a small number of RSRP values by using multiple REMs with complete RSRP
values as source domain data. This task can be expressed mathematically as:

YU
T = Fθ

(
XU

T

)
, ∀
(
YS, YL

T

) .
= Fθ(GS, GT). (3)

4. Methods

This section provides a detailed introduction to our proposed GNN-MDAR model.
Figure 2 shows the framework of the model, which mainly includes five modules: graph
structure learner, latent feature distribution learner module, spatial matching module
(SDM), GS alignment module through variational inference, and semi-supervised regression
prediction module.
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Figure 2. Framework of the proposed GNN-MDAR. In the REM on the left, solid contour nodes
represent grids with RSRP label values. In the Target REM, dashed contour nodes represent grids
without RSRP label values. Graph structure learner contains the Word2Vector layer and GNN layer.
The distribution learner consists of Graph Convolutional Networks and 2D Convolutional Network
layers, the weights of which are shared across subjects.

4.1. Graph Structure Learner

To enhance the performance of the network model, we draw inspiration from the
Word2Vector concept [37] to transform the four types of original attributes of grid nodes

into d1 dimensional embedded representations
∼
X ∈ R|V|×d1 :

X̃ = Word2Vec(X), (4)

where Word2Vec(·) is the word2Vector model, which helps to analyze and predict the
propagation relationship of electromagnetic waves between grids in REM.

To initiate model learning, we use the inverse distance weights (IDW) method [38]
to initialize the connection relationships between grid nodes in each REM. Based on the
grid coordinate data

{
(lat1, lon1), . . . ,

(
lat|V|, lon|V|

)}
, we can establish an initialization

adjacency matrix A. Specially, the element Ai,j of matrix A is calculated by:

A(k′)
i,j =

{
1/di,j i ̸= j and di,j ≤ th

0 otherwise
, (5)

where di,j =

√((
lati − latj

)2
+
(
loni − lonj

)2
)

denotes the spatial distance between grid

vi and grid vj in REM. The identifier th is a threshold value for establishing initial edges
between grids.

The graph structure adjacency matrices initialized by (5) are passed to the graph
convolutional layer corresponding to a specific REM. GNN maps the high-dimensional

embedding
∼
X to the graph structure feature space H ∈ R|V|×d2 through:

H = GNN
(

Word2Vec(X), Ã
)

, (6)
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where
∼
A is the optimized graph structure adjacency matrix obtained through the graph

structure learner.
∼
A = A while the model starts training. The graph structure feature of the

source and target domain grids are denoted as HS = {Hk}K
k=1 and HT , respectively.

4.2. Distribution Learner of Latent Feature

After the GNN layer, the generated graph structure spatial features are inputted into
the Distribution Learner, as shown in Figure 2. The first 2D convolutional layer of the
Distribution Learner is utilized for graph structure feature fusion, and the last two 2D
convolutional layers are dedicated to obtaining the approximate posterior µ and Σ of the
latent feature matrix Z ∈ R|V|×d3 for REM. We denote the distributed learner constructed
by a two-layer 2D CNN as fϕ(·). We can calculate µ and Σ by:

µ = f µ
ϕ (H)

Σ = f Σ
ϕ (H)

, (7)

where µ ∈ Rd3 and Σ ∈ Rd3×d3 are the mean vector and diagonal covariance matrix ob-
tained from the latent features Z. Therefore, we designed the graph structure learner and
distribution learner for domain-adaptive variational inference of multiple REM
graph structures.

4.3. Graph Structure Alignment

In the previous discussion, we mentioned that if the graph structure is highly reliable,
GNN can ensure the effectiveness of downstream tasks. However, when the graph structure
cannot be accurately obtained, the performance of GNN will significantly deteriorate.
Therefore, it is crucial to acquire an effective graph structure. Reducing the spatial structural
differences between source and target REM grids is a key issue in GNN-based MDA
learning tasks [39].

Inspired by [40], we propose a multi-source adaptive graph structure alignment learn-
ing framework guided by the “Variational Information Bottleneck (VIB)” principle. This
framework aims to learn the intrinsic relationships of electromagnetic wave propagation
across different grid spaces and utilizes the shared, domain-invariant information and
knowledge among multiple source REMs to guide the learning of the target domain REM
prediction model. Specifically, a set of wireless REM data is divided into source and tar-
get domains. The grid feature X and corresponding RSRP label values Y are denoted as
X = {XS, XT} and Y = {YS, YT}, respectively. The initialization adjacency matrix for each
REM is represented as A = {A1, A2, . . . , AK, AT}.

Assuming the optimized features set and adjacency matrices set are denoted as
∼
X

and
∼
A, we utilize the information bottleneck principle to compress the graph structure

differences between different source and target REMs. The goal is to learn a minimal and

sufficient node-level latent feature space Z = f
(∼
X,

∼
A
)

, represented as:

Z = argmin
Z

− I(FC(Z),Y) + βI(Z, (X,A)), (8)

where I(·, ·) is the mutual information used to measure the dependence between two
random variables, and FC(·) is the fully connected layer. The function f (·) is given by
Equation (14). The first term of (8) is the prediction term, which minimizes the mutual
information between the predicted values obtained through latent features and the ground
truth values. In Section 4.4, we designed the training loss function for this term. The
second term represents the compressed graph structure information of the cross-domain. It
involves discarding the RSRP-irrelevant data in the REM grid features X. β is the Lagrange
multiplier that balances sufficiency and minimality. As a result, the latent features Z retain
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only the relevant information about the propagation of radio waves between REM grids,
thereby enhancing the cross-domain invariance of the radio wave propagation.

For the original features X ∈ X, initialized adjacency matrix A ∈ A, and latent
features Z ∈ Z of the grid nodes, we have the following based on the definition of mutual
information [41]:

I(Z, (X,A)) =
x

pω(Z, X, A) log
pω(Z|X, A )

p(Z)
dZdX. (9)

It is difficult and intractable to calculate the edge probability distribution p(Z) prac-
tically. We use q(Z) ∼ N (0, I) as a variational approximation to p(Z) and I is a d3-
dimensional identity matrix. Because of Kullback–Leiber divergence DKL( p(Z)∥q(Z)) ≥ 0,
we have: ∫

p(Z) log p(Z)dZ ≥
∫

p(Z) log q(Z)dZ. (10)

According to (10), the upper bound of I(Z, (X,A)) can be derived as:

I(Z, (X,A)) ≤
s

pω(Z, X, A) log pω(Z|X,A )
q(Z) dZdX

≤
K+1
∑

n=1
pω(Zn|Xn, An) log pω(Zn|Xn,An)

q(Zn)

= DKL(pω(Z|X, A)∥q(Z))

. (11)

In this way, minimizing I(Z, (X,A)) can be transformed into optimizing the KL-
divergence between the conditional probability distribution pω(Z|X, A) and a prior Gaus-
sian distribution q(Z). Therefore, the objective function of variational inference is the
Evidence Lower Bound (ELBO) of Equation (11):

argmin
Z

I(Z, (X,A)) .
= argmin

ω
DKL(pω(Z|X, A)∥q(Z))

= argmin
ω

EX∼pω
[− log q(Z)]− H(pω(Z|X, A))

, (12)

where pω(Z|X, A) ∼ N (µ, Σ). Further, ELBO in (12) can be minimized by the following equation:

LKL(µ, Σ) = −1
2

(
log f Σ

ϕ (X, A) + I − f Σ
ϕ (X, A)

(
f Σ
ϕ (X, A)

)⊤
− f µ

ϕ (X, A)
(

f µ
ϕ (X, A)

)⊤)
, (13)

where (·)⊤ is the transpose operation of a matrix. The learner fϕ(·) can be optimized to
fit a function with a small divergence to prior q(Z). With the approximate µ and Σ of the
distribution learner, we use the reparameterization trick [42] for latent feature generation:

Z = µ + Σ ⊙ ε, (14)

where ε ∼ N (0, I) is an independent Gaussian noise and
⊙

denotes the Hadamard product.
After minimizing mutual information, the differences in graph structures of REM data

can be reduced, while reducing the spatial structural differences between different source
and target domains. Z(Gk) ∼ N

(
µ(Gk), Σ(Gk)

)
and Z(GT) ∼ N

(
µ(GT), Σ(GT)

)
are the latent

features for the source REM and the target subject, respectively. The loss function of the GS
alignment module in Figure 2 can be expressed as:

LGS = LKL

(
µ(GT), Σ(GT)

)
+

K

∑
k=1

LKL

(
µ(Gk), Σ(Gk)

)
. (15)

4.4. Spatial Distribution Matching

The goal of domain adaptation learning algorithms is to project features from the target
domain and source domains to the same feature space. To effectively reduce distributional
differences across spatially separated grids, we have adopted the idea from [43] and pro-
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posed a Spatial Distribution Matching (SDM) module. SDM learns cross-domain common
knowledge by matching grid features from different REMs and captures adaptively the
dependencies between cross-domain grid nodes. This allows the RSRP prediction model to
have good generalization capabilities on the target REM.

As shown in Figure 3, grid-wise distribution matching is weighted with a normalized
α(k) ∈ R|VT |×|Vk |, which is named the importance matrix to learn the importance of |Vk|
source domain REM grids relative to |VT | target domain REM ones. The loss of spatial
distribution matching is formulated as:

LSDM(GT , Gk) =
|VT |

∑
i=1

|Vk |

∑
j=1

α
(k)
i,j d

(
x̃i, x̃(k)j

)
, (16)

where α
(k)
i,j ∈ α(k) represents the importance coefficient of the grid v(k)j in Gk to grid vi in GT .

According to (4),
∼
x i ∈

∼
XT and

∼
x
(k)
j ∈

∼
Xk are the grid feature vectors of the grid vi and v(k)j ,

respectively. d(·, ·) denotes distribution matching distance function such as cosine distance,
MMD [44] and adversarial distance [45]. We adopt the multi-kernel MMD method. The
learning scheme for the parameter matrix α(k) is executed according to the Boosting-based
Importance Evaluation Algorithm proposed in [39].
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4.5. Loss Function for Regression

The first term of (6) aims to train the model for accurate prediction on annotated data,
which can be described by a supervised loss function:

LSup =
1
K

K

∑
k=1

(
1

|Vk|

|Vk |

∑
i=1

(
y(k)i − ŷ(k)i

)2
)
+

1∣∣VL
T

∣∣ |V
L
T |

∑
i=1

(
y(T)i − ŷ(T)i

)2
, (17)

where y(·)i ∈
{
YS, YL

T

}
and ŷ(·)i = Fθ(xi) is the predicted RSRP value of the GNN-MDAR

model on the grid vi with original features xi ∈
{
XS, XL

T
}

.
To maximize the utilization of unlabeled grid data from the target domain REM and

enhance the model’s robustness, we introduced a semi-supervised loss constraint term
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inspired by the [31] to the supervised loss function. Specifically, we treated the grid feature
data from all REMs as a whole, denoted as X = XS ∪ XT , and computed the latent feature
vectors zi ∈ Z for each grid in all REMs using Equation (12). The semi-supervised loss
function can be expressed as:

LSemiSup =
1
2 ∑

xi ,xj∈X
wij
(
Fθ(xi)−Fθ

(
xj
))2, (18)

where wij = exp
(

−∥zi−zj∥2

2σ2

)
. The identifiers xi and xj denote the original feature vector

of the grid vi and vj, respectively. Therefore, the first term of (6) can be described by the
following loss function, which we define as the regression prediction loss function Lpred:

LPred = LSup + λ1LSemiSup, (19)

where λ1 is the trade-off parameter of the semi-supervised loss part.

4.6. Overall Loss Function

According to (15)–(19), the final objective loss function of the GNN-MDAR model for
RSRP prediction can be formulated as:

L = LPred + λ2
2

K(K − 1)

K

∑
k=1

LSDM

(
GT , Gk;α(k)

)
+ λ3LGS, (20)

where λ2 and λ3 are the trade-off parameters of the SDM part and graph structure alignment
module. The target domain REM data GT is input to the trained latent feature distribution
learner and then passed through the trained module to generate predicted results for
unlabeled grids.

5. Experiments

In this section, we conducted a series of numerical simulation experiments aimed
at predicting grids lacking RSRP monitoring data in the target REM and evaluating the
actual effectiveness of our proposed model. We first conducted an in-depth analysis of the
cross-domain distribution drift characteristics of RSRP data from multiple measured areas.
In addition, to ensure the transfer learning effect of shared information, we also conducted
a visual analysis of the correlation between the raster feature data of the target domain and
the source domain. We compared the adopted method with three other methods in terms
of RSRP prediction accuracy and explored and elaborated on the experimental results using
various methods.

5.1. Experiment Setup

To test the REM reconstruction performance of the proposed model and the other four
models, we selected the measured RSRP data from six airspaces (numbered REM-I, REM-II,
REM-III, REM-IV, REM_V, REM_VI) as the experimental dataset, with a transmitter power
of 12 dBm. To construct graph-structured data, each spatial domain is rasterized according
to the method in Section 3, and each grid is divided into subdomains of 5 m × 5 m and
considered as a node. The data features of each node sample are composed of longitude
and latitude coordinates at the grid, building height, altitude, and clutter type information.
There are 20 types of clutter (numbered 1–20), as shown in Table 1; the label of each node
is the measured RSRP value at that grid. The six radio environment maps are shown
in Figure 4.
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Table 1. Type and index of clutter.

Index Type of Clutter Index Type of Clutter

1 Oceans and Coastlines 11 High-rise Urban Buildings (40 m–60 m)
2 Lakes and Rivers 12 Middle and High-rise Buildings in Urban Areas (20 m–40 m)
3 Wetlands and Marshes 13 High-density Building Complex (<20 m) in Urban Areas
4 Suburban Open Areas 14 Multi-story Buildings (<20 m) in Urban Areas
5 Urban Open Areas 15 Low-density Industrial Building Areas
6 Roadside Open Areas 16 High-density Industrial Building Areas
7 Grasslands or Pastures 17 Suburbs
8 Shrub Vegetation 18 Developed Suburban Areas
9 Forest Vegetation 19 Rural Areas
10 Supertall Urban Buildings (>60 m) 20 CBD Commercial Zone
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To further explore the effectiveness of the model in cross-domain data migration,
especially when there are significant differences in the distribution of source domain data,
we have designated the sixth REM as the target object for predicting RSRP. Based on this
setting, we systematically constructed two MDA tasks. Among them, Task I focuses on
knowledge transfer from the source domains I and V to the target domain VI; Task II covers
the migration process from the source domains II, III, and IV to the target domain VI.
Through such an experimental design, we hope to comprehensively analyze the impact
of source domain data diversity on the effectiveness of cross-domain data transfer in the
model. The proportion of various clutter types in six REMs is shown in Figure 5.

The key statistical distribution parameters of these six REM RSRP data are listed in
Table 2, providing us with a comprehensive overview of the data characteristics. To further
visually display the differences in the distribution of task data between the two domains,
we have specially drawn Figure 6, which, through an intuitive graphical approach, deeply
demonstrates the uniqueness of the distribution of each REM data and the comparative
relationship between them.
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Table 2. Summary of the 6 REMs’ data.

REM ID Number of Grids
RSRP Statistical Distribution

Mean Value Variance

I 2483 −91.21 dBm 93.74 dBm
II 3327 −90.75 dBm 90.74 dBm
III 3837 −90.97 dBm 88.89 dBm
IV 3612 −88.88 dBm 86.08 dBm
V 2312 −94.72 dBm 143.45 dBm
VI 2053 −89.53 dBm 109.78 dBm
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To visually display and analyze the information sharing between each source domain
REM grid node and the target domain REM, we selected some grid nodes on each REM (as
shown in Figure 7). Figure 8 shows the correlation between these grid nodes of the five
source domain REMs and the grid nodes of the target domain REM.
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Figure 8. Visualization of feature correlation for 60 random grids between the source and target REM.

From Figure 7, we can observe the location of 60 grid nodes in REM_I, which are
located in the same street as the radiation source and closely clustered near the radiation
source, while the grid nodes collected in REM_VI are not located in the same street as
the radiation source. The visualization results in Figure 8a also reflect the low correlation
between this group of grid nodes, indicating that the grid nodes in REM_I have a weak
influence on the grid nodes in the target domain REM_VI. Looking at REM_V in Figure 7,
the grid nodes of No. 20–60 are located in another street far away from the radiation
source and the upper left direction of the radiation source. This is similar to the spatial
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characteristics of some grid nodes of No. 15–60 in the target domain REM VI. Figure 8e
also shows that these columns have more high-value points than other columns.

The visualization results in Figures 7 and 8 provide us with strong evidence that there
is more shared information between grids with similar node characteristics (spatial location,
altitude, building height, ground object type, etc.) in the source domain and the target
domain, and this shared information is crucial to the influence of radio wave propagation.

5.2. Experimental Results and Analysis

In the experiment, to generate sufficient training datasets and reduce the amount of
graph structure data in each batch, we adopted a block-based training scheme to divide the
REM region into multiple subgraphs by designing a lightweight GNN to achieve target
domain wireless environment map prediction.

Three performance evaluation metrics commonly are used for regression prediction
tasks in this paper: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and
Mean Absolute Percentage Error (MAPE), which are defined in Equation (21):

MAE =
∑
|VU

T |
n=1

∣∣∣y(T)n −ŷ(T)n

∣∣∣
|VU

T |

RMSE =

√
∑
|VU

T |
n=1

(
y(T)n −ŷ(T)n

)2

|VU
T |

MAPE = 100%
|VU

T |
∑
|VU

T |
n=1

∣∣∣∣ y(T)n −ŷ(T)n

y(T)n

∣∣∣∣
(21)

where y(T)n and ŷ(T)n denote prediction and truth of RSRP, respectively. By calculating the
prediction results of the

∣∣VU
T

∣∣ unlabeled grids according to (21), smaller values indicate
higher accuracy.

We define the ratio of the number of unlabeled grids in the target REM to the total

number of grids as the sampling rate r =
|VU

T |
|VT |

. In the experiment, we compared the
algorithm model proposed in this paper with three benchmark models, including the GNN
method that directly uses manually defined graph structure adjacency matrices [17], the
CNN architecture based on block training [46], the Kriging algorithm that uses exponential
semi variogram function [5], and the GAN-CRME module [13].

Next, we will discuss the model performance under two source domain combinations
when r = 20%.

5.2.1. Discussion on the Output Dimensions of Each Network Layer

In deep neural networks, the output dimensions of each convolutional layer pro-
foundly affect the feature extraction ability, model capacity, and expression ability of the
network model. For this purpose, we discussed the impact of the output dimensions d1
and d2 of the Word2Vec layer and GNN layer, as well as the dimension d3 of the hidden
feature vectors, on the model prediction error. In two domain adaptation tasks, we use
the grid search method to find the optimal dimension value in {8, 16, 32, 64, 128, 256}. As
shown in Figure 9, the histogram and line plots represent the MAE and RMSE values of the
GNN-MDAR model for different values of d1, d2 and d3, respectively. As the dimension
values vary, the prediction error of the model will increase or decrease. The experimental
results show that d1 = 128, d2 = 64 and d3 = 16 is reasonable. As shown in Figure 9, we
can see that the prediction results decrease or increase significantly in different dimensions
of the node embeddings. These phenomena show that 128, 64, and 16 for the dimensions of
∼
X, H, Z are reasonable, respectively.
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5.2.2. Discussion on the Effect of Trade-Off Parameters

To further investigate the three equilibrium parameters λ1, λ2 and λ3 in (20), we also
conducted comparative experiments on the impact of three factors on model performance
in two domain adaptation tasks. We manually tune the balance coefficient λ1 for semi-
supervised loss term and the coefficient λ2 of the regularization term for the difference in
grid features both at {0.3, 0.6, 0.8, 1.2, and 1.5} and {1, 2, 3, 4, 5}, respectively. As shown
in Figure 10, the reasonable setting in domain adaptation Task I is λ1 = 1.2, λ2 = 3, while
in domain adaptation Task II λ1 = 0.6, λ2 = 5. The different values of λ2 represent the
differences in feature distribution between the grids of the source and target domains,
meaning that larger λ2 values will transmit more shared information for the prediction task
in the target domain.
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The identifier λ3 is the balance parameter that controls the alignment of cross-domain
graph structures. Due to the presence of noisy data in the graph structure constructed by
grids in REM during the early stages of model training, there is uncertainty in the edge
relationships between grid nodes. Therefore, adopting a dynamic adjustment strategy
λ3 = 2

1+e−10p − 1 instead of fixed adaptation factors is more reasonable, where p is changed
linearly from 0 to 1.

5.2.3. Discussion on the Performance of Four Prediction Models

The comparison results of the completion errors of five REM completion algorithms
for the target REM_VI at a grid sampling rate of 20% are shown in Table 3. The “Datasets”
column in the table represents the raster data used for training the corresponding model.
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Table 3. Performance comparison of different methods for RSRP prediction of target REM_VI.

Methods Datasets MAE RMSE MAPE(%)

Kriging REM_VI 24.45 30.11 21.15

CNN REM_V, REM_VI 16.63 19.02 14.12

GNN
REM_V, REM_VI 15.26 18.71 13.83

REM_I, REM_V, REM_VI 15.05 17.93 13.08

GAN-CRME
REM_I, REM_V, REM_VI 11.45 16.03 14.16

REM_II, REM_III, REM_IV, REM_VI 8.71 12.53 10.24

GNN-MDAR
REM_I, REM_V→REM_VI 10.31 13.57 8.42

REM_II, REM_III, REM_IV→REM_VI 7.28 8.49 6.07

In the case of limited spatial grid data and irregular distribution, the Kriging interpo-
lation algorithm based on spatial sparsity is easy to implement, but the estimation accuracy
is also the worst. Under the premise of increasing a certain amount of data, CNNs are
significantly better than traditional methods. For the GNN model, we use the initialization
adjacency matrix to describe the graph structure information. Under conditions of limited
data volume, the predictive performance of GNN models is significantly poor. In the case
of increasing training data, the performance of the GNN model did not show a particularly
significant improvement due to the problem of noise in the artificially constructed graph
structure. Due to the more diverse dataset distribution in Task II, the GAN-CRME exhib-
ited a higher RMSE performance of 1.07 dB on the dataset of Task I. Additionally, as the
GAN-CRME is incapable of addressing multipath fading and long-distance shadowing, its
overall performance is somewhat inferior to that of GNN-MDAR.

In the GNN-MDAR framework, the spatial distribution alignment module addresses
the issue of distribution skew in the dataset. Concurrently, the graph structure alignment
module also plays a role in excavating more precise shared spatial graph structure features.
The experimental outcomes from two domain adaptation tasks in Table 3 indicate that
GNN-MDAR is capable of achieving superior REM reconstruction performance under the
limited target domain data.

In the experiment, we used sampling rates of (5%, 10%, 15%, 20%, 25%, 30%, 40%,
50%, 60%, 70%) for experimental analysis. As shown in Figure 11, with the increase in
grid sampling rate, the number of stations containing RSRP data also increases, positively
influencing the accuracy of the four methods. However, compared to deep GNN, the
improvement effect of graph convolutional networks is not significant, mainly due to the
noise issues present in the initialized graph structure data. As the sampling grid in the
target domain increases, the data generator of the GAN-CRME can learn a more accurate
representation of the target domain data distribution. Consequently, the overall predictive
performance of the model is enhanced. In contrast, the performance of GNN-MDAR
remains relatively stable with an increase in sampling rates. This stability is due to the
GNN-MDAR model’s primary reliance on the shared graph structural information from
multiple source domains and the target domain. Therefore, compared to other models, the
GNN-MDAR model exhibits superior overall generalization capabilities. A comparative
analysis of the map reconstruction effects among five algorithms (r = 20%) is presented in
Figure 12. Visual inspection reveals that our proposed model exhibits superior performance
compared to the other four models.
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6. Conclusions and Future Works

In this paper, we propose a multi-source domain adaptive radio map construction
scheme GNN-MDAR based on GNN, which aims to solve the challenge of the scarcity of
spectrum data in the target REM region RSRP prediction task. This method adopts the
principle of graph structure information bottleneck, realizes cross-domain graph structure
alignment by variational reasoning, and ensures the compression and aggregation of data
with the same structure in the latent feature space of the raster. This alignment strategy
can improve the prediction performance of the multi-domain graph data distribution drift
adaptive method in regression tasks. At the same time, spatial distribution matching
is proposed to improve the generalization ability of the GNN-MDAR model through
cross-domain grid feature distribution matching, which is helpful to transfer knowledge



Sensors 2024, 24, 2523 18 of 20

from source REM with sufficient data to target REM with limited data. In addition, we
develop the loss function related to the MDA REM prediction task and train the depth
neural network by optimizing the loss function to solve the challenging problem of the
MDA algorithm in the regression task. We use the RSRP data of six measured radio
environments to compare the proposed model and the baseline model. Numerical results
show that the proposed method is effective and robust to transfer learning. Specifically,
through quantitative analysis, we demonstrate that our model outperforms the GAN-
CRME, which achieves the best results in REM reconstruction among baseline models.
When compared with GAN-based reconstruction models, our proposed model achieves
an average improvement of 1.9dB in the RMSE metric under low grid sampling rates
(r = 5–25%) in the target domain. In future work, we are committed to the research and
verification of this method in the 3D space environment and carry out further research
under the conditions that the number of radio monitoring stations is more limited and the
quality of spectrum data collection is worse.
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3. Üreten, S.; Yongaçoğlu, A.; Petriu, E. A comparison of interference cartography generation techniques in cognitive radio networks.

In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012;
pp. 1879–1883.

4. Romero, D.; Kim, S.-J. Radio Map Estimation: A data-driven approach to spectrum cartography. IEEE Signal Process. Mag. 2022,
39, 53–72. [CrossRef]

5. Boccolini, G.; Hernandez-Penaloza, G.; Beferull-Lozano, B. Wireless sensor network for Spectrum Cartography based on
Kriging interpolation. In Proceedings of the 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio
Communications—(PIMRC), Sydney, NSW, Australia, 9–12 September 2012; pp. 1565–1570.

6. Hamid, M.; Beferull-Lozano, B. Non-parametric spectrum cartography using adaptive radial basis functions. In Proceedings of
the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March
2017; pp. 3599–3603.

7. Dall’Anese, E.; Bazerque, J.A.; Giannakis, G.B. Group sparse Lasso for cognitive network sensing robust to model uncertainties
and outliers. Phys. Commun. 2012, 5, 161–172. [CrossRef]

8. Ding, G.; Wang, J.; Wu, Q.; Yao, Y.-D.; Song, F.; Tsiftsis, T.A. Cellular-Base-Station-Assisted Device-to-Device Communications in
TV White Space. IEEE J. Sel. Areas Commun. 2016, 34, 107–121. [CrossRef]

9. Tang, M.; Ding, G.; Wu, Q.; Xue, Z.; Tsiftsis, T.A. A Joint Tensor Completion and Prediction Scheme for Multi-Dimensional
Spectrum Map Construction. IEEE Access 2016, 4, 8044–8052. [CrossRef]

10. Zhang, G.; Fu, X.; Wang, J.; Hong, M. Coupled Block-term Tensor Decomposition Based Blind Spectrum Cartography. In Proceedings of
the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019.

11. Shrestha, S.; Fu, X.; Hong, M. Deep Spectrum Cartography: Completing Radio Map Tensors Using Learned Neural Models. IEEE
Trans. Signal Process. 2022, 70, 1170–1184. [CrossRef]

https://doi.org/10.3390/s23187815
https://doi.org/10.1109/JSTSP.2010.2093210
https://doi.org/10.1109/MSP.2022.3200175
https://doi.org/10.1016/j.phycom.2011.07.005
https://doi.org/10.1109/JSAC.2015.2452532
https://doi.org/10.1109/ACCESS.2016.2627243
https://doi.org/10.1109/TSP.2022.3145190


Sensors 2024, 24, 2523 19 of 20

12. Han, X.; Xue, L.; Shao, F.; Xu, Y. A Power Spectrum Maps Estimation Algorithm Based on Generative Adversarial Networks for
Underlay Cognitive Radio Networks. Sensors 2020, 20, 311. [CrossRef]

13. Zhang, Z.; Zhu, G.; Chen, J.; Cui, S. Fast and Accurate Cooperative Radio Map Estimation Enabled by GAN. arXiv 2024,
arXiv:2402.02729.

14. Levie, R.; Yapar, Ç.; Kutyniok, G.; Caire, G. RadioUNet: Fast Radio Map Estimation with Convolutional Neural Networks. IEEE
Trans. Wirel. Commun. 2021, 20, 4001–4015. [CrossRef]

15. Teganya, Y.; Romero, D. Deep Completion Autoencoders for Radio Map Estimation. IEEE Trans. Wirel. Commun. 2022, 21,
1710–1724. [CrossRef]

16. Shen, Y.; Zhang, J.; Song, S.H.; Letaief, K.B. Graph Neural Networks for Wireless Communications: From Theory to Practice.
IEEE Trans. Wirel. Commun. 2023, 22, 3554–3569. [CrossRef]

17. Lee, M.; Yu, G.; Dai, H.; Li, G.Y. Graph Neural Networks Meet Wireless Communications: Motivation, Applications, and Future
Directions. IEEE Wirel. Commun. 2022, 29, 12–19. [CrossRef]

18. Eisen, M.; Ribeiro, A. Large Scale Wireless Power Allocation with Graph Neural Networks. In Proceedings of the 2019 IEEE 20th
International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2–5 July 2019;
pp. 1–5.

19. Naderializadeh, N.; Eisen, M.; Ribeiro, A. Wireless power control via counterfactual optimization of graph neural networks. In
Proceedings of the IEEE 21st International Workshop on Signal Processing Advances in WirelessCommunications (SPAWC),
Atlanta, GA, USA, 26–29 May 2020; pp. 1–5.

20. Zhao, S.; Jiang, X.; Jacobson, G.; Jana, R. Cellular network traffic prediction incorporating handover: A graph convolutional
approach. In Proceedings of the 17th Annual IEEE International Conference on Sensing, Communication, and Networking
(SECON), Como, Italy, 22–25 June 2020; pp. 1–9.

21. Chen, G.; Liu, Y.; Zhang, T.; Zhang, J.; Guo, X.; Yang, J. A Graph Neural Network Based Radio Map Construction Method for
Urban Environment. IEEE Commun. Lett. 2023, 27, 1327–1331. [CrossRef]

22. Bufort, A.Y.; Lebocq, L.; Cathabard, S. Data-Driven Radio Propagation Modeling using Graph Neural Networks. TechRxiv 2023.
[CrossRef]

23. Saenko, K.; Kulis, B.; Fritz, M.; Darrell, T. Adapting Visual Category Models to New Domains. In European Conference on Computer
Vision; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6314, pp. 213–226.

24. Jiang, J.; Ji, Y.; Wang, X.; Liu, Y.; Wang, J.; Long, M. Regressive Domain Adaptation for Unsupervised Keypoint Detection. In
Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25
June 2021; pp. 6776–6785.

25. Hoffman, M.; Blei, D.M.; Wang, C.; Paisley, J. Stochastic Variational Inference. Comput. Sci. 2012, 14, 1303–1347.
26. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada,
8–13 December 2014; Volume 2, pp. 2672–2680.

27. Qu, H.; Xu, L.; Cai, Y.; Foo, L.G.; Liu, J. Heatmap Distribution Matching for Human Pose Estimation. arXiv 2022, arXiv:2210.00740.
28. Zhang, C.; Cai, Y.; Lin, G.; Shen, C. DeepEMD: Few-Shot Image Classification With Differentiable Earth Mover’s Distance and

Structured Classifiers. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Seattle, WA, USA, 13–19 June 2020; pp. 12200–12210.

29. Peng, H.; Sun, M.; Li, P. Optimal Transport for Long-Tailed Recognition with Learnable Cost Matrix. In Proceedings of the
International Conference on Learning Representations, Virtual, 25–29 April 2022.

30. Schulter, S.; Vernaza, P.; Choi, W.; Chandraker, M. Deep Network Flow for Multi-object Tracking. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2730–2739.

31. de Mathelin, A.; Richard, G.; Deheeger, F.; Mougeot, M.; Vayatis, N. Adversarial Weighting for Domain Adaptation in Regression.
In Proceedings of the 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), Washington, DC,
USA, 1–3 November 2021; pp. 49–56.

32. Chen, X.; Wang, S.; Wang, J.; Long, M. Representation Subspace Distance for Domain Adaptation Regression. In Proceedings of
the 38th International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; Volume 139, pp. 1749–1759.

33. Kutbi, M.; Peng, K.-C.; Wu, Z. Zero-Shot Deep Domain Adaptation with Common Representation Learning. IEEE Trans. Pattern
Anal. Mach. Intell. 2022, 44, 3909–3924. [CrossRef] [PubMed]

34. Wang, B.; Mendez, J.A.; Cai, M.B.; Eaton, E. Transfer learning via minimizing the performance gap between domains. In
Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14
December 2019; pp. 10645–10655.

35. Singh, A.; Chakraborty, S. Deep Domain Adaptation for Regression. In Development and Analysis of Deep Learning Architectures;
Pedrycz, W., Chen, S.-M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 91–115.

36. NT, H.; Maehara, T.; Murata, T. Revisiting Graph Neural Networks: Graph Filtering Perspective. In Proceedings of the 2020 25th
International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 8376–8383.

37. Zhou, Z.; Meng, L.; Tang, C.; Zhao, Y.; Chen, W. Visual Abstraction of Large Scale Geospatial Origin-Destination Movement Data.
IEEE Trans. Vis. Comput. Graph. 2019, 25, 43–53. [CrossRef] [PubMed]

https://doi.org/10.3390/s20010311
https://doi.org/10.1109/TWC.2021.3054977
https://doi.org/10.1109/TWC.2021.3106154
https://doi.org/10.1109/TWC.2022.3219840
https://doi.org/10.1109/MWC.001.2200023
https://doi.org/10.1109/LCOMM.2023.3260272
https://doi.org/10.36227/techrxiv.22820273.v1
https://doi.org/10.1109/TPAMI.2021.3061204
https://www.ncbi.nlm.nih.gov/pubmed/33621167
https://doi.org/10.1109/TVCG.2018.2864503
https://www.ncbi.nlm.nih.gov/pubmed/30130199


Sensors 2024, 24, 2523 20 of 20

38. Wen, X.; Fang, S.; Xu, Z.; Liu, H. Joint Multidimensional Pattern for Spectrum Prediction Using GNN. Sensors 2023, 23, 8883.
[CrossRef] [PubMed]

39. Chen, D.; Zhu, H.; Yang, S.; Dai, Y. Unsupervised multi-source domain adaptation with graph convolution network and
multi-alignment in mixed latent space. Signal Image Video Process. 2023, 17, 855–863. [CrossRef]

40. Sun, Q.; Li, J.; Peng, H.; Wu, J.; Fu, X.; Ji, C.; Yu, P.S. Graph Structure Learning with Variational Information Bottleneck. arXiv
2021, arXiv:2112.08903. [CrossRef]

41. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 1st ed.; Tsinghua University Press: Beijing, China, 2006.
42. Yoo, J.; Jeon, H.; Jung, J.; Kang, U. Accurate Node Feature Estimation with Structured Variational Graph Autoencoder. In

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18
August 2022.

43. Du, Y.; Wang, J.; Feng, W.; Pan, S.; Qin, T.; Xu, R.; Wang, C. AdaRNN: Adaptive Learning and Forecasting of Time Series. In
Proceedings of the 30th ACM International Conference on Information and Knowledge Management, New York, NY, USA, 1–5
November 2021; pp. 402–411.

44. Gretton, A.; Sriperumbudur, B.; Sejdinovic, D.; Strathmann, H.; Kenji, F. Optimal kernel choice for large-scale two-sample tests. In
Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–6 December
2012; pp. 1205–1213.

45. Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-Adversarial
Training of Neural Networks. In Domain Adaptation in Computer Vision Applications; Csurka, G., Ed.; Springer International
Publishing: Cham, Switzerland, 2017; pp. 189–209.

46. Hashimoto, R.; Suto, K. SICNN: Spatial Interpolation with Convolutional Neural Networks for Radio Environment Mapping. In
Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka,
Japan, 19–21 February 2020; pp. 167–170.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s23218883
https://www.ncbi.nlm.nih.gov/pubmed/37960582
https://doi.org/10.1007/s11760-022-02298-w
https://doi.org/10.1609/aaai.v36i4.20335

	Introduction 
	Related Works 
	Distribution Matching 
	Domain Adaptation for Regression 

	Preliminaries 
	Graph Structure Representation for REM 
	Graph Neural Networks 
	Problem Definition 

	Methods 
	Graph Structure Learner 
	Distribution Learner of Latent Feature 
	Graph Structure Alignment 
	Spatial Distribution Matching 
	Loss Function for Regression 
	Overall Loss Function 

	Experiments 
	Experiment Setup 
	Experimental Results and Analysis 
	Discussion on the Output Dimensions of Each Network Layer 
	Discussion on the Effect of Trade-Off Parameters 
	Discussion on the Performance of Four Prediction Models 


	Conclusions and Future Works 
	References

