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Abstract: The measurement of the longitudinal rail profile is relevant to the condition monitoring of
the rail infrastructure. The running surface is recognizable as a shiny metallic area on top of the rail
head. The detection of the running surface is crucial for vehicle-based rail profile measurements, as
well as for defect detection. This paper presents a methodology for the automatic detection of the
running surface based on a laser profilometer. The detection of the running surface is performed
based on the light reflected from the rail surface. Three rail surfaces with different surface conditions
are considered. Supervised machine learning is applied to classify individual surface elements as part
of the running surface. Detection by a linear support vector machine is performed with accuracy of
>90%. The lateral position of the running surface and its width are calculated. The average deviation
from the labeled widths varies between −1.2 mm and 5.6 mm. The proposed measurement approach
could be installed on a train for the future onboard monitoring of the rail network.

Keywords: railways; rail profiles; condition monitoring; laser profilometer; surface condition;
running surface

1. Introduction

The share of public transportation in Switzerland is to be increased in the future,
as described by Nold et al. [1]. This has led to an increased demand for rail-based transport
and is leading to the greater exploitation of the rail infrastructure. To ensure reliable and
safe operation, the maintenance of the infrastructure is essential. Tanaka et al. [2] describe
a preventive maintenance concept using rail grinding to minimize the occurrence of rail
corrugation. Zoeteman et al. [3] show the implementation of the preventive maintenance
concept in the Netherlands. Dhillon [4] identifies inspection as one of seven elementary
components of a preventive maintenance strategy. This means that the current condition
of the rail surface must be monitored regularly. The running surface is of particular
interest as the wheel–rail contact occurs in this area of the rail surface. Edel et al. [5]
described the emergence of a lowered and broadened running surface due to the formation
of squats. Satoh et al. [6] investigated the crystal orientation of the material in the area of the
running surface as a result of the damage caused by operation. Wang et al. [7] investigated
the detection of rail wear in the area of the running surface based on acquired images.
The running surface is also relevant to the generation of rolling noise. Thompson [8]
showed that the roughness of the contact surfaces of the rail and the wheel correlates with
the rolling noise. Acoustic rail grinding can improve the acoustic properties, as described
by Kuffa et al. [9]. Rail roughness can be measured to determine the condition of the
running surface. According to Cordier et al. [10], a distinction can be made between
direct and indirect measurement methods. Direct measurement methods are often tactile
methods that measure the longitudinal profile at a defined lateral position on the rail
surface. Alternatively, trolley devices are applied, such as the corrugation analysis trolley
(CAT) developed by Grassie et al. [11]. The longitudinal rail profile must be measured
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following EN 13231-2 [12] in the area between the highest point of the rail surface and up
to 15 mm towards the inner edge of the rail. Chen et al. [13] have developed a positioning
system for a measuring device installed on the vehicle to measure the longitudinal rail
profile. The system aims to measure at the center of the rail head. The running surface
is not detected and consequently not taken into account. EN15610 [14] recommends that
the position of the running surface is defined manually before measuring the acoustic rail
roughness. Mauz et al. [15] have presented a vehicle-based system for the measurement
of rail roughness. Information on the lateral position of the running surface is necessary
for the effective application of the system, as the vehicle can introduce a lateral offset
relative to the rail surface. Both cameras and laser sensors are suitable for detecting the
running surface. Camera images are dependent on different lighting conditions. Laser
profilometers have previously been applied to detect the condition of the rail surface
based on distance measurements. Ye et al. [16] presented a methodology for the detection
of rail surface defects. Mauz et al. [17] showed that an artificial running surface in a
laboratory environment could be detected using a laser profilometer. The intensity of the
light reflected from the surface was determined to distinguish between different surface
conditions. Compared to a camera, the profilometer has the advantage of not being
dependent on the lighting conditions. In contrast to a single-point laser sensor, a laser
scanner measuring on a line has the benefit of detecting the running surface of the rail over
a certain width. This approach can be applied to the various rail surface conditions that
exist in the rail network.

In the following, the running surface or running band is defined as the non-corroded
and shiny part of the rail surface, where the contact between the wheel and rail takes place.
Figure 1 illustrates a rail surface with an established running surface.

𝒙

𝒚

Corroded 
Surface

Running Surface

Figure 1. Reference system of the rail and indication of the corroded areas of the rail surface and the
running surface. x: longitudinal rail direction, y: lateral rail direction.
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The areas of the rail surface not traversed by the wheel are corroded or dirty and
provide a contrast to the reflective surface of the running surface. The width and lateral
position of a distinct running surface are the result of the sum of all wheel–rail contacts
within the respective track section. Different widths ws, lateral positions ys and conditions
of the running surface can be encountered on the surface of the rail in the rail network.

This paper uses field measurements during running surface detection to validate the
results of a study in the laboratory. Three different rail surfaces with different characteristics
of running surfaces are considered. A methodical procedure for the detection of the running
surface based on supervised machine learning is proposed. Supervised machine learning is
applied to ensure that detection is automated and can be used for a wide variety of different
rail surface conditions. The aim is to monitor the width ws and lateral position ys of the
running surface in the reference system of the rail.

2. Materials and Methods
2.1. Experimental Setup

The measuring setup comprises a trolley device that can be moved manually. The trol-
ley setup, including the equipment for data acquisition during the measurement, is shown
in Figure 2.

DAQTrolley

Odometer

Laser-Profilometer

Measurement 
Direction

PC

Figure 2. The experimental setup on the track and the data acquisition (DAQ) setup next to the track.

A scanCONTROL 3060-50/BL laser profilometer from Micro-Epsilon is mounted on
the trolley using a vertical positioning mechanism at a distance of 125 mm from the rail
surface. The lateral mounting position of the laser profilometer above the rail surface can
be offset perpendicularly to the direction of travel. The attachment of the laser profilometer
to the trolley is shown in Figure 3.
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Vertical & Lateral 
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Laser-Profilometer

Wheel

Camera

Figure 3. Installation of the laser profilometer with the vertical and lateral positioning mechanisms
and the camera on the trolley device.

In addition to the laser profilometer, a camera used for the labeling of the data is
mounted on the trolley device. The laser profilometer projects a line perpendicular to
the direction of travel with a length of approximately 51 mm. The distance to the rail
surface and, simultaneously, the intensity of the light reflected by the surface is measured
at a sampling frequency of 30 Hz. The intensity is categorized into 1024 increments. No
reflected light hitting the receiving element of the profilometer corresponds to an intensity
of 0 and the complete reflection of the emitted light equates to an intensity of 1023. The laser
profilometer is connected to a computer by a network card. The longitudinal position is
detected by a Hengstler RI58-O encoder connected to a measurement wheel. The encoder
signal used for the odometer is recorded with an NI9402 module, a cRIO 9045 controller,
and the LabVIEW 2022 Q3 software from National Instruments. The sampling frequency of
the encoder is set to 30 kHz. An average longitudinal sampling distance dx of 4.06 mm is
obtained. On average, 1988 data points are received in the lateral direction. The average
lateral sampling distance dy amounts to 0.025 mm.

The following lateral positions of the laser profilometer relative to the rail head are considered.

• Central: The lateral position of the laser profilometer is centered towards the middle
of the railhead.

• Left: From the central lateral position, the laser profilometer is shifted 10 mm to
the left.

• Right: From the central lateral position, the laser profilometer is shifted 10 mm to
the right.

Three rails with different surface conditions are considered. On each rail, a section of
5 m is marked with aluminum tape that is attached to the rail surface. Measurements are
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conducted for each rail and are repeated three times. Figure 4 shows the rail surfaces of the
individual rails measured.

Rail 1 Rail 2

𝒘𝑺

𝒘𝑺

Rail 3

𝒘𝑺

Figure 4. Surface conditions of the measured rails: Rails 1 and 2—close to a depot and hence not
often frequented; Rail 3—regularly frequented.

The rails represent different surface states, which allow the consideration of varying
running surface patterns.

• Rail 1 is located in front of a depot for rail vehicles and is rarely frequented. Slight
corrosion within the running surface is evident.

• Rail 2 is also located in front of a depot for rail vehicles. Compared to Rail 1, Rail 2 is
more frequently operated due to the regular operation of vehicles.

• Rail 3 is located on a regularly frequented section of the track. At the time of mea-
surement, the section of road was closed for 3 to 4 days due to construction works.
The rail surface is characterized by a wide and established running surface.

2.2. Detection Approach

The automated detection of the running surface must be effective for all rail surfaces.
The application of fixed threshold values on single data points is therefore not suitable for
the detection of the running surface. Features are calculated for surface elements defined
on the rail surface. The classification of the surface elements as “running surface” or “no
running surface” is based on supervised machine learning. Random forest, k-neighbors
and linear support vector machine models are applied to the classification problem. These
are particularly suitable for classification problems for which only a limited quantity of
data is available. Figure 5 shows the rail surface, divided into elements that are colored
according to their average intensity.
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Figure 5. The detected intensity of the surface of Rail 1, divided into surface elements with an element
size of 0.5 mm × 50 mm (∆y × ∆x). The elements are colored according to the average intensity of
the respective element.

The element size of 0.5 mm × 50 mm (∆y × ∆x) is an empirical compromise between
the filter effect of the surface elements and the level of detail required to determine the
running surface. The selection of features is based on the findings of the measurements
carried out by Mauz et al. [17] and the typical lateral position of the running surface.
The following features are obtained based on the findings.

• Average intensity Ī of the reflected light within a surface element: A high intensity of
reflected light corresponds to the area of the running surface.

• Standard deviation σI of intensity of the reflected light within a surface element:
Outside the area of the running surface, a stronger fluctuation in the detected intensity
can be observed.

• Lateral position y of a surface element within the reference system of the trolley
setup: The running surface is typically located on the inside of the rail and the lateral
position is therefore characteristic. This is particularly relevant for rail surfaces with
thin corrosion layers and potentially multiple areas of high intensity.

The machine learning models are trained with measured data from Rail 1 and tested
with data from Rails 2 and 3. As a result, 33.3 % of the data set is used for training and 66.7 %
for testing. The labeling of the data is carried out manually by three different people on
the basis of the camera recordings. To avoid overfitting the lateral position of the running
surface of Rail 1, the data set is augmented. The running surface is shifted 20 mm to the
left and 10 mm to the right with a step width of 1 mm. In the data augmentation process,
the running surface is shifted to the left by a larger amount compared to the right side as
the running surface is located originally on the right-hand side of Rail 1. The procedure for
determining the lateral position ys and the width ws of the running surface is as follows.

1. Measurement of the longitudinal position x along the rail and the lateral position y
across the rail, as well as the distances z to the rail surface and the intensity of the
light reflected from the surface for each measuring point.

2. The measured intensities are grouped into surface elements in the x–y plane. The sur-
face element size is 0.5 mm × 50 mm (∆y × ∆x). A longitudinal and a lateral position
are assigned for each surface element.

3. An average intensity Ī as well as a corresponding standard deviation σI of intensity is
determined for each surface element. In combination with the lateral position of the
surface element, the mean intensity and the standard deviation serve as features for
the classification.

4. A pre-trained model is applied to perform the binary classification of the surface
elements as “running surface” or “no running surface”.

5. The lateral positions of the edges ymin and ymax of the running surface in the reference
system of the trolley setup are determined based on the classification of the rail
surface elements. If more than 35 % of the surface elements at the same lateral position
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are classified as “running surface”, the entire line along the rail is assigned to the
running surface. The threshold value of 35 % is determined empirically based on
available measurements. The threshold value can be adjusted for a more conservative
determination of the running surface.

6. Calculation of the width ws of the running surface.
7. The reference systems of the trolley setup and the rail do not coincide. The offset of

the reference systems must be determined to obtain the lateral position of the running
surface in the reference system of the rail. The laser profilometer detects part of the
transverse profile of the rail. The reference profile of the rail is known. The lateral
offset can be determined by a curve fit and, consequently, the lateral position of the
running surface is known in the reference system of the rail.

3. Results

In laboratory tests with an artificial running surface carried out by Mauz et. al [17],
a clear distinction could be made between the running surface and the corroded edge areas
based on the intensity of the light reflected from the surface. The detected intensities of
the three different rail surfaces from field experiments are analyzed. Figure 6 shows the
detected intensities of the reflected light for the surface of Rail 1.
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Figure 6. Top view of segment 0 m ≤ x ≤ 1 m of Rail 1 in the central position, colored according to
the detected intensities of the light reflected from the rail surface.

The area of high intensity of ≈800 corresponds to the running surface. The corroded
edge areas are characterized by lower intensities of ≈400–600. This also applies to the
surface of Rail 2. The trigger mark applied to the rail surface can be recognized at a
longitudinal position of x ≈ 0 m. A second area of high intensity is recognizable on the
left-hand side. This is due to the thin layer of corrosion on the rail surface. Figure 7 shows
the detected intensities of the reflected light for the surface of Rail 2.
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Figure 7. Top view of segment 0 m ≤ x ≤ 1 m of Rail 2 in the central position, colored according to
the detected intensities of the light reflected from the rail surface.

A large part of the surface of Rail 3 corresponds to the state of a shiny and run-in
rail. It is possible to differentiate between the running surface and the corroded edge areas
based on the detected intensity of the reflected light. Figure 8 shows the detected intensities
of the reflected light for the surface of Rail 3.
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Figure 8. Top view of segment 0 m ≤ x ≤ 1 m of Rail 3 in the central position, colored according to
the detected intensities of the light reflected from the rail surface.
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The distinction between different surface conditions is possible for a lateral displace-
ment of the laser profilometer. Figure 9 shows the detected intensities of the reflected light
for the surface of Rail 3 and a lateral shift of the laser profilometer to the right.
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Figure 9. Top view of segment 0 m ≤ x ≤ 1 m of Rail 3 in the right position, colored according to the
detected intensities of the light reflected from the rail surface.

The inner edge of the rail becomes recognizable due to the lateral displacement.
The detected intensity drops significantly towards the edge. This is caused by the curvature
of the track surface and the associated reflection of light into the surrounding area. This
can equally be observed for a shift to the left. The findings of the measurements in the
laboratory environment can be confirmed.

The application of the detection methodology described in Section 2.2 is investigated
in the following. The intensities of the rail surfaces in Figures 6–8 are divided into surface
elements. Table 1 shows the accuracy achieved for Rails 2 and 3, with different classifiers
and lateral positions of the laser profilometer over the rail.

Table 1. The accuracy achieved for the random forest, k-neighbors and linear support vector machine
models, with different lateral positions of the laser profilometer and for the rail surfaces of Rails 2
and 3.

Random
Forest
[%]

K-Neighbors
[%]

Linear Support
Vector Machine

[%]

Left 90.00 88.00 86.00

Rail 2 Central 74.00 76.00 79.00

Right 77.00 77.00 76.00

Left 88.00 89.00 94.00

Rail 3 Central 87.00 87.00 90.00

Right 87.00 87.00 92.00
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Accuracy is defined as the ratio of the number of correctly classified surface elements
to the total number of surface elements of the rail surface. The results of applying the
models to Rails 2 and 3 are considered here since Rail 1 provides the training data set in
a modified form. Accuracy between 76 % and 86 % is achieved for Rail 2 and a trained
linear support vector machine. Accuracy between 90 % and 94 % is achieved for Rail 3 and
a trained linear support vector machine. The achieved accuracy for Rail 3 is higher as it
does not possess an area with a thin corrosion layer compared to Rail 2. The trained linear
support vector machine is applied for the following evaluations. A mixed training data set
consisting of parts of Rail 1, Rail 2 and Rail 3 does not lead to an increase in the maximum
achieved accuracy. Figure 10 shows the result for the classification of the linear support
vector machine for the surface of Rail 3. The red coloring of the surface elements shows
those elements that are classified by the model as part of the running surface. The black
coloring of the surface elements shows those elements that are manually classified as part
of the running surface but not by the model.
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Figure 10. Top view of the surface of Rail 3 in the central position, with surface elements colored
according to the intensity of the light reflected from the surface. Red coloring: classification of the
model; black coloring: part of the running surface that was not classified as the running surface by
the model.

The deviations in the determined running surface widths vary between the different
lateral positions of the laser profilometer. The average deviation ∆ws varies by 2.20 mm for
Rail 2. The average deviation ∆ws varies by 6.80 mm for Rail 3. An average width of 17 mm
is determined for Rail 2 and the central position of the laser profilometer. An average
width of 37.70 mm is determined for Rail 3 and the central position of the laser profilometer.
The width of the running surface of Rail 3 tends to be underestimated. The deviations in
the running surface width are smaller for Rail 2. This is due to the training data set, which
is composed of the surface of Rail 1 and its extension via a shift in the lateral position of the
running surface. The running surface of Rail 1 has a similar width to that of Rail 2. As the
lateral position is included as a feature, the model has adapted accordingly. Table 2 shows
the determined widths ws of the running surface, the lateral positions of the edges of the
running surface ymin and ymax, the manually measured widths wsl of the running surface
and the corresponding deviations ∆ws.
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Table 2. Determined lateral positions of the running surface at the central position of the laser
profilometer. ymin: lateral position of the left edge of the running surface; ymax: lateral position of
the right edge of the running surface; ws: width of the running surface; wsl : manually determined
width of the running surface; ∆ws: deviation between the manual and automatic determination of
the width of the running surface.

Longitudinal ymin ymax ws wsl ∆ws Relative Error
Position [mm] [mm] [mm] [mm] [mm] [mm]

R
ai

l2

0 m ≤ x ≤ 1 m −0.15 16.85 17 16.5 0.5 3.03%
1 m ≤ x ≤ 2 m −2.45 16.05 18.5 16.5 2 12.12%
2 m ≤ x ≤ 3 m 0.26 16.76 16.5 16 0.5 3.13%
3 m ≤ x ≤ 4 m −0.15 16.35 16.5 16.5 0 0.00%
4 m ≤ x ≤ 5 m 1.35 17.85 16.5 17 −0.5 −2.94%

R
ai

l3

0 m ≤ x ≤ 1 m −20.50 17.50 38 33 5 15.15%
1 m ≤ x ≤ 2 m −20.50 17.50 38 32.5 5.5 16.92%
2 m ≤ x ≤ 3 m −20.50 18.00 38.5 32.5 6 18.46%
3 m ≤ x ≤ 4 m −20.50 17.00 37.5 31.5 6 19.05%
4 m ≤ x ≤ 5 m −19.50 17.00 36.5 31 5.5 17.74%

Table 3 shows the mean values and standard deviations of the results from the manual
determination of the running surface.

Table 3. Summary of the mean deviations of the running surface widths from the manual determi-
nation and the associated mean relative errors. ∆ws: deviation between the manual and automatic
determination of the width of the running surface.

Rail 2 Rail 3

A
ve

ra
ge

St
.D

ev
.

A
ve

ra
ge

St
.D

ev
.

Left ∆ws[mm] 2.60 1.11 2.60 1.36
Relative
Error [%]

16.16 6.78 9.06 4.73

Central ∆ws[mm] 0.50 0.84 5.60 0.37
Relative
Error [%]

3.07 5.05 17.47 1.36

Right ∆ws[mm] 0.40 1.74 −1.20 4.95
Relative
Error [%]

1.98 12.38 −3.01 12.54

4. Discussion

The width and lateral position of the running surface are detected according to Table 2
for segments with a length of 1 m, respectively. This is relevant for an application in the
field of acoustic rail roughness. The minimum evaluation length of 1 m is required by
EN15610 [14], which describes the procedure for measuring the acoustic rail roughness.
The length considered for the classification must be set for the respective application.

The linear support vector machine model provides the best classification results for
different lateral positions and rail surfaces. The maximum accuracy of 94 % achieved for
Rail 3 is sufficient to determine the relevant parameters of the width and lateral position
of the running surface. The decisive factor is the formation of clusters on the surface,
which makes it possible to differentiate between the surface conditions. Ideal accuracy of
100 % is not required for this purpose. The distinction of the edge area can be influenced
by the choice of the threshold value for the proportion of the surface elements that must
be classified as “running surface” at an identical lateral position. The more conservative
determination of the running surface is feasible to reduce the relative deviations in the
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determined width of the running surface shown in Table 2. Due to the less sharp distinction
of the corroded edge area for Rail 3, a larger relative deviation in the determined width
of the running surface between 15.15 % and 19.05 % is calculated. A relative deviation
between −2.94 % and 12.12 % is determined for Rail 2.

While accuracy between 76 % and 86 % is achieved when applying the linear support
vector machine for Rail 2, the accuracy for Rail 3 increases to a range between 90 % and
94 %. The lower accuracy is due to the different surface conditions of Rails 1 and 2.
The detected intensity determines two areas of high intensity for Rail 2, as shown in
Figure 7. The thin corrosion layer appears as a second running surface in the measured
intensity. The training data set applied is the surface of Rail 1, which contains one area of
higher intensity. The training data should be extended in the future to include various rail
surface conditions and forms of running surfaces.

The shape of the running surface in Rail 1, Rail 2 and Rail 3 differs both in width and
in the quality of the surface condition. Overfitting of the lateral position of the surface
elements occurs if only Rail 1 is chosen for the training of the model. Figure 11 shows
the classification result for the surface of Rail 2 for a model that is trained without data
augmentation, exclusively with measurement data from Rail 1.
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Figure 11. Top view of the surface of Rail 3 in the central position, with surface elements colored
according to the intensity of the light reflected from the surface. Red coloring: classification of the
model trained by data of Rail 1; black coloring: part of the running surface that was not classified as
the running surface by the model.

The running surface detected by the model is laterally limited. From a lateral position
<−5 mm, no more surface elements are assigned to the running surface. The inclusion of
the lateral position of the surface elements should be retained as a feature, as the running
surface is typically located towards the inner edge of the rail. Overfitting is prevented
in the presented investigations by data augmentation, which leads to a detection rate of
>87 % for Rail 3. For network-wide application, the training data set must be extended by
measurement data from the rail network, which include different lateral positions of the
running surface.

The difference between the reference system of the measurement setup and the rail
is determined by a curve fit of the measured cross-profile with the reference profile of the
rail. In the future, this can be achieved by the selection of a laser profilometer with a longer
projected line transverse to the direction of travel.
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The presented methodology can be applied to an onboard installation on a train.
The investigation of external disturbances is essential for the application of the running
surface detection methodology as part of an onboard monitoring system. This includes
vertical movements such as shocks or vibrations of the vehicle, which can be emulated on a
test stand, as well as moisture on the rail surface. These external interferences can possibly
lead to the distortion of the measurement result and must be considered in isolation under
laboratory conditions, and compensation techniques must be developed. Immediately after
grinding the rail surface, no clear running surface is formed. Consequently, the optical
differences between the corroded and non-corroded surface are not visible to the laser
profilometer. In this case, the detection of the area of the rail surface on which the wheel
has run is only possible to a limited extent.

5. Conclusions

It is shown that the detection of the running surface can be achieved with a laser
profilometer based on the intensity of the light reflected from the rail surface. The results
from the laboratory environment are verified for various rail surface conditions with
different levels of wear. The application of supervised machine learning models enables the
automatic detection of the lateral position and the width of the running surface. The mean
intensity, the standard deviation of the intensity and the lateral position of a surface element
on the rail surface are applied as features. A surface element size of 0.5 mm × 50 mm
(∆y × ∆x) is set. The classifier applied is a linear support vector machine that achieves
accuracy of over 90 % for a shiny rail surface. The average deviation in the determined
width of the running surface of a retracted shiny rail surface varies between −1.2 mm
and 5.6 mm for different lateral positions of the sensor. The detection methodology offers
the possibility for the network-wide detection of the running surface for the condition
monitoring of the rail network. This can be realized by the onboard installation of the
setup and can furthermore enable measurements at the speed of the rail vehicle. This
would provide the basis for the implementation of a direct optical measurement setup for
rail roughness measurements on the rail vehicle. For this purpose, the robustness of the
detection methodology against external disturbances such as vertical vehicle movements
must be investigated. For application in the condition monitoring of the rail network,
the extension of the training data set is necessary, which would enable the implementation
of further machine learning models, e.g., the application of deep learning.
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