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Abstract: The prevalence of Low Probability of Interception (LPI) and Low Probability of Exploitation
(LPE) radars in contemporary Electronic Warfare (EW) presents an ongoing challenge to defense
mechanisms, compelling constant advances in protective strategies. Noise radars are examples of
LPI and LPE systems that gained substantial prominence in the past decade despite exhibiting a
common drawback of limited Doppler tolerance. The Advanced Pulse Compression Noise (APCN)
waveform is a stochastic radar signal proposed to amalgamate the LPI and LPE attributes of a random
waveform with the Doppler tolerance feature inherent to a linear frequency modulation. In the
present work, we derive closed-form expressions describing the APCN signal’s ambiguity function
and spectral containment that allow for a proper analysis of its detection performance and ability to
remove range ambiguities as a function of its stochastic parameters. This paper also presents a more
detailed address of the LPI/LPE characteristic of APCN signals claimed in previous works. We show
that sophisticated Electronic Intelligence (ELINT) systems that employ Time Frequency Analysis
(TFA) and image processing methods may intercept APCN and estimate important parameters of
APCN waveforms, such as bandwidth, operating frequency, time duration, and pulse repetition
interval. We also present a method designed to intercept and exploit the unique characteristics
of the APCN waveform. Its performance is evaluated based on the probability of such an ELINT
system detecting an APCN radar signal as a function of the Signal-to-Noise Ratio (SNR) in the ELINT
system. We evaluated the accuracy and precision of the random variables characterizing the proposed
estimators as a function of the SNR. Results indicate a probability of detection close to 1 and show
good performance, even for scenarios with a SNR slightly less than −10 dB. The contributions in this
work offer enhancements to noise radar capabilities while facilitating improvements in ESM systems.

Keywords: noise radar; APCN; electronic support measures; time-frequency analysis

1. Introduction

Electronic Intelligence systems for Electronic Warfare rely on the detection, identifi-
cation, and further processing of radar signals [1]. The advances in the semiconductor
industry over the last decade enabled huge breakthroughs in ELINT systems. Indeed,
modern equipment can implement high-frequency, high-bandwidth digital receivers with
complex signal processing algorithms. An example is jammers capable of reproducing
radar signal characteristics after extracting them. The design of Low Probability of Inter-
ception and Low Probability of Exploitation radars has attracted significant attention in
the current technological race. As a result, the transmission of random or pseudo-random
signals has gained considerable notoriety within the radar system community over the
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last few years [2–10]. Commonly known as “noise radars”, they manage to achieve LPI
by employing pulse compression in the reception, along with a proper choice of transmit-
ted waveform stochastic properties [2,11], LPE [9,12,13], and low sidelobe levels, while
suppressing range ambiguity.

Many different approaches have been proposed in the literature to generate wave-
forms characterized by stochastic processes that better fulfill these radar system require-
ments [5,14–18]. Still, they all suffer from low Doppler tolerance [19], an inherent charac-
teristic of traditional noise radars that hinders their use in several applications, including
surveillance. Researchers have proposed alternative approaches to bypass such a weakness
while preserving the LPI and the LPE properties of random waveforms. Included in this
group is the so-called Advanced Pulse Compression Noise (APCN) waveform [3,20,21],
which combines a random signal with a Doppler-tolerant Linear Frequency Modulation
(LFM) waveform. The random signal may consist of amplitude terms, phase terms, or both.

In [22], we expanded the discussion over the performance of APCN waveforms. We
derived closed-form expressions to characterize the APCN’s narrowband ambiguity func-
tion, the power spectral density, and the spectral containment, thus accounting for random
components in the amplitude and phase of the transmitted signal. Furthermore, we iden-
tified and addressed a significant drawback in employing the APCN signal for detecting
slow-moving targets. In the present work, we extend the results and findings of [22] by
investigating the same properties for APCN signals with Phase-Only random components.
Furthermore, we examine APCN’s exploitation of power transmission through the Peak-to-
Average Power Ratio, its ability to mitigate range ambiguities, detect uncooperative targets,
and determine their range and radial velocity in real-time. These factors are crucial in radar
waveform design, particularly in surveillance applications.

From the perspective of an ESM system, as discussed in [20], employing an APCN
signal with a particular level of phase randomness and constant amplitude introduces a
challenge in accurately discerning the waveform characteristics for an intercept-receiver
system. However, owing to significant recent advancements in emitter detection and
exploitation techniques, modern ESM systems and traditional spectral analysis methods
can generate Time-Frequency Analysis maps, as mentioned in [6,11,23]. As a result, it has
become feasible to ascertain the waveform characteristics of deterministic LPI/LPE radar
signal modulations.

References [24–28] introduce techniques for conducting TFA and extracting modula-
tion parameters from deterministic signals assumed LPI/LPE. However, these techniques
have a drawback: the extraction process relies exclusively on visual analysis. This depen-
dency on human interpretation of TFA results hampers the effectiveness of non-real-time
EW receivers. In contrast, the works in [29–31] propose autonomous extraction methods,
albeit still primarily designed for deterministic signals. Nonetheless, a significant con-
tribution of these works is in developing a technique that leverages image processing
methodologies to autonomously extract characteristics of a noise radar that employs APCN,
allegedly LPI, as discussed in [3,20]. Our analysis, however, considers varied signal-to-noise
ratio levels in an ESM receiver chain to ensure robust and satisfactory results. In addition,
it examines APCN waveforms featuring phase and amplitude random components, in
contrast to the approach in [3] that focuses exclusively on phase randomness. Indeed,
the extended configuration augments the level of randomness in APCN waveforms and
enhances their LPI and LPE characteristics, as corroborated by the authors of the present
work in [22].

The rest of this paper unfolds as follows. Section 2 explores noise radar operations
focusing on the APCN waveform as the transmitting signal in surveillance applications.
Section 3 delves into the modeling of an ESM digital system, offering an in-depth analysis of
the APCN radar waveform from the perspective of an intercept–receiver system. Moreover,
the section introduces a methodology designed to detect and extract the distinctive charac-
teristics of APCN signals. It also includes a comprehensive discussion of the performance
evaluations of this methodology, laying out the grounds for conclusions regarding the
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LPI and LPE potential of the APCN waveform in an EW scenario. Section 4 presents the
conclusions and summarizes the key findings and insights in this paper.

2. Advanced Pulse Compression Noise Radars

In traditional noise radar systems, the transmit signal is characterized by a stochastic
process, s(t) [2]. Consequently, the corresponding matched filter outputs, relative to
the pulse compression architectures, are all characterized by complex random processes.
Therefore, a proper analysis of noise radars must rely on probabilistic tools. That is the case
of the narrowband ambiguity function of a random signal, given as [32]

χs̃(τ, fD) =
∫ ∞

−∞
s̃(t) s̃∗(t − τ) e−j2π fDtdt, (1)

where s̃(t) is the complex envelope of s(t), fD is the Doppler frequency, and τ is the time
delay. Assuming s̃(t) to be Wide-Sense Stationary (WSS) and time-limited with duration τs,
and that fD is deterministic, the expected value of the ambiguity function of Equation (1)
simplifies to [5,19]

E[χs̃(τ, fD)] = τs Rs̃(τ) sinc( fDτs); −τs ≤ τ ≤ τs, (2)

where Rs̃(τ) = E[s̃(t) s̃∗(t − τ)] is the autocorrelation function of the complex stochastic
process s̃(t) [33].

The near thumbtack format depicted in Equation (2) shows that the expected range
and Doppler profiles in noise radar systems are independent functions; therefore, no
range-Doppler coupling is expected in noise radars, inhibiting their usage in surveillance
applications, for example [34].

To overcome the no range-Doppler coupling limitation while preserving the random
nature of the transmit signal, the authors in [3,20,21] proposed the Advanced Pulse Com-
pression Noise (APCN) radar architecture. APCN waveforms combine a deterministic
Linear Frequency Modulation signal with a stochastic component. Its complex envelope is
given by [20,22]

s̃(t) =
√

P a(t) ej[θ(t)+κ ϕ(t)], (3)

where the samples of the random process a(t) have a Rayleigh distribution, i.e., p(a) =
(a/α2) e−a2/α2

, with a ≥ 0 and α being the scale parameter. Moreover, ϕ(t) is uniformly
distributed in the interval (0, 2π] and θ(t) represents the LFM deterministic component.
The signal’s complex envelope mean power, P, is assumed, with no loss of generality, to
be unitary throughout the present work. We can rewrite Equation (3) as s̃(t) = s̃r(t) s̃c(t),
where s̃r(t) = a(t) ejκϕ(t) is the transmit signal random component, with 0 ≤ κ ≤ 1, and
s̃c(t) = ejθ(t) is the LFM waveform envelope, with bandwidth βs̃c .

In modern radar systems, the matched filter is implemented digitally. Therefore, we
consider the discrete-time case in our analysis and define

s̃(n) = s̃(t)|t=nT
,

where n is the discrete-time index and T = 1/ fs, with fs being the sampling frequency.
We also assume that τ = τ̄T, where τ̄ corresponds to the discrete-time delay in samples.
Moreover, τs = τ̄sT, with τ̄s being the number of samples in a pulse signal with duration τs.

We show in [22] that the APCN narrowband ambiguity function is such that

E[χs̃(τ̄, fD)] = Rs̃r (τ̄) χs̃c(τ̄, fD); τ̄ ≤ |τ̄s|, (4)

where Rs̃r (τ̄) is the autocorrelation sequence of the transmit signal random component
given as

Rs̃r (τ̄) = α2
(

1 − cos 2κπ

4κ2π

)
+

[
2α2 − α2

(
1 − cos 2κπ

4κ2π

)]
δ(τ̄), (5)
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where δ(τ̄) is the Dirac delta sequence and χs̃c(τ̄, fD) in (4) is the ambiguity function of
s̃c(t) defined as

χs̃c(τ̄, fD) =

(
1 − |τ̄|

τ̄s

)∣∣∣∣∣∣
sin

[
π
(

fD
fs
+ µ

f 2
s

τ̄
)
(τ̄s − |τ̄|)

]
π
(

fD
fs
+ µ

f 2
s

τ̄
)
(τ̄s − |τ̄|)

∣∣∣∣∣∣, τ̄ ≤ |τ̄s| , (6)

wherein µ = βs̃c /τs.
Figure 1a illustrates the range profile for different values of Doppler shifts, namely

fD = 0, fD = 0.55/τs, fD = 0.7/τs, and fD = 1.2/τs, of an APCN normalized ambiguity
function, with κ = 0.5 and α = 1, and considering βs̃c = 30 MHz and τs = 50 µs. The
sampling frequency was assumed to be fs = 1 GHz. Figure 1b shows the zero-delay cut
behavior (Doppler profile).

Figure 1. Normalized ambiguity function (in dB) considering a single pulse realization of an APCN
waveform (κ = 0.5 and α = 1): (a) range profile (Doppler cuts); (b) Doppler profile (zero-delay cut).

Despite being Doppler tolerant, APCN waveforms exhibit an anomaly at zero delays,
potentially impairing radar performance in the presence of slow-moving targets. A closer
inspection of Equations (4)–(6) evidences the presence of a sinc function at the pulse
compression output whose maximum peak exists at fD/ f s + µ τ̄/ f 2

s = 0. The sinc function
is attenuated by a factor L = H (1 − fD/βs̃c), for τ̄ ̸= 0, and amplified by A = 2α2, for
τ̄ = 0, with H = α2[1 − cos (2κπ)]/4κ2π, as a result of Equation (5). Additionally, and
analogously to the LFM case, it presents a range measurement error ϵR = −c fD τs/2βs̃c ,
that can be eliminated [34].

Figure 2 illustrates one realization of the APCN random component autocorrelation
sequence (see Equation (5)), considering a signal s̃r(n) composed of a random amplitude
with scale parameter α = 1 and a random phase uniformly distributed in the interval
(0, 2κπ], for different values of κ. Here, we can see that the attenuation on the APCN
range profile increases with κ for τ̄ ̸= 0. The implication is that when a target exhibits
a Doppler shift the peak of the range profile shifts away from the origin because of the
Doppler-tolerant behavior of the LFM component, making it susceptible to attenuation.
Indeed, this behavior reduces the SNR, diminishing the system’s Probability of Detection.

The Dirac delta component in Equation (5) is always present for τ̄ = 0. For slow-
moving targets, i.e., those that give rise to a Doppler shift above a threshold greater than
0.55/τs, in this specific case, the spike falls outside the range resolution, given by the sinc
function main lobe’s 3 dB width, but still exhibits enough power to pose as another target’s
response. Thus, the contribution of the noisy component to the matched filter output can
lead to target misdetection or false alarms due to misinterpretations.
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Figure 2. Autocorrelation sequence of the APCN complex random component for different values of
κ, considering α = 1.

In [22], the authors proposed a method to eliminate the spike at τ̄ = 0 by correlating the
received signal with the deterministic component of the APCN waveform instead of using the
transmit signal’s replica in a pulse compression architecture. Figure 3 presents a simplified block
diagram of the proposed system implemented in a digital receiver signal processing chain.
This modification makes it possible to eliminate the impulse anomaly at τ̄ = 0, leaving only
the deterministic component attenuation (1 − fD/βs̃c) due to the Doppler mismatch. In
this diagram, index “i” represents the i-th generated sample function of a stochastic process
in the transmission of the i-th pulse, and ωD = 2π fD/ fs is the digital Doppler frequency.
We adopted the Hann window to weigh the replica due to its demonstrated advantages in
minimizing the integrated side-lobe ratio, which favors range resolution [21].

Figure 3. Proposed simplified radar block diagram to obtain the matched filter output pulse-by-pulse,
where (*) is the complex conjugate operation.

In light of the physics governing the phenomenon, for simplification and without
sacrificing generality, let us consider a received signal r̃(t) = s̃(t− T0)e−j2π fDt from a scatter
located at R0 = c/2T0, with c being the vacuum light speed. The expected value of the
pulse compression output resulting from the proposed architecture [22] (see Figure 3) is
thus given by

E[ỹ(τ)] = E
[∫ ∞

−∞

[
s̃r(t − T0)s̃c(t − T0) e−j2π fDt

]
s̃∗c (t − τ)dt

]
. (7)
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Since a(t) and ϕ(t) are WSS and independent process [20], Equation (7) can then be
written as [33]

E[ỹ(τ)] = E[a(t)]E
[
ejκϕ(t)

]
χs̃c(τ − T0, fD); T0 − τs ≤ τ ≤ T0 + τs, (8)

which, in turn, can be shown to reduce to

E[ỹ(τ)] = α

√
π

2

(
sin κπ

κπ

)
χs̃c(τ − T0, fD); T0 − τs ≤ τ ≤ T0 + τs. (9)

As stated in Equation (9), the output of our proposed architecture [22] presents the
shape of the sinc function relative to the LFM matched filter component, attenuated by a

factor B = α
√

π
2
( sin κπ

κπ

)
. Therefore, the pulse compression gain is compromised, and the

proposed technique becomes effective only when the chosen APCN random component
parameters are such that B is not so high as to start jeopardizing the SNR at the detector.
Figure 4a, illustrates the normalized matched filter output of a conventional pulse compres-
sion radar architecture based on filtering the received APCN signal (α = 1 and κ = 0.5)
with a transmit replica (proposed in [21]). Note the attenuation of the normalized sinc
main lobe, given by L + A, for τ̄ ̸= 0, as derived previously. Note further that, since the
attenuation is near the same for all τ̄ ̸= 0, the peak side-lobe (PSL) ratio achieved with the
LFM signal is preserved and remains close to 13 dB [34]. These observations demonstrate
that APCN signals do not present a PSL ratio close to the well-known time-bandwidth
product inherent to traditional noise radar waveforms.

Figure 4b illustrates the normalized pulse compression output of our proposed archi-
tecture, considering targets with the same Doppler shifts as in Figure 4a. Note that the
anomaly was eliminated for all analyzed Doppler shifts, minimizing the possibility of false
targets. The PSL ratio also remained close to 13 dB.

(a) (b)
Figure 4. Pulse compression output for targets with different Doppler shifts: (a) considering the
receiver system configuration based on filtering the received APCN signal with a transmit replica;
(b) considering the receiver system using our proposal configuration.

The stochastic component a(t) in Equation (3) increases the transmit signal’s degree of
randomness, potentially enhancing its LPI and LPE properties. Nevertheless, it introduces
a significant drawback to the system related to the limited exploitation of the power
transmitter. Such a drawback is evident in the reduction in the the Peak-to-Average Power
Ratio (PAPR) of the system, given by [6,35]

PAPR =
max{n} |s̃(n)|2

1
τ̄s

τ̄s
∑

n=1
|s̃(n)|2

. (10)

Signals characterized by a consistent amplitude envelope exhibit a PAPR of 1, ren-
dering them highly power-efficient. These signals enable the driving of power amplifiers
close to saturation, maximizing power utilization during transmission. Any departure
from the unity amplitude level results in an energy loss within the correlation main lobe,
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ultimately reducing the peak response level. The energy loss can be interpreted as an
SNR degradation, leading to a decline in detection performance. Define the unavoidable
decrease in performance as [6,13]

SNRLoss = −10 log10(PAPR). (11)

As an alternative to amplitude modulation, the community has devoted significant
effort to deriving closed-form expressions of random frequency-modulated signals for
radar applications better suited for systems requiring high power efficiency. Assuming
s̃PO

r (t) = ejκϕ(t), the autocorrelation sequence of the random component of the transmit
Phase-Only (PO) APCN signal is given by [22]

Rs̃PO
r
(τ̄) =

1 − cos 2κπ

2κ2π2 +

(
1 − 1 − cos 2κπ

2κ2π2

)
δ(τ̄). (12)

Analogously to Figure 1a, Figure 5a illustrates the Phase-Only APCN normalized range
profile, considering different values of Doppler shifts ( fD = 0, fD = 0.55/τs, fD = 0.7/τs,
and fD = 1.2/τs), κ = 0.5, βs̃c = 30 MHz, and τs = 50µs. The sampling frequency was also
assumed to be fs = 1 GHz. Figure 5b shows the zero-delay cut behavior, nearly the same
as in Figure 1b.

Figure 5. Normalized ambiguity (in dB) function considering a single pulse realization of a Phase-Only
APCN waveform (κ = 0.5): (a) range profile (Doppler cuts); (b) Doppler profile (zero-delay cut).

In Figure 5a, it is noteworthy that the power level difference between the zero-delay
(τ = 0 µs) spike and the main lobe of the sync function is reduced by a factor of π/4 compared
to Figure 1a. When converted to dB, this difference becomes 20 log10(π/4) = 2.0982 dB. The
reduction helps mitigate the adverse effects of such anomalies on the system’s detection perfor-
mance. Additionally, Figure 6 illustrates the relationship between SNRLoss and various PAPR
values, considering different scale parameters α associated with randomness in amplitude. A
value of κ = 0.5 is assumed. Notably, the Phase-Only (constant amplitude) APCN waveform
achieves a PAPR < 2, which is acceptable in noise radar applications without substantial
degradation in detection performance (SNRLoss < 3 dB) [6]. Furthermore, according to [13],
when the random amplitude is employed, the resultant noisy waveform has a PAPR of around
10 (or greater), with reduced transmitted energy.
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Figure 6. SNR loss versus PAPR assuming κ = 0.5 and different scale parameters α.

Another property that we evaluated in dealing with random transmit signals is related
to its spectral containment, which usually is not efficient. The analysis of the transmit
signal’s Power Spectral Density (PSD), Γs̃(ω), given by the Discrete-Time Fourier Transform
(DTFT) of its autocorrelation sequence, Rs̃(τ̄) = E[χs̃(τ̄, 0)] [33,36], allows for the evaluation
of its spectral containment and the derivation of closed-form expressions describing its
bandwidth. Considering Equation (5), the APCN PSD is given by

Γs̃(ω) = F{H χs̃c(τ̄, 0)}+ (2α2 − H)F{δ(τ̄)} ∗ Γs̃c(ω), (13)

where ∗ and F{·} are, respectively, the convolution and DTFT operators, H = α2[1 −
cos (2κπ)]/4κ2π, as previously defined, and Γs̃c(ω) is the PSD of Rs̃c(τ̄) = χs̃c(τ̄, 0).

Expanding Equation (13) and knowing that F{δ(n)} = 1 yields

Γs̃(ω) = H Γs̃c(ω) + (2α2 − H)
1

2π

π∫
−π

Γs̃c(ς) dς

︸ ︷︷ ︸
1

. (14)

Note that the integral on the right-hand side represents, in the digital frequency
domain (−π ≤ ω ≤ π), the periodic sum of the samples of a complex envelope linear chirp
signal with unitary power. Consequently, according to Parseval’s Theorem [36], it evaluates
to one. Finally, Equation (14) becomes

Γs̃(ω) = H Γs̃c(ω) + (2α2 − H), |ω| ≤ π. (15)

From the closed-form transmits signal’s PSD in (15), there are two widespread ap-
proaches to define a signal’s bandwidth: the 3 dB bandwidth (β3dB) and the portion of the
spectrum where p% of the total power is concentrated (βp%) [5]. Concerning the former
and according to Equation (15), β3dB can be considered the same βs̃c of the APCN signal
deterministic LFM component [3]. Nevertheless, the percentage of the total power within
βs̃c reduces as κ increases, leading to the rise of βp%, which can compromise the APCN
waveform’s performance in practical applications.

The percentage of total power within βs̃ is given by the integral of Γs̃(ω) in Equation (15)
over the interval [−πβs̃c / fs, πβs̃c / fs]; hence

%Pβs̃ =

πβs̃c / fs∫
−πβs̃c / fs

[
H Γs̃c(ω) + (2α2 − H)

]
dω

= H

 πβs̃c / fs∫
−πβs̃c / fs

Γs̃c(ω) dω

+ (2α2 − H)
2πβs̃c

fs
.

(16)
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Practical situations require a higher βs̃c τs product to well-define the spectrum of an
LFM waveform [34]. Owing to the maximum total power contained within a rectangular
bandwidth shape, there is minimal spreading of the LFM spectrum. Consequently, the
integral in Equation (16) can be approximated as one, simplifying to

%Pβs̃ = H + 2π(2α2 − H)
βs̃c

fs
. (17)

In turn, βp% can be shown as in

βp% =
(p − H) fs

2π(2α2 − H)
, (18)

where p is the desired percentage power within βs̃.
A similar derivation applies to the Phase-Only APCN waveform. Analogously to the

previous formulation, one can show that the percentage of total power within βs̃ when the
APCN signal’s amplitude is constant is given by

%PPO
βs̃

= D + 2π(1 − D)
βs̃c

fs
, (19)

where D = [1 − cos (2κπ)]/2κ2π2. Thus, it be shown that βp% becomes

βPO
p% =

(p − D) fs

2π(1 − D)
, (20)

where p is the desired percentage power within βs̃.
Figure 7 presents the behavior of %Pβs̃ for different values of κ, assuming constant

and random discrete amplitude a(n). Note that the variability in phase randomness
directly impacts the mean power of the APCN transmitted signal within the desired
bandwidth. Moreover, introducing randomness in amplitude creates a greater challenge in
maintaining the transmit waveform spectral confinement. Consequently, the RF transmitter,
receiver, and the entire signal processing chain must account for these effects to prevent
signal distortions or a misformulation of the radar range equation, ultimately leading to a
degradation in detection performance.

Figure 7. Relationship between % of total power in bandwidth and κ, assuming constant and random
amplitude (α = 1) modulation.

As a rule of thumb, radar system design good practice recommends that the percentage
of power within the designated bandwidth should be close to 90% [5]. Nevertheless, this
criterion is met only for low values of κ regardless of whether or not one considers random
amplitude. On the other hand, the value of κ directly influences the APCN signal’s degree
of randomness and, consequently, its LPI/LPE performance [20] as well. Specifically, the
greater the value of κ, the more random the resultant APCN signal should be. Therefore,
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one must evaluate the LPI/LPE performance as a function of the stochastic component
parameters of APCN waveforms to establish proper trade-offs during design.

The noise radar system LPI/LPE characteristics are twofold. Firstly, these systems can
effectively mimic thermal noise, rendering them indistinguishable from less sophisticated ELINT
systems and ensuring covert operation. Secondly, they can produce varied sample functions from
the same stochastic process. This capability diminishes the effectiveness of deception systems that
do not operate in real time. Many works in the literature, e.g., [4–6,9,13], attempt to define proper
metrics to evaluate a system’s LPI/LPE characteristic properly. Despite the different approaches,
a common sense within the community is that these features relate to the transmitted waveform
degree of randomness.

In [4,5,9,13], for instance, the authors propose the analysis of the transmitted signal’s
Spectral Flatness Measure (SFM) and Mutual Information Rate (MIR) as measures of its
information increase with time. For Gaussian processes [37], the SFM is directly related to
the MIR and is defined as the ratio of the geometric mean to the arithmetic mean of the
signal’s PSD, given by [37]

SFM =

exp

[
1

2π

π∫
−π

ln (Γs̃(ω)) dω

]
1

2π

π∫
−π

Γs̃(ω) dω

. (21)

From Figure 8, it is possible to observe that the SFM (calculated as the average of
100 independent trials) increases as κ increases, reaching an upper bound value when
the phase factor is κ = 0.8. Note also that the SFM average exhibits a similar behavior,
assuming either random or constant amplitude. This observation suggests that the random
phase contributes more significantly to the LPI/LPE characteristics.

Figure 8. SFM average of APCN (κ ≥ 0.5) waveforms: assuming Phase-Only randomness (constant
amplitude) and random amplitude modulation (α = 1).

The degree of randomness in a given stochastic waveform introduces an additional
advantage to pulsed noise radars. Random signals are expected to present a low cross-
correlation between pulses transmitted at different times. This feature enables the elimina-
tion of range ambiguities in pulse compression architectures.

A short-integration-time pulsed noise radar emits a train of noise-modulated electro-
magnetic pulses toward the target [2], specifically Np time-limited signals, separated in
time by the Pulse Repetition Interval (PRI). When we assume the presence of a single non-
fluctuating scattering point moving at a range of R0, at the time it starts being illuminated
by the radar, we can express the complex envelope of the i-th received signal as [38]

r̃i(t) = Ge−j4π
(

R0+vTi
λ

)
e−j2π fDt s̃i

(
t − T0 −

2v
c

Ti

)
, (22)
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where G is a term that reflects the backscattering effects, channel fading, and the gains and
distortions introduced by the receiver RF chain (assumed to be constant over the coherent
processing interval), λ is the operating wavelength, and v is the target’s radial velocity, also
assumed constant. Finally, T0 in Equation (22) represents the time spent by the echo signal
to return to the radar, which is given by T0 = 2R0/c and Ti = (i − 1)PRI .

Range ambiguity arises when the scatter is far enough so that the i-th echo, relative to
the reflection of the i-th transmitted pulse, arrives at the receptor after the transmission of
the subsequent signal, si+1(t), and, considering the pulse compression gain, has enough
power to be detected. Let us again consider the simplified received signal model [21] for
simplification and no loss of generality r̃i(t) = s̃(t − T0)e−j2π fDt, then, the expected value
of the pulse compression output when range ambiguity is present is given by

E[ỹ(τ)RA] = E
[∫ ∞

−∞

[
s̃ri (t − T0)s̃ci (t − T0) e−j2π fDt

]
s̃∗ri+1

(t − τ)s̃∗ci+1
(t − τ)dt

]
. (23)

The stochastic nature of pure noise radar waveforms may contribute to the suppression
of range ambiguities in target detection [39]. The cross-correlation process between the
i-th replica and the j-th received pulse, where i ̸= j, plays a crucial role in radar systems
employing random signals. The elimination of range ambiguity is directly contingent upon
this process. It is no different for APCN signals. One can also evaluate range ambiguity
suppression using the cross-correlation between the i-th and the j-th, transmitted pulses,
i ̸= j, since it is possible to rewrite Equation (23) as

E[ỹRA(τ)] = E[ai(t)ai+1(t − τ)]E
[
ejκϕi(t)ejκϕi+1(t−τ)

]
χs̃c(τ − T0, fD), (24)

with (T0 − τs ≤ τ ≤ T0 + τs) and considering that s̃ci (t) = s̃ci+1(t).
Finally, after some mathematical manipulations, it can be shown that

E[ỹRA(τ)] =
(

α2 π

2

)(1 − cos 2κπ

2κ2π2

)
χs̃c(τ − T0, fD); T0 − τs ≤ τ ≤ T0 + τs. (25)

The attenuation in the pulse compression output of APCN signals introduced by the
presence of the random component s̃r(t), when range ambiguous targets are present, is
given by H = α2[1 − cos (2κπ)]/4κ2π, the same introduced as an effect of the Doppler
mismatch of moving targets (see Equation (5)). The same analysis can be performed for the
Phase-Only APCN waveform, leading to

E
[
ỹPO

RA(τ)
]
=

(
1 − cos 2κπ

2κ2π2

)
χs̃c(τ − T0, fD); T0 − τs ≤ τ ≤ T0 + τs, (26)

with an attenuation given by D = [1 − cos (2κπ)]/2κ2π2.
The primary objective of the radar system in surveillance applications is to provide the

user with situational awareness of the operational scenario. That entails detecting uncoop-
erative targets and determining their range and radial velocity in real-time. Contemporary
digital systems utilize the Pulse Doppler technique, separable two-dimensional processing
in the fast and slow-time dimensions, for that purpose [34].

In the fast-time dimension, the i-th single-pulse matched filter, denoted as ỹi(n) =
ỹi(t)|t=n/ fs

(see Figure 3) is performed. Next, the k-points Discrete Fourier Transform
(DFT) of the slow-time data sequence is employed in each range bin [38]. The result is
the well-known range-Doppler matrix, used as the input for the subsequent step of the
detection process.

In the present analysis, we chose the Cell-Averaging (CA) CFAR detection technique
to investigate the performance of APCN signals. We assume a single Signal of Interest
(SOI) scenario and consider the predominant interference in the radar reception chain
from thermal noise origin. Furthermore, employing a quadratic law detector, we set the
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probability of false alarm to 10−5. This detection process is first applied to the echo of the
APCN waveform using the receiver system configuration detailed in [21]. Therefore, one
must derive the matched filter output by correlating the receiver echo with the transmitted
stochastic signal. Subsequently, the detection process assesses the corresponding filter
output, as determined by Figure 3. Given the time and frequency sampling, we incorporate
two “guard cells” on each side of the “cell under test”. We take this precaution to account
for the potential occurrence of “straddle range-Doppler cells” [34].

Next, we discuss an experiment assuming a digital radar receiver. Below is an outline
of the main parameters employed in the simulation for this experiment:

• Waveform wavelength: 0.0321 m;
• Waveform bandwidth: βs = 30 MHz;
• Waveform pulse width: τs = 50µs;
• Waveform pulse repetition interval: τs = 500µs;
• Fast-time sampling frequency : fs = 125 MHz;
• Pulse Repetition Frequency: PRF = 2 kHz;
• Slow-time sampling frequency: 2 kHz;
• Number of received pulses: Np = 27;
• Number of DFT Doppler domain points: N = 64;
• Target’s Doppler shift: fD = 700 Hz;
• Target’s range: R0 = 50 km;
• Maximum radar unambiguous range: Runammax = 75 km.

Figure 9 displays the results of the detection process with the receiver system configu-
ration detailed in [21]. In addition to successfully detecting the SOI highlighted in green,
the five false targets depicted in red were also identified in a scenario with an SNR as low
as −15 dB.

Figure 9. Detection process output considering the CA-CFAR technique implemented on the digital
radar receiver proposed in [21].

Figure 10 shows the detected SOI when the configuration outlined in Figure 3 is
employed. Note that this detection procedure eliminates false targets.

Figure 10. Detection process output considering the CA-CFAR technique applied to our
proposed architecture.
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To demonstrate and validate the improvement in performance in detecting and esti-
mating range and radial velocity, we conducted an experiment that consists of transmitting
different APCN signals with randomness in amplitude (scale parameter α = 1) and varied
randomness in phase (scale parameter κ). The results illustrated in Figure 8 corroborate
that phase randomness impacts the increase in APCN LPI/LPE characteristics most sig-
nificantly. After applying the Pulse-Doppler processing, we generated a range-Doppler
matrix, assuming a low SNR of −15 dB on the receiver’s end of the radar chain. Next, we
applied the CA-CFAR detection technique to this dataset and calculated the average num-
ber of false targets. We conducted this analysis using Monte Carlo simulations comprising
100 independent trials. The procedure adheres to the recommended receiver configuration
of [21] and the receiver configuration specifications provided in Figure 3.

Figure 11 illustrates the results of an experiment in which we increased the waveform
randomness while maintaining the SNR level low in the radar receiver chain. Notably, using
the configuration detailed in [21] resulted in a substantial increase in the average count of
false targets. Therefore, this configuration significantly compromises the radar’s detection
and estimation capabilities despite enhancing its LPI/LPE characteristics. Specifically,
when the variable κ reaches a value of 0.8, the average count of false alarms escalates to
eight. This elevated count remains consistent regardless of increments in the value of κ.
This behavior relates to the maximum value of the SFM average observed in Figure 8,
which reaches an upper bound when the phase factor is κ = 0.8.

Figure 11. APCN waveform (κ ≥ 0.5 and α = 1) detection performance: average number of false targets.

However, when we applied our proposed architecture detailed in Figure 3, it main-
tained the crucial LPI/LPE capability by preserving the transmission waveform. Moreover,
as we explored phase scale factors up to κ = 0.95, we eliminated false target occurrences, re-
ducing them notably to zero, as visually indicated by the black arrow in Figure 11. However,
the waveform lost its Doppler tolerance capacity at the uppermost limit of randomness,
namely κ = 1. Consequently, correlating the received echo from the APCN waveform with
its deterministic component became unfeasible.

It is clear from the previous derivations and analysis that proper selection of the
parameters governing the random components of the APCN transmitted signal is relevant
for the overall system performance. The greater the value of κ, the more random the
waveform. That leads to a higher Spectral Flatness Measure, improving its range ambiguity
suppression. On the other hand, high values of κ lead to a waveform with less spectral
efficiency (low power within the desired bandwidth) and less Doppler tolerance. Using a
stochastic signal to modulate the transmit waveform in amplitude also increases its degree
of randomness, which enhances the trade-offs discussed above. Additionally, the random
component in amplitude also deteriorates the system performance concerning power
efficiency, increasing the transmit signal’s PAPR. That needs to be considered, especially in
long-range applications.

In Section 3, we examine APCN waveforms from the point of view of a passive
intercept-receiver system and propose, analyze, and discuss a methodology to detect and
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extract the characteristics of this noisy waveform automatically. These waveforms are
recognized for their LPI/LPE attributes as detailed in [3,20].

3. The Proposed Metodology for Identifying APCN Signals

In this section, we investigate the performance of the APCN waveform in an electronic
warfare context. We first address the modeling of a digital superheterodyne ESM receiver
system. We consider interception, A/D conversion, and digital processing operations
performed on the analog SOI. We introduce a specific time-frequency transform technique
to analyze radar signals deemed as LPI/LPE [11,23]. Then, we outline techniques used to
extract signal characteristics and evaluate the performance of the proposed methodology
in estimating the radar parameters of the SOI in an EW scenario.

The primary objective of an ESM system is to identify emitting sources. The ESM
system’s digital processing chain extracts intrapulse and interpulse parameters from the
intercepted waveform. Examples of intrapulse parameters are pulse width (τs), operating
frequency ( f0), and bandwidth (βs), whereas for interpulse we have the Pulse Repetition
Interval (PRI). The way to determine the Pulse Repetition Interval is by estimating the
arrival time (Te) between successive intercepted pulses [40]. This information is intrinsic
to the signal’s identity. As for the amplitude of the received signal, it relies, in part, on
the distance between the radar and the ESM system since measuring the amplitude is
challenging due to deleterious effects, such as multipath that may lead to constructive
interference within pulses [40].

Commonly, an ESM system has a listening time (∆t) longer than the radar’s pulse
repetition interval, enabling parameter estimation based on multiple intercepted pulses.
Thus, the intercepted RF signal can be expressed as

rRF
e (t)=

Npe

∑
i = 1

Q sRF
i (t − Te − (i − 1)PRI), (27)

where sRF
i (t) is the i-th transmitted pulse one-way Doppler shifted by the radial relative

velocity. Moreover, Q accounts for gains and attenuation, and Npe is the number of
intercepted pulses.

Typically, six pulses are needed to allow parameter extraction [40]. The received signal
is routed to the RF chain and contaminated with thermal noise w(t). Therefore, the actual
signal at the output of the RF module is given by

x(t) = re(t) + w(t) =
Npe

∑
i=1

V si(t − Te − (i − 1)PRI) + w(t), (28)

where si(t), in noise radars, are sample functions of the stochastic process that characterizes
the transmitted random signal assumed to be statistically independent of the thermal noise.
Moreover, V accounts for gains and attenuation introduced by the RF chain cascaded to the
gains and attenuation of the intercepted signal. We assume real-valued and time-invariant
quantities throughout this work.

Since we employ discrete-time analysis, we denote x(n) = x(t)|t=n/ f se , assuming a
digital ESM system sampling frequency of fse . Additionally, the TFA of the intercepted
radar signal adopts its analytical form [11] and is given by

x̃(n)= x(n) + jH{x(n)}, (29)

where H denotes the Hilbert transform. Figure 12 illustrates the simplified diagram of
an ESM superheterodyne digital receiver [11], outlining the process that starts with the
reception of the analog signal up to the display of the extracted information in a Human–
Machine Interface (HMI). The diagram excludes the pulse deinterleaving step, focusing the
analysis on individual waveforms.
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Figure 12. ESM superheterodyne receiver: simplified block diagram incorporating digital technology.

In numerous EW scenarios, the nature of a received radar signal often deals with time
and frequency information and, therefore, requires time-frequency analysis techniques to
effectively characterize the non-stationary behavior exhibited by the signal [23,41]. Several
variations of these techniques are available in the literature. We use the Short-Time Fourier
Transform (STFT) in this work, with no loss of generality.

The discrete version of the STFT of signal x̃(n) is defined as

SF(k, m) =
Ne−1

∑
n= 0

x̃(n + m R) g(n) e−j( 2πk
Ne )n; 0 ≤ k ≤ Ne − 1, (30)

where 2πk/Ne is the k-th discrete frequency bin, m represents the m-th discrete tile in time,
Ne is the number of points of the FFT, equal to the window size, and R is the hop size (with
an overlapping of Ne − R samples in this case). Moreover, g(n) is a window of size Ne, that
is, g(n) = 0 outside the interval 0 ≤ n ≤ Ne − 1. In this work, we chose the Hamming
window, widely used in EW systems [11,34,41]. In most applications that involve STFT, the
interest is in the magnitude response, with a focus on the short-time quadratic magnitude
|SF(k, m)|2, representing the short-time energy spectral density, and usually displayed as a
function of time and frequency in the form of a spectrogram [42].

From the computational implementation of Equation (30), we obtain the Ne × M
matrix E of time-frequency distribution, given by

E =


...

...
...

|SF(k, 1)|2 · · · |SF(k, M)|2
...

...
...


Ne×M

, (31)

where k corresponds to k-th frequency bin, Ne is the total number of bins, and M is the
total number of tiles in time. The determination of overlap, crucial for achieving resolution
between fixed tile and frequency bin quantities, is computed according to [43]

L =

⌈
MNe − Ns

M − 1

⌉
, (32)

where “⌈ ⌉” is the round-to-nearest integer operator and Ns is the number of samples.
Displayed in Figure 13 are the time “(a)” and time-frequency “(b)” representations of

an intercepted signal, derived from six pulses of an APCN waveform (κ = 0.5 and α = 1).
It is important to note that while representation “(a)” highlights time-related features, the
time-frequency display in “(b)” provides valuable insights into the energy carried by the
SOI. These depictions assume an SNR of −10 dB at the passive intercept-receiver input.
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Figure 13. Intercepted signal x(t): (a) time representation; (b) time-frequency representation. In this
figure, the x-axis is represented by “Time (µs)” and the y-axis is represented by “Frequency (MHz)”.

The subsequent stage after the TFA in the block diagram depicted in Figure 12 involves
parameter extraction. Matrix E described by Equation (31) furnishes details regarding the
energy the intercepted signal carries, enabling us to visualize the time-frequency plane as a
2D image. Consequently, it is feasible and natural to use image processing techniques to
extract parameters related to the SOI. In the present work, we use the Hough transform for
detecting geometric shapes such as lines in a binary image [44]. The way to represent a line
equation in the Hough space is as follows [45]:

ρ = x cos(ψ) + y sin(ψ), (33)

where ρ is the distance between the line and the origin of the Cartesian system and ψ is the
angle between the axis x and the segment perpendicular to the line.

Figure 14 illustrates the process of estimating a line in Cartesian space (a) from the
Hough space (b), with the parameters ψ′ and ρ′ determined by the intersection of the two
sinusoids within the Hough space.

Figure 14. Representation of a line: (a) Cartesian space; (b) Hough space.

The computational implementation of the Hough transform [46] yields a structured
array represented as [H; ψ; ρ], where H denotes the histogram amplitude matrix, with each
of its elements standing for the number of increments within each cell of the quantized
Hough space. Additionally, ψ represents the slopes vector, while ρ is the distance vector.

The peaks in H are then obtained and stored in a matrix P of order np × 2 whose form
is given by

P = [ρ∗ ψ∗] =


ρ1 ψ1
ρ2 ψ2
...

...
ρnp ψnp

, (34)

where np represents the desired number of peak estimates, assumed to be the minimum
number of pulses Npe required to enable the parameter extraction output. Finally, the
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detection of lines in the image space (matrix BW) is performed, leading to L, a restructured
array of the form [L1; L2] where

L1 =



x1|P1 y1|P1
...

...
x1|Pi y1|Pi

...
...

x1|PNpe
y1|PNpe


, (35)

with x1|Pi and y1|Pi being the i-th ordered pair matrix referring to the beginning of the i-th
detect line, and

L2 =



x2|P1 y2|P1
...

...
x2|Pi y2|Pi

...
...

x2|PNpe
y2|PNpe


, (36)

is the matrix representing the ordered pairs at the end of the i-th detected line.
The intrapulse and interpulse parameters of the SOI are then estimated, with the

estimated bandwidth given by

β̂s =
1

Npe

[Npe

∑
i=1

(
y2|Pi − y1|Pi

) fse

2Ne

]
. (37)

The SOI operating frequency ( f0) can be estimated as

f̂c =
1

Npe

[Npe

∑
i=1

(
y1|Pi + 0.5

(
y2|Pi − y1|Pi

)) fse

2Ne

]
. (38)

Therefore, f̂0 = f̂c + fLO, where fLO is the ESM system Local-Oscillator (LO) frequency.
The estimated intercepted signal time duration is calculated as

τ̂s =
1

Npe

[Npe

∑
i=1

(
x2|Pi − x1|Pi

)∆t
M

]
. (39)

Finally, to estimate the radar PRI , it is necessary to measure the difference between the
arrival times of Npe successive pulses in such a way that

P̂RI =
PRI |P(21)

+ PRI |P(32)
+ · · ·+ PRI |P(i(i−1))

+ · · ·+ PRI |P(Npe (Npe−1))

Npe − 1
, (40)

where PRI |P(i(i−1))
=

(
x1|Pi − x1|P(i−1))

)
∆t
M is the i-th measure pulse repetition interval be-

tween two successive lines detected.
The block diagram in Figure 15 illustrates the methodology proposed in this study

for parameters extraction from the APCN noise radar waveform. In this diagram, solid
black lines represent the input and output of the block diagram, while dashed black lines
indicate intermediate inputs and outputs necessary for preprocessing.

In the final stage of the architecture outlined in Figure 12, emphasis is placed on iden-
tifying the source emitter. In the digital processing realm of an ESM system, a predefined
set of mean parameters [β̂s f̂0 τ̂s P̂RI ]

T, referred to as a fingerprint, can aid in the identifica-
tion phase of the radar model [1,11,40]. These parameters offer a degree of tolerance and
facilitate the identification of the emitting source. In cases where the intercepted signal
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fails to correlate with an existing emitter in the EW database, we add the new signal to the
database for future recognition.

Subsequent sections delve into the proposed methodology, utilizing a numerical example
to detail the process of extracting signal information to construct a waveform fingerprint.

Figure 15. Block diagram showing the approach for extracting parameters from the APCN noise
radar waveform.

3.1. Numerical Example

The block diagram of Figure 16 outlines the proposed methodology. It is designed to aid
in identifying APCN signals through image processing, thereby enabling the identification
of emitting sources transmitting this type of waveform in an EW scenario. The synthesized
scenario is based on Figure 12 and the main parameters used in the simulations are:

• Waveform bandwidth: βs = 30 MHz;
• Waveform pulse width: τs = 50µs;
• Waveform pulse repetition interval: PRI = 500µs;
• ESM system sampling Frequency: fse = 500 MHz;
• ESM system listening time: ∆t = 3000µs;
• ESM system local oscillator frequency: fLO = 9.2 GHz;
• Number of pulses intercepted by the ESM system: Npe = 6;
• Radar center frequency: fc = 160 MHz.

Figure 16. Block diagram illustrating a proposed methodology utilizing image processing tech-
niques. Parameters to be extracted include bandwidth, operating frequency, pulse width, and pulse
repetition interval.
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It is noteworthy to emphasize that, in [20], the utilization of an APCN waveform
with specific parameters (κ = 0.5 and α = 1) and a designed bandwidth of 30 MHz was
identified as potentially posing challenges to the intercept–receiver system in a commu-
nication channel where thermal noise was present. Acknowledging this insight from the
referenced work, our investigation aligns with this perspective, thus adopting a bandwidth
of βs = 30 MHz for our analysis.

The proposed methodology to analyze this noise radar signal comprises four steps (as
seen in Figure 16) and are described in the following.

1. In Step 1, time-frequency (T-F) transformation, we obtain matrix E using Equation (31).
To address the uncertainty principle [42], we use a window g(n) of size Ne = 1024 sam-
ples, corresponding to 2.048 µs. This choice aims to balance local signal analysis and
stationary conditions, facilitating FFT applications while ensuring an adequate bal-
ance of time and frequency resolutions. The analytical nature of signal x̃(n) allows
for 512 frequency bins within the range 0 ≤ f ≤ fse /2, corresponding to the positive
half of the spectrum 0 ≤ ω ≤ π, given the window size. Simultaneously, we set the
number of STFT tiles to M = 1024, with an overlap of 536 samples at each hop. As
illustrated in Figure 16, this transformation showcases the signal’s shift from the time
domain to its time-frequency representation. Although the radar signal’s intent is dis-
cernible amidst system thermal noise, preprocessing remains necessary for automatic
and accurate characteristic extraction.

2. Step 2 performs detection in the T-F plane. For this purpose, we define a threshold η as

η = −
[
e ln(Pf a)

]
, (41)

with

e =
[

E f (: , 1) E f (: , 2) · · · E f (: , M)
]T

︸ ︷︷ ︸
Mean vector in matrix rows

and e =
1
M

M

∑
m=1

E f (: , m) , (42)

where the desired probability of false alarm is Pf a = 10−5. After the detection process,
matrix Ed

f is obtained as the output, as illustrated in Figure 16.

3. Conversion from grayscale (C) to black-white (BW): Ed
f is converted from grayscale to

black-and-white [47] to obtain the matrix BW, and the signal’s amplitude information
is encoded into binary values.

4. Parameter extraction step: as previously mentioned, the proposed approach for
extracting information from the APCN waveform relies on the Hough transform.
Due to its deterministic component, and according to [3,22], the bandwidth βs can
be considered the same as that of its linear chirp component, i.e., βsc . The number of
input peaks, assumed to be the minimum number of pulses to allow for parameter
extraction, was considered np = 6 [40]. Moreover, we fixed the threshold tH at
0.5 max[H], which is the default minimum value for identifying a peak.

By defining a threshold tH and applying it to the Hough space matrix H, along with
knowing the desired minimum number of peaks np, we can obtain the matrix P as denoted
by Equation (34). Figure 17 illustrates the detected peaks stored in P. Subsequently, using
P = [ρ∗ ψ∗], the conversion from Hough space to Cartesian space [45] was performed
based on the parameter relationship in Equation (33), resulting in the detection of lines
[L1; L2]. Figure 18b illustrates some of the lines detected in Cartesian space.



Sensors 2024, 24, 2532 20 of 25

Figure 17. Peaks detected from Hough’s histogram [H].

Finally, the intrapulse and interpulse parameters are estimated as depicted in the
detailed extraction block diagram (Figure 15). This process establishes a connection between
the desired information illustrated in Figure 18a and the information obtained in the
Cartesian space through the Hough space (Figure 18b).
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Figure 18. Detected lines. For better observation, the image has been zoomed in on the first two
intercepted pulses (a) desired parameters estimation; (b) Cartesian lines detected. In both figures “#”
stands for the number of the Bin or Tile, respectively.

3.2. Performance Assessment

Several studies in the literature aim to establish performance benchmarks for ESM
systems [29,48,49], yet a universally accepted standard for ESM development remains
elusive [30]. As previously mentioned, tolerances may correlate a particular set of estimated
parameters to a specific emitter, and their significance in the overall ESM performance
is crucial [40]. For instance, in [29], the assumed tolerances are ±1 MHz for operating
frequency and bandwidth and ±1 µs for the modulation period. From this perspective,
one presumes that the probability of an ESM detecting a radar signal (Pde ) is directly
linked to the accuracy/precision of its parameter estimation by such a system, making it
an evaluation metric. As an alternative, the authors in [23,29,31] consider the percentage
relative error to evaluate the efficiency of their proposed methodologies for radar parameter
extraction of deterministic radar signals considered LPI/LPE.

In this assessment, we start with Pde of the ESM system employing the proposed
methodology to identify APCN signals through a Monte Carlo simulation, assuming
100 independent trials. For this purpose, we record a detection when the tolerance between
the actual and estimated parameters falls below a certain threshold: ±2 MHz for βs,
±5 MHz for f0, ±5 µs for τs and ±25 µs for PRI . These tolerances were derived from the
information in [29,40]. Figure 19 presents the obtained ESM probability of detection, Pde ,
of an APCN signal. One can see that the detection performance remains above 99% for
SNR levels considered low [23,29–31], i.e., less than −10 dB, for both intrapulse as well as
interpulse radar parameters. Performance is degraded for SNR less than −11 dB.
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Figure 19. Probability of detection APCN waveform parameters (κ = 0.5 and α = 1) considering
100 independents trials.

We also evaluated the accuracy and precision of the random variables characterizing
the proposed estimators. Accuracy, represented by the bias of an estimator Θ̂ for a parame-
ter Θ [11,34], is defined as the expected value of the difference between the mean of the
estimate and the actual parameter value

BΘ̂(Θ) = E
[
Θ̂
]
− Θ. (43)

Precision, on the other hand, is the standard deviation of the estimate

σΘ̂(Θ) = E
[√

(Θ̂ − E[Θ̂])2
]

. (44)

Figure 20a and Figure 20b, respectively, depict the precision and accuracy of the pro-
posed estimators across varying SNR levels in an ESM system employing the methodology
to identify APCN signals. The estimators exhibit high precision, implied by the low stan-
dard deviation of the random variables, up to an SNR of −12 dB. However, beyond this
threshold, a notable decline in precision is observed. Additionally, while the proposed f0
estimator maintains high accuracy up to an SNR of −12 dB before exhibiting bias, the pro-
posed bandwidth estimator displays a slight bias (approximately 1 MHz) independent of
the SNR in the passive intercept–receiver chain. Nonetheless, the estimators for intrapulse
and interpulse temporal parameters demonstrate high accuracy up to an SNR of −12 dB
before showing signs of bias.

(a) (b)
Figure 20. APCN (κ = 0.5 and α = 1) waveform parameters estimation performance: (a) Precision as
a function of the SNR; (b) Accuracy as a function of the SNR.

Thus, from the analyzed perspectives, a digital intercept receiver that employs the
automatic parameter extraction approach proposed in the present work can detect the
APCN noise radar signal, with κ = 0.5 and α = 1, and explore it, inhibiting this waveform
from being claimed as either LPI or LPE.

Lastly, Figure 21 presents the assessment metric based on percentage error, defined as

e(%) =

∣∣∣∣actual value − estimated value
actual value

∣∣∣∣× 100, (45)
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wherein the mean percentage relative error e(%)ensemble is derived for observation in the
experiment ensemble. As per [1,31,50], a margin of up to 10% in parameter estimation error
can be deemed acceptable in the context of ESM equipment.

Figure 21. APCN parameter intrapulse and interpulse estimation with different values of κ, consider-
ing α = 1.

We have used that metric to evaluate the performance of the proposed methodology
for APCN signals generated with different values of κ, assuming α = 1. Moreover, we
have considered a fixed SNR of −3 dB in the receiver chain. As we can see, the proposed
methodology managed to estimate all parameters within an acceptable error limit for
APCN waveforms that employ κ < 0.7 when the signal becomes too noisy, at the expense
of spectral confinement and Doppler tolerance, as previously mentioned.

4. Conclusions

This paper investigated the performance of the Doppler-tolerant Advanced Pulse
Compression Noise waveform radar in surveillance applications. We analyzed its perfor-
mance as an LPI/LPE signal under the framework of a proposed detection/information
extraction method. From the perspective of a radar system, we showed an expression of
the narrowband ambiguity function to assess its Doppler tolerance capacity. The analysis
revealed an anomaly inherent to the waveform that can jeopardize detecting slow-moving
targets in surveillance applications. Thus, we proposed a novel configuration for a digital
radar receiver to address this issue. The proposed solution involves correlating the received
signal with the deterministic component of the APCN waveform instead of relying on the
transmit signal’s replica in a pulse compression architecture. This approach eliminates the
anomaly and improves the accuracy and reliability of slow-moving target detection within
noisy environments at the expense of an additional attenuation of the resulting signal.
Closed-form expressions characterizing the pulse compression output in such architecture
were also derived.

Moreover, we showed that the meticulous selection of parameters governing the
random components in the APCN transmit signal emerges as a pivotal factor influencing
overall system performance. In particular, the scale parameter associated with phase ran-
domness assumes a critical role: larger values yield a more random waveform characterized
by a higher Spectral Flatness Measure, thereby enhancing range ambiguity suppression.
However, this improvement is offset by reduced spectral efficiency, as higher scale parame-
ters lead to lower power within the desired bandwidth and decreased Doppler tolerance.
Furthermore, introducing a stochastic signal to modulate the transmit waveform’s ampli-
tude intensifies its randomness, exacerbating these trade-offs. Additionally, the inclusion
of a random component in amplitude results in a deterioration in system performance con-
cerning power efficiency, as evidenced by the increased Peak-to-Average Power Ratio in the
transmit signal. These considerations are particularly pertinent in long-range applications
and necessitate careful deliberation in designing and optimizing APCN-based systems.

Regarding an intercept–receiver system point of view, a system with digital processing
was modeled assuming a plausible number of intercepted pulses, according to the recent
literature. We then proposed a candidate method to use in an ESM system for APCN
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noise waveform detection and parameter extraction. We employed a time-frequency
transform to accurately extract the radar parameters since interception and exploitation of
signals considered LPI/LPE requires sophisticated receivers that use time-frequency signal
processing. The transformation made it possible to detect the radar signal immersed in
thermal noise. We assumed the nonexistence of any replica of the intercepted signal, as
the sample functions of noise radar are theoretically uncorrelated with each other, and the
incoming signal parameters are unknown.

The proposed methodology parameter extraction was based on image processing
techniques generated by the time-frequency transform. We described each step of the
developed methodology to finally generate a fingerprint to assist in identifying the emitting
source. We evaluated the intercept receiver performance based on the probability of such an
ELINT system detecting an APCN radar signal, considering LPI/LPE as a function of the
signal-to-noise ratio of the ELINT system. Results showed a probability of detection close
to 1 for SNRs less than −10 dB. We also evaluated the accuracy and precision of the random
variables characterizing the APCN estimated parameters (bandwidth, operating frequency,
time duration, and pulse repetition interval) as a function of the SNR. Results also showed
that the proposed ELINT system performed well in estimating such parameters in scenarios
with SNR less than −10 dB. Finally, we concluded that defining a radar as LPI and LPE, or
either, necessarily involves defining the corresponding intercept–receiver system.

Author Contributions: Conceptualization, M.B., L.P., A.L.L.R. and J.A.A.J.; software, M.B. and L.P.;
validation, M.B. and L.P.; formal analysis, M.B., L.P., A.L.L.R. and J.A.A.J.; investigation, M.B., L.P.,
A.L.L.R. and J.A.A.J.; writing—original draft preparation, M.B. and L.P.; writing—review and editing,
M.B., L.P., A.L.L.R. and J.A.A.J.; visualization, J.A.A.J.; project administration, L.P. All authors have
read and agreed to the published version of the manuscript.

Funding: This study is partially financed by the Brazilian Navy, the Brazilian Army, the National Council
for Scientific and Technological Development—CNPq, the Brazilian Development Bank (BNDES), the
Studies and Projects Financing Agency (Finep) and the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior–Brazil (CAPES)—Finance Code 001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Neri, F. Introduction to Electronic Defense Systems, 3rd ed.; Artech House: London, UK, 2018.
2. Kulpa, K. Signal Processing in Noise Waveform Radar; Artech House: London, UK, 2013.
3. Govoni, M.A.; Li, H.; Kosinski, J.A. Range-Doppler resolution of the linear-FM noise radar waveform. IEEE Trans. Aerosp.

Electron. Syst. 2013, 49, 658–664. [CrossRef]
4. Galati, G.; Pavan, G.; De Palo, F. Noise radar technology: Pseudorandom waveforms and their information rate. In Proceedings

of the 15th International Radar Symposium (IRS), Gdansk, Poland, 16–18 June 2014. [CrossRef]
5. Pralon, L.; Beltrão, G.; Barreto, A.; Cosenza, B. On the analysis of PM/FM noise radar waveforms considering modulating signals

with varied stochastic properties. Sensors 2021, 21, 1727. [CrossRef] [PubMed]
6. Savci, K.; Galati, G.; Pavan, G. Low-PAPR waveforms with shaped spectrum for enhanced low probability of intercept noise

radars. Remote Sens. 2021, 13, 2372. [CrossRef]
7. Palo, F.D.; Galati, G.; Pavan, G.; Wasserzier, C.; Savci, K. Introduction to noise radar and its waveforms. Sensors 2020, 20, 5187.

[CrossRef]
8. Savci, K.; Stove, A.G.; De Palo, F.; Erdogan, A.Y.; Galati, G.; Lukin, K.A.; Lukin, S.; Marques, P.; Pavan, G.; Wasserzier, C. Noise

Radar—Overview and Recent Developments. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 8–20. [CrossRef]
9. Stove, A.G.; Lukin, K.A.; Orlenko, V.M. Analysis of Partially Deterministic Waveforms in Noise Radar Applications. In

Proceedings of the 23rd International Radar Symposium (IRS), Gdansk, Poland, 12–14 September 2022; pp. 159–163.
10. Galati, G.; Pavan, G.; Wasserzier, C. Interception of Continuous-Emission Noise Radars Transmitting Different Waveform

Configurations. In Proceedings of the 23rd International Radar Symposium (IRS), Gdansk, Poland, 12–14 September 2022;
pp. 153–158.

11. Martino, A.D. Introduction to Modern EW Systems, 2nd ed.; Artech House: London, UK, 2018.

http://doi.org/10.1109/TAES.2013.6404130
http://dx.doi.org/10.1109/IRS.2014.6869191
http://dx.doi.org/10.3390/s21051727
http://www.ncbi.nlm.nih.gov/pubmed/33802245
http://dx.doi.org/10.3390/rs13122372
http://dx.doi.org/10.3390/s20185187
http://dx.doi.org/10.1109/MAES.2020.2990591


Sensors 2024, 24, 2532 24 of 25

12. Galati, G.; Pavan, G.; De Palo, F.; Stove, A. Potential applications of noise radar technology and related waveform diversity. In
Proceedings of the 2016 17th International Radar Symposium (IRS), Krakow, Poland, 10–12 May 2016; pp. 1–5. [CrossRef]

13. Galati, G.; Pavan, G.; Savci, K.; Wasserzier, C. Counter-interception and counter-exploitation features of noise radar technology.
Remote Sens. 2021, 13, 4509. [CrossRef]

14. Lukin, K.; Kulyk, V.; Zemlyaniy, O. Application of dynamical chaos for design of random waveform generators. In Proceedings
of the Noise Radar Technology Workshop, Yalta, Ukraine, 18–20 September 2002; pp. 127–135.

15. Thayaparan, T.; Wernik, C. Noise Radar Technology Basics; Technical Report; Defense Research and Development: Ottawa, ON,
Canada, 2006.

16. Axelsson, S.R. Noise radar using random phase and frequency modulation. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2370–2384.
[CrossRef]

17. Dawood, M.; Narayanan, R.M. Generalised wideband ambiguity function of a coherent ultrawideband random noise radar. IEE
Proc.-Radar Sonar Navig. 2003, 150, 379–386. [CrossRef]

18. Pralon, L.; Pompeo, B.; Beltrão, G.; Cioqueta, H.; Cosenza, B.; Fortes, J.M. Random phase/frequency modulated waveforms
for noise radar systems considering phase shift. In Proceedings of the 2012 9th European Radar Conference, Amsterdam,
The Netherlands, 31 October–2 November 2012.

19. Pralon, L.; Beltrão, G.; Pompeo, B.; Pralon, M.; Fortes, J.M. Near-thumbtack ambiguity function of random frequency modulated
signals. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; pp. 352–355.

20. Govoni, M.A.; Li, H.; Kosinski, J.A. Low Probability of Interception of an Advanced Noise Radar Waveform with Linear-FM.
IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1351–1356. [CrossRef]

21. Govoni, M.A.; Elwell, R.A. Radar spectrum spreading using Advanced Pulse Compression Noise (APCN). In Proceedings of the
IEEE Radar Conference, Cincinnati, OH, USA, 19–23 May 2014; pp. 1471–1475. [CrossRef]

22. Barbosa, M.; Pralon, L.; Apolinário, J. Slow-Moving Target Detection Performance of an LPI APCN Waveform in Surveillance
Applications. In Proceedings of the 23rd International Radar Symposium (IRS), Gdansk, Poland, 12–14 September 2022;
pp. 147–152. [CrossRef]

23. Pace, P. Detecting and Classifying Low Probability of Intercept Radar, 2nd ed.; Arthech House: London, UK, 2009.
24. Gupta, A.; Bazil Rai, A.A. Feature Extraction of Intra-Pulse Modulated LPI Waveforms Using STFT. In Proceedings of the 4th

International Conference on Recent Trends on Electronics, Information, Communication Technology (RTEICT), Bangalore, India,
17–18 May 2019; pp. 742–746. [CrossRef]

25. Shyamsunder, M.; Subbarao, K.; Regimanu, B.; Teja, C.K. Estimation of modulation parameters for LPI radar using Quadrature
Mirror Filter Bank. In Proceedings of the IEEE Uttar Pradesh Section International Conference on Electrical, Computer and
Electronics Engineering (UPCON), Varanasi, India, 9–11 December 2016; pp. 239–244. [CrossRef]

26. Stevens, D.L.; Schuckers, S.A. Detection and Parameter Extraction of Low Probability of Intercept Radar Signals using the Hough
Transform. Glob. J. Res. Eng. 2016, 15, 9–25. [CrossRef]

27. Yu Gau, J. Analysis of Low Probability of Intercept (LPI) Radar Signals Using the Wigner Distribution. Master’s Thesis, Naval
Postgraduate School, Monterey, CA, USA, 2002. [CrossRef]

28. Jarpa, P. Quantifying the Differences in Low Probability of Intercept Radar Waveforms Using Quadrature Mirror Filtering.
Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, 2002.

29. Guner, K.K.; Gulum, T.O.; Erkmen, B. FPGA-Based Wigner–Hough Transform System for Detection and Parameter Extraction of
LPI Radar LFMCW Signals. IEEE Trans. Instrum. Meas. 2021, 70, 2003515. [CrossRef]

30. Erdogan, A.Y.; Gulum, T.O.; Durak-Ata, L.; Yildirim, T.; Pace, P.E. FMCW Signal Detection and Parameter Extraction by Cross
Wigner–Hough Transform. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 334–344. [CrossRef]

31. Gulum, T.O.; Pace, P.E.; Cristi, R. Extraction of polyphase radar modulation parameters using a Wigner-Ville distribution—Radon
transform. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas,
NV, USA, 31 March–4 April 2008; pp. 1505–1508. [CrossRef]

32. Boashash, B. Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, 2nd ed.; Elsevier: Amsterdam,
The Netherlands, 2016.

33. Popoulis, A.; Pillai, S.U. Probability, Random Variables, and Stochastic Processes; McGraw-Hill: Boston, MA, USA, 1991.
34. Richards, M.A. Fundamentals of Radar Signal Processing, 3rd ed.; McGraw-Hill: Boston, MA, USA, 2022.
35. Galati, G.; Pavan, G.; Savci, K.; Wasserzier, C. Noise radar technology: Waveforms design and field trials. Sensors 2021, 21, 3216.

[CrossRef] [PubMed]
36. Oppenheim, A.V.; Schafer, W.R. Discrete-Time Signal Processing, 3rd ed.; Pearson: London, UK, 2014.
37. Dubnov, S. Generalization of spectral flatness measure for non-Gaussian linear processes. IEEE Signal Process. Lett. 2004, 11,

698–701. [CrossRef]
38. Beltrão, G.; Pralon, L.; Barreto, A.; Alaee-Kerahroodi, M.; Bhavani Shankar, M.R. Subpulse Processing for Unambiguous Doppler

Estimation in Pulse-Doppler Noise Radars. IEEE TRansactions Aerosp. Electron. Syst. 2021, 57, 3813–3826. [CrossRef]
39. Pralon, L.; Pompeo, B.; Fortes, J.M. Stochastic analysis of random frequency modulated waveforms for noise radar systems. IEEE

Trans. Aerosp. Electron. Syst. 2015, 51, 1447–1461. [CrossRef]
40. Robertson, S. Practical ESM Analysis; Artech House: London, UK, 2019.
41. Tsui, J.B. Digital Techniques for Wideband Receivers; SciTech Publishing: Raleigh, NC, USA, 2015; Volume 3.

http://dx.doi.org/10.1109/IRS.2016.7497329
http://dx.doi.org/10.3390/rs13224509
http://dx.doi.org/10.1109/TGRS.2004.834589
http://dx.doi.org/10.1049/ip-rsn:20030702
http://dx.doi.org/10.1109/TAES.2013.6494419
http://dx.doi.org/10.1109/RADAR.2014.6875833
http://dx.doi.org/10.23919/IRS54158.2022.9905033
http://dx.doi.org/10.1109/RTEICT46194.2019.9016799
http://dx.doi.org/10.1109/UPCON.2016.7894659
http://dx.doi.org/10.34257/GJREJVOL15IS6PG9
http://dx.doi.org/10.1109/37.642974
http://dx.doi.org/10.1109/TIM.2021.3060584
http://dx.doi.org/10.1109/TAES.2017.2650518
http://dx.doi.org/10.1109/ICASSP.2008.4517907
http://dx.doi.org/10.3390/s21093216
http://www.ncbi.nlm.nih.gov/pubmed/34066388
http://dx.doi.org/10.1109/LSP.2004.831663
http://dx.doi.org/10.1109/TAES.2021.3088501
http://dx.doi.org/10.1109/TAES.2014.140072


Sensors 2024, 24, 2532 25 of 25

42. Cohen, L. Time-Frequency Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1995.
43. Smith, J.O. Spectral Audio Signal Processing; W3K: São Leopoldo, Brazil, 2011.
44. Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2008.
45. Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15.

[CrossRef]
46. Parker, J.R. Algorithms for Image Processing and Computer Vision; John Wiley & Sons: Hoboken, NJ, USA, 2010.
47. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
48. Tsui, J.B.Y.; Shaw, R.L.; Davis, R.L. Performance standards for wideband EW receivers. Microw. J. 1989, 32, 46.
49. Watson, R. Receiver dynamic range. II—Use one figure of merit to compare all receivers. Microwaves 1987, 26, 99.
50. Figueirêdo, R. Approaches for Analysis and Extraction of LPI Radar Features. Master’s Thesis, Postgraduate Program in

Electrical Engineering, COPPE, UFRJ, Rio de Janeiro, Brazil, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/361237.361242
http://dx.doi.org/10.1109/TSMC.1979.4310076

	Introduction
	Advanced Pulse Compression Noise Radars
	The Proposed Metodology for Identifying APCN Signals
	Numerical Example
	Performance Assessment

	Conclusions
	References

