
Citation: Zhao, R.; Wang, K.; Che, W.;

Li, Y.; Fan, Y.; Gao, F. Adaptive Cruise

Control Based on Safe Deep

Reinforcement Learning. Sensors 2024,

24, 2657. https://doi.org/10.3390/

s24082657

Academic Editor: Hui Kong

Received: 1 April 2024

Revised: 17 April 2024

Accepted: 19 April 2024

Published: 22 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Adaptive Cruise Control Based on Safe Deep
Reinforcement Learning
Rui Zhao 1 , Kui Wang 2, Wenbo Che 1, Yun Li 3 , Yuze Fan 1 and Fei Gao 4,*

1 College of Automotive Engineering, Jilin University, Changchun 130025, China; rzhao@jlu.edu.cn (R.Z.);
chewb1519@mails.jlu.edu.cn (W.C.); fanyz23@mails.jlu.edu.cn (Y.F.)

2 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
3120230321@bit.edu.cn

3 Graduate School of Information and Science Technology, The University of Tokyo, Tokyo 113-8654, Japan;
li-yun@g.ecc.u-tokyo.ac.jp

4 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changhun 130025, China
* Correspondence: gaofei123284123@jlu.edu.cn

Abstract: Adaptive cruise control (ACC) enables efficient, safe, and intelligent vehicle control by
autonomously adjusting speed and ensuring a safe following distance from the vehicle in front. This
paper proposes a novel adaptive cruise system, namely the Safety-First Reinforcement Learning
Adaptive Cruise Control (SFRL-ACC). This system aims to leverage the model-free nature and high
real-time inference efficiency of Deep Reinforcement Learning (DRL) to overcome the challenges of
modeling difficulties and lower computational efficiency faced by current optimization control-based
ACC methods while simultaneously maintaining safety advantages and optimizing ride comfort.
Firstly, we transform the ACC problem into a safe DRL formulation Constrained Markov Decision
Process (CMDP) by carefully designing state, action, reward, and cost functions. Subsequently, we
propose the Projected Constrained Policy Optimization (PCPO)-based ACC Algorithm SFRL-ACC,
which is specifically tailored to solve the CMDP problem. PCPO incorporates safety constraints that
further restrict the trust region formed by the Kullback–Leibler (KL) divergence, facilitating DRL
policy updates that maximize performance while keeping safety costs within their limit bounds.
Finally, we train an SFRL-ACC policy and compare its computation time, traffic efficiency, ride
comfort, and safety with state-of-the-art MPC-based ACC control methods. The experimental results
prove the superiority of the proposed method in the aforementioned performance aspects.

Keywords: autonomous driving; adaptive cruise control; safety aware; deep reinforcement learning;
projected constrained policy optimization

1. Introduction

The adaptive cruise control (ACC) system is an advanced driver-assistance system
(ADAS) that enables a vehicle to automatically maintain a desired headway distance
from the vehicle ahead. This system monitors the speed and distance of the preceding
vehicle through various sensing technologies such as radar, LiDAR, and cameras. It then
adjusts the control of the vehicle’s speed accordingly to maintain a safe and stable following
distance [1]. Recognized as a critical component of autonomous vehicles [2], recent research
has demonstrated that this system can also enhance traffic flow by adaptively adjusting the
gap between vehicles in response to dynamically changing traffic conditions [3,4], and this
viewpoint is further supported by studies [5–7]. Currently, ACC primarily encompasses
three control methods: classical control theory, Model Predictive Control (MPC), and
Reinforcement Learning (RL)-based control.

For simple controllers and plant models, static control theory methods can effectively
meet expected control behaviors [8,9]. Cruise control is typically implemented as a simple P,
PI, or PID controller [10]. Design methods such as pole placement design are instrumental

Sensors 2024, 24, 2657. https://doi.org/10.3390/s24082657 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24082657
https://doi.org/10.3390/s24082657
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1597-1961
https://orcid.org/0009-0002-7824-7751
https://orcid.org/0009-0003-8309-7396
https://orcid.org/0000-0003-4195-5033
https://doi.org/10.3390/s24082657
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24082657?type=check_update&version=1

Sensors 2024, 24, 2657 2 of 18

in achieving desired control characteristics [10]. However, for more complex systems, the
optimal tuning of controller gains is challenging, and the algorithms also suffer from lower
performance ceilings.

Compared to traditional control theory, MPC offers improved control performance,
and ACC technology based on MPC has made significant progress in recent years [11–13].
Starting from [14], MPC-based methods have become the dominant approach because MPC
optimizes a multi-objective cost function, including fuel economy, driver comfort, and
safety during driving. Stanger et al. [15] created additional constraints for MPC from map
data for predictive speed control, enhancing the safety of the algorithm. Moser et al. [16]
introduced an ACC algorithm within the MPC framework that considers fuel economy,
comfort, and safety simultaneously, offering substantial improvements in fuel efficiency
and comfort compared to traditional algorithms. In [17], a specific MPC was designed,
and a system tuning method was proposed, allowing the desired performance to be
adjusted simply by changing two parameters: one for safety and one for comfort. Generally,
considering the nonlinearity of vehicle dynamics, various environmental and driving
conditions and adjusting the controller’s weights can improve the performance of the
system. Refs. [18,19] parameterized the weights used in the MPC cost function as functions
of inter-vehicle distance and speed, achieving good experimental results. Nie et al. using
MPC enhances fuel efficiency, safety, and comfort in car-following scenarios, achieving up to
13% better fuel economy than traditional PID-based systems in simulations [20]. Zhang et al.
proposed a collision-considerate MPC control strategy that significantly enhances the
safety of the ACC algorithm [21]. However, MPC requires a model, and computational
costs limit the complexity of the model, its ability to handle uncertainties [22,23], and the
length of the prediction horizon. Furthermore, ACC based on MPC necessitates accurate
vehicle and dynamics models, and errors in these models can impact the effectiveness of
actual control. In the real world, obtaining accurate vehicle and dynamics models is often
challenging. Wang et al. proposed a data-driven five-model approach that mitigates the
issue of model errors to some extent, but it requires a large amount of labeled real data for
its implementation [24].

The emergence of deep reinforcement learning (DRL) shows promise in addressing
these issues [25–32]. In DRL, agents interact with the environment in a time-discrete
manner, receiving rewards at each time step based on their actions and the state of the
environment with the objective being to maximize cumulative and discounted rewards.
DRL algorithms employ neural networks as function approximators, and those with contin-
uous action spaces are particularly relevant for solving continuous control tasks, especially
in autonomous driving and driver assistance systems [33,34]. Once the policy is trained,
control commands are directly mapped by the neural network, significantly reducing com-
putational demands for control strategies and addressing the limitation of computational
power affecting the prediction range in MPC methods. A key feature of reinforcement
learning is self-learning; unlike supervised learning, the learning algorithm does not rely
on a labeled dataset. Instead, optimal behaviors are defined solely by the abstract goal
of maximizing collected rewards. Notably, DRL algorithms are model-free, implicitly
learning from experience, and solving the challenging modeling issues associated with
MPC methods.

In recent years, DRL has progressively been explored for application in the lateral and
longitudinal control of autonomous driving. Das et al. [35] propose a dynamic adaptive
cruise control system based on DRL that effectively adjusts the headway in response to
dynamic traffic conditions on freeways and ramps to optimize traffic flow. However, the
experiments did not evaluate the safety performance of the policy. After that, Das et al. [36]
designed a separate RL agent that identifies and adapts to the optimal Time-to-Collision
(TTC) threshold based on rich traffic information gathered from the surrounding envi-
ronment, including macro- and micro-traffic data. This RL agent interacts with the main
RL agent by providing the optimal TTC threshold as feedback to achieve the best inter-
vehicle spacing, thereby maximizing traffic flow, driving safety, and comfort. However,

Sensors 2024, 24, 2657 3 of 18

the experimental scenarios for this method are extremely simplistic and still exhibit a 1%
collision rate, which is significantly higher than the highest functional safety standards
for autonomous driving. DRL policies optimized purely for reward maximization are
rarely suitable for safety-critical autonomous driving applications. The primary reason
why current RL applications in ACC struggle to ensure safety performance is mainly due to
the singular focus on maximizing a single reward. Achieving a balance between safety and
other performance metrics is challenging, and such methods often fail to ensure consistent
safety under unknown traffic conditions. This limitation constrains the application of
DRL to simplified ACC simulation scenarios, complicating its deployment in real-world
complex traffic environments. Therefore, ACC systems should prioritize safety as a fun-
damental constraint during the RL policy update process, rather than merely focusing on
maximizing rewards.

To address the challenges of modeling complexity and high computational costs
associated with MPC-based ACC policies, and the robust safety challenges of ACC with
non-safety-aware DRL strategies, this paper proposes a safe DRL-based ACC strategy,
namely the Safety-First Reinforcement Learning Adaptive Cruise Control (SFRL-ACC).
This method incorporates a safe trust domain into traditional RL approaches, preventing
the policy from increasing safe in the pursuit of maximizing rewards. It achieves collision-
free adaptive safe cruising with minimal computational power requirements while also
offering high levels of comfort and traffic efficiency. During the training process of the ACC
policy, the vehicle initially collects trajectory information over a certain time length within
a traffic environment. Subsequently, the policy is updated within the safe trust domain,
and this process is repeated until the optimal strategy is trained. This work validates the
superior performance of the SFRL-ACC strategy in a simulation environment, achieving
a zero-collision rate for the first time in DRL-trained adaptive cruise control strategies,
and the policy maintains a high consistency with the expected speed when there is no
interference from target vehicles.

The main contributions of this work are as follows:
(1) The ACC problem is modeled as a safe DRL formulation Constrained Markov

Decision Process (CMDP), wherein a reasonable design of the state space and action space,
as well as the reward and safe cost functions, are considered. The state space includes the
velocities of the leading and following vehicles and the distance between them, while the
action space considers the future desired velocity of the following vehicle. The reward
function takes into account safety, the comfort of the following vehicle, and traffic efficiency,
whereas the safe cost function focuses solely on the safety of the vehicle. Upon completion
of training and deployment, this strategy demonstrates excellent performance.

(2) We propose the Safety-First Reinforcement Learning Adaptive Cruise Control
(SFRL-ACC) method based on the Projected Constrained Policy Optimization (PCPO)
approach. This method employs three neural networks for decision making, evaluating
overall policy performance, and assessing policy safety performance. When updating the
policy neural network in reinforcement learning-based adaptive cruise control methods,
it first maximizes rewards and then projects the policy into a safe constraint domain,
addressing the issue of insufficient safety.

(3) Extensive experiments were carried out across various traffic scenarios, and the
results indicate significant enhancements in computational efficiency, ride comfort, and
traffic efficiency when compared to control methods based on MPC. The remainder of this
paper is organized as follows: Section 2 presents the problem definition and methodolog-
ical framework, Section 3 provides a detailed introduction to the SFRL-ACC algorithm,
including its components and the update process, Section 4 discusses the experimental
setup and compares the experimental results and Section 5 summarizes the entire text.

Sensors 2024, 24, 2657 4 of 18

2. Problem Definition and Methodological Framework
2.1. Problem Definition

In this section, the ACC problem is defined as a typical optimization issue. Initially,
the vehicle under control is referred to as the ego vehicle, while the vehicle in the same lane
ahead of the ego vehicle is called the preceding vehicle, as illustrated in Figure 1. Defining
the velocity of the preceding vehicle as vpre and that of the ego vehicle as vego, with their
relative distance being drel , the Time to Collision (TTC) and the safety distance ds can be
calculated as follows:

TTC =
drel

vpre − vego
(1)

ds = TTCs × (vpre − vego) (2)

where TTCs represents the safe threshold value for TTC. The ACC scenarios are divided
into two cases: when the relative distance between the ego vehicle and the preceding
vehicle is greater than the safety distance, as shown in the upper part of Figure 1, the
control objective is to stabilize the velocity of the ego vehicle around the desired speed
vexp; when the relative distance is less than the safety distance, as depicted in the lower
part of Figure 1, the aim is to control the TTC to exceed the safety threshold by adjusting
the anticipated speed of the ego vehicle at the next time step. At the current moment,
vpre, vego, and drel can all be obtained in real time through sensors, and the strategy needs
to determine the expected velocity adjustment of the ego vehicle for the next time step to
achieve the ACC control objectives.

Figure 1. Schematic for two-car following.

2.2. Methodological Framework

The SFRL-ACC methodology introduces a tripartite neural network system comprising
a policy network and two value networks focused on rewards and safety costs. This policy
network transforms the immediate local states of the self-driving vehicle into a probability
distribution for potential actions in the subsequent moment. Concurrently, the reward and
safety cost value networks are tasked with assessing the anticipated rewards and safety
expenditures under the prevailing policy. The architecture of the SFRL-ACC approach,
encompassing both environment interaction sampling and policy evaluation and update, is
depicted in Figure 2.

In the SFRL-ACC algorithm, the responsibility of the environment interaction sam-
pling module is to acquire updated neural parameters for the policy and value networks,
subsequently utilizing these parameters to sample experiential data from diverse traffic
contexts. This module employs a safe DRL formulation, CMDP, to formally express the
process of the ego vehicle with safety constraints exploring within the ACC system envi-
ronment. This exploration culminates in the generation of discrete time-series trajectory
data, encompassing states, actions, rewards, and safety costs.

The SFRL-ACC policy evaluation and update module works in tandem with the
environment interaction module, utilizing data collected from the environment interaction

Sensors 2024, 24, 2657 5 of 18

module to update the policy and value neural networks. It then synchronizes the updated
parameters with the environment interaction module for the next cycle of sampling and
optimizing, continuing until the desired ACC control performance is achieved. This module
employs the PCPO method to solve the CMDP problem, incorporating safety-constrained
costs to further restrict the trust region formed by KL divergence. Depending on the current
safety level, this method adjusts the rate and direction of policy updates to achieve a safe
and efficient policy, aiming to optimize ACC performance while ensuring that constraint
costs remain within predefined bounds.

Figure 2. Overall framework diagram of the SFRL-ACC method divided into two parts: Environment
Interaction Sampling and Policy Evaluation and Update.

3. SFRL-ACC Algorithm

This chapter provides a detailed description of the SFRL-ACC method, which is
composed of two parts: Environment Interaction Sampling and Policy Evaluation and
Update. Initially, the ACC is modeled as a CMDP problem by defining custom state spaces,
action spaces, reward functions, and cost functions. This is followed by an explanation of
the update process for the policy neural network, reward value neural network, and risk
value neural network after interaction with the environment. The policy neural network
is updated using the PCPO algorithm, which involves two steps: maximizing the reward
value and then projecting the maximized reward policy onto a risk constraint to coordinate
constraint violations. The reward and risk value neural networks are updated using
gradient descent based on the distance between predicted values and actual values.

3.1. Representation of ACC Problem to a Safe DRL Formulation CMDP
3.1.1. Constrained Markov Decision Process

Markov Decision Processes (MDPs) are widely regarded as a formal framework for
expressing the process of an agent navigating through an environment. They inherently
represent a discrete-time decision-making architecture. Within the MDP framework, agents
participate in games within a global environment with the objective to cooperate or compete
to achieve the maximum total expected reward. However, when safety constraints are
introduced, the standard MDP framework is insufficient to describe the environment.
Therefore, this section introduces the concept of CMDP. This extends Markov games by
integrating constraints of safe trust domains, defining a Constrained Markov game as a
tuple {S, A, R, C, P, µ}, where

Sensors 2024, 24, 2657 6 of 18

• S is the state space, which is composed of the concatenation of local states observed
by the agent and optionally, global non-redundant states;

• A represents the set of action space of the agent, where an action at ∈ A at the discrete
time step t;

• R : S × A × S → R represents the reward function that describes the instant reward
from a state st by taking an action at to the next state st+1;

• C = {Ci}i=1,...,Nc represents the set of safe functions defined by the specific environ-
ment safety constraints (there are Nc safe functions), Ci : St × At × St+1 → R maps
the transition tuples to a safe value with thresholds d1, d2, . . . , dNc ;

• P : S × A × S → [0, 1] represents the transition probability distribution from a state
st ∈ S by taking an action at ∈ A to the next state st+1 ∈ S at the discrete time step t;

• µ : S → [0, 1] represents the initial state distribution.

Under the CMDP model, the agent interacts with the environment within discrete
time steps. At each time step t, each agent generates a state through interaction with the
environment and executes an action at ∼ π(·|st) based on its policy π. After executing
action at, the agent receives a reward R(st, at, st+1) and its cost C(st, at, st+1). Subsequently,
the environment transitions to a new st+1 ∼ P(·|st, at). Upon reaching a terminal state, the
agent starts a new episode, beginning from an arbitrary state s0 ∼ µ. When a trajectory
τ = (s0, a0, s1, . . .) is collected from an epoch, the policy is updated, allowing the agent to
continue interacting with the environment using this newly updated policy. The goal of
safe DRL is to enable an agent to learn the optimal policy π⋆, which, through continual
policy updates, maximizes the expected reward return while keeping the safe cost within
its constrained range.

Let JCi (π) denote the expected discounted return JCi (π) of policy π with respect to
safe cost function Ci:

JCi (π) = Eτ∼π

[
∑

t
γtC(st, at, st+1)

]
(3)

where γ ∈ [0, 1) is the discount factor. With the above conditions, the feasible policy set of
the CMDP model is

ΠC ≜ {∀i, JCi (π) ≤ di} (4)

Given that the expected discounted return of policy π with respect to the reward function is
J(π) = Eτ∼π [∑t γtR(st, at, st+1)], the optimal policy π⋆ with the largest expectation value
of the reward function under the CMDP model is

π⋆ = arg max
π∈ΠC

J(π) (5)

3.1.2. Converting ACC to Safe DRL Model through CMDP

The SFRL-ACC algorithm determines the expected speed of the controlled vehicle in
real time; the state space needs to include the speed information vpre of the preceding vehi-
cle, the speed information of the ego vehicle vego, and the distance information drel between
the two vehicles. Therefore, this paper sets the state space of ACC as S =

(
vpre, vego, drel

)
.

The action space is defined as the expected speed v′ego of the ego vehicle at the next time
step. Subsequently, the vehicle’s motion control layer can generate the required throttle
opening and brake pad force for the vehicle’s longitudinal control.

Following the CMDP framework, we have established not only a reward function that
characterizes the degree of overall performance optimization but also a safe cost function
that represents the safety performance of the system. This is to ensure that policy updates
maximize the overall performance without violating the vehicle’s safe constraints. To better
assess the quality of the policy, we have considered both dense and sparse evaluation items.
Dense evaluation items are used to assess the performance at each time step, such as the
vehicle’s speed and acceleration, whereas sparse evaluation items are used to assess the

Sensors 2024, 24, 2657 7 of 18

vehicle’s performance in each episode and are only triggered by certain special events, such
as a collision (termination state) or successful arrival at the destination (termination state).

The safe cost function emphasizes traffic safety and the potential for collision avoid-
ance. Therefore, this paper has designed a TTC safety threshold TTCs. When the TTC
between two vehicles with potential for collision is less than TTCs, the value of the cost
function increases by εd. Hence, the dense loss function cd can be defined as follows:

cd =
n

∑
t=1

εdδd (6)

Here, δd = 1 represents that there is a collision safe between the ego vehicle and preceding
vehicle, meaning the TTC between the vehicles is less than the safe threshold, and δd = 0
indicates that there is no collision safe for the ego vehicle. Additionally, if a collision occurs,
the value of the safe function will increase by εc. Therefore, the sparse loss function cs is
defined as

cs = εcδc (7)

where δc = 1 indicates that the ego vehicle experiences a collision during its attempt in the
environment, and δc = 0 indicates that the ego vehicle successfully reaches its destination
in the attempt. The overall safe cost function is defined as

CSFRL−ACC = cd + cs (8)

The reward function focuses on evaluating comprehensive control performance, en-
compassing three aspects: safety, comfort, and efficiency. The algorithm’s reward function is
composed of dense rewards and sparse rewards. The dense reward function rd is defined as

rd =
n

∑
t=1

− εv|vcon − vexp| − εaacon (9)

where εv, εa represent weights, vexp denotes the expected velocity when the ego vehicle is
in ACC, and aexp represents the real-time acceleration of the ego vehicle. When the ego
vehicle successfully reaches the target location, the reward function will increase by εs. The
sparse reward function rs is defined as

rs = εsδs (10)

where δs = 1 indicates that the ego vehicle has successfully reached the target location;
otherwise, it is 0. The algorithm’s reward function is defined as

RSFRL−ACC = rd + rs − CSFRL−ACC (11)

3.2. Evaluation and Updating of the Policy
3.2.1. Policy Neural Network Optimization

The policy optimization algorithm searches for the optimal feasible policy solution
to the CMDP problem. It iteratively updates the policy by maximizing the expected
discounted reward J(π) over the intersection of the KL divergence trust region and the risk
trust region Πθ ∩ ΠC:

πk+1 = arg max
π

Es0∼ρ0,a0:∞∼πk ,s1:∞∼Pπk
J(π)

s.t. DKL(π||πk) ≤ δ

JCi (πk+1) ≜ Es0∼ρ0,a0:∞∼πk ,s1:∞∼Pπk

[
∞

∑
t=0

γtCi(st, at)

]
≤ di, ∀i = 1, . . . , Nc (12)

Sensors 2024, 24, 2657 8 of 18

where NC is the number of safe cost functions. Kakade and Langford [37] provide an
identity that characterizes the expected safety regulatory value of policy πk+1 using the
safety regulatory advantage function of policy πk:

JCi (πk+1)− JCi (πk) =
1

1 − γ
Es0∼ρ0,a0:∞∼πk ,s1:∞∼Pπk

[A(s, a)] (13)

Combining Equations (12) and (13), we can obtain the updatable set of policy πk that
satisfies the safety regulatory threshold, which is represented as

JCi (πk) +
1

1 − γ
Es0∼ρ0,a0:∞∼πk ,s1:∞∼Pπk

[A(s, a)] ≤ di, ∀i = 1, . . . , Nc (14)

Equation (12) is thus approximated as

πk+1 = arg max
π

Es0∼ρ0,a0:∞∼πk ,s1:∞∼Pπk
[J(π)]

s.t. DKL(π||πk) ≤ δ

JCi (πk) +
1

1 + γ
Es0∼ρ0,a0:∞∼πk ,s1:∞∼Pπk

[
∞

∑
t=0

γtCi(st, at)

]
≤ di, ∀i = 1, . . . , Nc (15)

The aforementioned formula can increase the expected reward and satisfy specific
constraints di. However, for neural networks with high-dimensional parameter spaces,
directly solving Equation (15) may be impractical. Given a small step size δ, the objectives
and safety constraints of policy π can be approximated by a linear function around the
current policy πk and the KL divergence constraint, and θk represents the parameters of the
policy neural network under policy. Equation (15) can be approximated by a second-order
expansion as follows:

θk+1 = arg max
θ

gT(θ − θk)

s.t.
1
2
(θ − θk)

T H(θ − θk) ≤ δ; p̂T(θ − θk) + ĉ ≤ δ (16)

where g = ∇θEs0∼ρ0,a0:∞∼πk ,s1:∞∼Pπk
[Aπ(s, a)] represents the gradient of the reward ad-

vantage function, H represents the Hessian matrix of the KL divergence between new
and old policies, p̂ = ∑i ∇θ JCi (π) represents the policy gradient of the safe function, and
ĉ = ∑i ∑j(JCi (π)− ci

1−γ), ∀i = 1, . . . , Nc reflects the proximity of the current policy’s safe
value to the safety threshold.

During the policy optimization process based on Equation (16), different levels of safety
issues are inevitably encountered. To enhance the efficiency of policy training, the algorithm
employs distinct optimization methods for different safe levels. The policy is categorized
into three safe levels: low safe, medium safe, and high safe. The algorithm determines the
current and post-update safe levels of the policy using three indicators: p̂, ĉ, and K. Here,
a larger p̂ indicates significant changes in safe value after the policy update, a positive
value of ĉ indicates a higher safe level above the threshold, and a negative value indicates a
lower safe level below the threshold. K is defined as K = δ − ĉ2

p̂H−1 p̂ , where H represents
the Hessian matrix of the KL divergence between new and old policies. A positive K
suggests that the KL divergence trust region and the safety regulatory constraint trust region
intersect, while a negative K indicates that these trust regions are either encompassing
or unrelated.

When p̂ is extremely small (p̂ ≤ 1 × 10−8), indicating that the current policy and its
neighborhood are in a state of high safety, updating the policy in any direction is safe. When
K < 0 and ĉ < 0, it implies that the current policy’s KL divergence trust region is within the
safe constraint trust region, and updating the policy in any direction is also safe. In these

Sensors 2024, 24, 2657 9 of 18

two cases, the algorithm utilizes TRPO [38] to optimize the policy network. It iteratively
updates by maximizing the reward advantage function over a local neighborhood of the
most recent policy iteration θk:

θk+1 = arg max
θ

gT(θ − θk) s.t.
1
2
(θ − θk)

T H(θ − θk) ≤ δ (17)

The network update formula is derived using convex optimization methods to solve
Equation (17):

θk+1 = θk +

√
2δ

gT H−1g
H−1g (18)

When K > 0, indicating that the safe trust region and the KL divergence trust region
intersect, maximizing the expected reward value for updates may lead to the policy entering
a more dangerous area, representing a medium-safe state. In this case, an additional step is
added to the TRPO to ensure that the updated policy satisfies the safe threshold constraint.
The update consists of two steps: a reward enhancement step and a projection step. The
reward enhancement step maximizes the reward value through the TRPO algorithm, and
the projection step projects the policy network after the reward enhancement step into
the safe constraint trust region. Initially, the algorithm maximizes the advantage function
Aπ(s, a) within the KL divergence trust region:

θk+ 1
2
= arg max

θ
gT(θ − θk) s.t.

1
2
(θ − θk)

T H(θ − θk) ≤ δ (19)

Subsequently, the algorithm projects the intermediate policy θk+ 1
2

into the safe con-
straint trust region by minimizing the distance between θk+ 1

2
and the safe constraint

trust region:

θk+1 = arg min
θ

1
2
(θ − θk+ 1

2
)T H(θ − θk+ 1

2
) s.t. p̂T(θ − θk) + ĉ ≤ 0 (20)

Convex optimization methods are employed to solve Equations (19) and (20).

θk+1 = θk +

√
2δ

gT H−1g
H−1g − max

0,

√
2δ

gT H−1 p̂ p̂T H−1g + ĉ

p̂T H−1 p̂

H−1 p̂ (21)

If K < 0 and ĉ > 0, this indicates that the current policy is in a relatively dangerous
state and there is no intersection between the KL divergence trust region and the safety
regulatory trust region. In such a situation, updating the policy in any direction will
not result in a high-safe state. However, employing the update method for medium-safe
states in this scenario can lead to the convex optimization being unsolvable. Therefore, the
algorithm alters the method for updating the policy neural network, employing a linear
backtracking approach to update the policy neural network with the aim of minimizing the
safe value:

θk+1 = θk −
√

2δ

p̂T H−1 p̂
H−1 p̂T (22)

3.2.2. Reward and Cost Value Networks Optimization

For the reward value neural network and the safe value neural network, their gradients
are used to update the respective network parameters.

ϕR = arg min
ϕ

E
[(

VϕR(st)− R̂t
)2
]

(23)

Sensors 2024, 24, 2657 10 of 18

ϕC = arg min
ϕ

E
[(

VϕC (st)− Ĉt
)2
]

(24)

In this context, ϕR and ϕC, respectively, represent the parameters of the reward value
neural network and the safety value neural network. VϕR(st) and VϕC (st) also denote the
evaluated values of the reward and safety values at st, while R̂t and Ĉt correspond to
the true values of the reward and safety values, respectively. After updating the three
neural networks, Algorithm 1 employs the new policy network to collect trajectories in the
environment again, followed by the evaluation and updating of the neural networks, until
the policy achieves the desired performance.

Algorithm 1 SFRL-ACC

1: Initialize ϕR, ϕC, π, set dC, γ, ρ, Ne, Nt
2: for epoch k = 1, 2, . . . , Ne do
3: for t = 1, 2, . . . , Nt do
4: For ego vehicle, receive state st = (vpre, vego, drel), choose an action at = v′ego

according to current policy πk.
5: Execute action at, get reward rt, cost ct, next state st+1, w.r.t. current policy and

exploration in environment interaction sampling module.
6: st = st+1
7: end for
8: Collect trajectories τ = (st, at, rt, ct, st+1)
9: Calculate advantage function of reward and risk function: Ar(s, a), Ac(s, a)

10: Calculate ĝ, p̂, ĉ, K:
11: ĝ = ∇θ J(τ), p̂ = ∑i ∇JCi (τ), ĉ = ∑i(JCi (π)− ci

1−γ), K = δ − ĉ2

p̂T H−1 p̂
12: if High Safety then
13: Update policy network as:
14: θk+1 = θk −

√
2δ

gT H−1g H−1g
15: else if Medium Safety then
16: Solve convex dual problem, get v∗, λ∗

17: Solve α by backtracking line search, update policy network as:
18: θk+1 = θk +

α
λ∗ H−1(ĝ − b̂v∗)

19: else
20: Update policy network as:

21: θk+1 = θk −
√

2δ
b̂T H−1 b̂

H−1b̂
22: end if
23: Update ϕR, ϕC as:
24: ϕR = arg minϕ E

[(
VϕR(st)− R̂t

)2
]

25: ϕC = arg minϕ E
[(

VϕC (st)− Ĉt
)2
]

26: end for

3.3. Algorithm Overview

The SFRL-ACC method is divided into training and deployment phases. During
training, it first initializes the parameters of the policy, reward, and safety value neural
networks as well as some other necessary experimental parameters (line 1). Subsequently,
it engages with the environment using the initialized policy. For the ego vehicle, it receives
state space information from the environment, and the policy neural network guides the
action space, leading the vehicle into the next state (lines 2–7). After the ego vehicle
completes a round of interaction with the environment, the policy neural network is
optimized based on the trajectory information collected from this interaction (lines 8–19).
When the control policy is at a high safety level, optimization is conducted using the TRPO
algorithm (lines 11–12); at a medium safety level, the PCPO algorithm is employed for
optimization (lines 13–15); and at a low safety level, a linear backtracking method is used
to minimize the safety value (lines 16–17). Finally, the parameters of the reward and safety

Sensors 2024, 24, 2657 11 of 18

value neural networks are updated using gradient-based methods to minimize the gap
between estimated and true values (line 18). Upon completion of the training, the optimized
parameters of the AFRL-ACC strategy neural network are obtained and deployed in a
traffic environment. This setup allows for the real-time translation of ACC system state
inputs into behavioral outputs, enabling the effective control of vehicles.

4. Experiment
4.1. Experimental Setting

To evaluate the proposed SFRL-ACC algorithm in experimental tests, this section
conducts two sets of experiments. Specifically, the first experiment demonstrates the
training process of the SFRL-ACC algorithm, showcasing the evolution of performance
during the iterations of policy updates and the final performance of the policy. The second
experiment compares the performance of a baseline control strategy based on MPC [20] with
the SFRL-ACC policy post-training under various different traffic scenarios. Compared to
the MPC method described in the original text, we made minor adjustments. To ensure
a fair comparison of performance under the same scenarios, the parameters related to
the experimental setup in this paper, including the desired cruising speed and maximum
permissible vehicle speed, were adjusted. All other parameters related to the algorithm
were kept consistent with the original text.

All experiments were conducted in a simulated environment, where an urban highway
scenario was constructed using Carla 0.9.12, and the safe DRL model was built based on
the Pytorch framework. Additionally, Carla’s builtin sensors were used for real-time trans-
mission of vehicle state information, and the BasicAgent class was employed to generate
vehicular trajectories in the urban highway scenario. The desired vehicle speed output by
the policy neural network was converted into throttle and brake control signals through
Carla’s built-in PID controller to control the vehicle. The GPU used was NVIDIA GeForce
RTX 3090 (NVIDIA, New York, NY, USA), and the operating system was Ubuntu 18.04.

In this experiment, we used Carla TOWN 05’s urban highway scenario to train and
test the SFRL-ACC algorithm, providing a simulation environment that balances control
and realism for assessing the algorithm’s performance across a range of traffic ACC con-
ditions. This study defines a single trial, in accordance with the international standard
ISO 15622 [39], as one complete circuit around the urban highway, which includes scenarios
such as constant speed following, preceding vehicle braking, cut in, and randomly occur-
ring cut out. In the testing environment following policy deployment, each condition is
triggered randomly. Moreover, the location of each trigger was also random, which closely
aligns with real driving scenarios. To approximate the real-world scenarios as closely as
possible, we collected the PID parameters of the underlying tracking control from actual
vehicles and deployed them into the Carla simulator. The target cruising speed of the ego
vehicle was set to 16 m/s with a time step of t = 0.1 s. The architecture for both policy and
value neural networks was 3 × 128 × 128 × 1. For each policy iteration, n = 2048 samples
were collected, and the reward and safe function neural networks were optimized using
the Adam optimizer. The learning rate was linearly decayed from 1 × 10−3 to 0, and the
training algorithm was halted after 2000 iterations of updates. Please refer to Table 1 for
detailed experimental parameters.

Table 1. Experimental parameter settings.

Parameters Value

CARLA Simulator -
Time step 0.1 s
Road width and lane width 14 m, 3.5 m
SFRL-ACC -
Discount factor γ 0.99
Learning rate 1 × 10−3 → 0 (linearly)
Max KL divergence δ 0.001

Sensors 2024, 24, 2657 12 of 18

Table 1. Cont.

Parameters Value

Damping coefficient 0.01
Time steps Nt 500
Epoch Ne 2000
Cost limit 1
Hidden layer number 2
Hidden layer units 128
Policy std σ0 1 → 0 (exponentially)
Policy std decrease index β 1.5 × 10−6

Coefficient of std ζ 1
Optimizer Adam
TTC safety threshold TTCs 4 s
MPC -
Predictive horizon T 5
Velocity range [0 m/s, 25 m/s]
Expect velocity vexp 16 m/s
Risk parameter α 0.005

4.2. Analysis of Performance during Training Process

In this experiment, we successfully trained a high-performing control policy using
the SFRL-ACC algorithm and analyzed the evolution of reward and safe values during
the training process. The training scenario is shown in Figure 3. Figure 4a illustrates
the changes in reward values throughout the training process. The curve in the graph
represents the mean of the training data, while the shaded area indicates the variance in
reward values. The initial state of training is the lowest point in the process, where the
control policy is unable to complete the adaptive cruise around the urban highway without
collisions, resulting in negative scores. During the first hundred iterations of policy iteration,
there is a rapid increase in reward values, indicating occasional successful completions of
the route without collisions. Between one hundred and five hundred iterations, the reward
values fluctuate significantly around zero. This fluctuation is due to the random occurrence
of hazardous scenarios in the training environment, which the policy has not yet learned
to handle effectively. From five hundred to twelve hundred iterations, there is a gradual
increase in reward values as the policy progressively masters the task in ACC, leading to
an increasing number of successful completions of the target route. Eventually, after twelve
hundred iterations, the reward values stabilize at a very high score, signifying the policy’s
excellent performance in terms of safety, comfort, and traffic efficiency.

Figure 4b displays the evolution of safe cost values during the training process, where
the safe is associated only with two factors: adherence to TTC between vehicles and the
occurrence of collisions. At the beginning of training, the safe cost value is extremely high,
corresponding to the very low reward values, indicating that at this stage, the ego vehicle
is almost certain to collide in each attempt. During the first hundred iterations, the safe cost
value rapidly decreases, marking occasional successful trials. In the iterations from one
hundred to five hundred, the safe cost value fluctuates around four hundred. Between five
hundred and twelve hundred iterations, the safe cost value gradually decreases, eventually
falling below the safe threshold after twelve hundred iterations. The trend in safe values
corresponds with the changes in reward values, signifying that the reward function is
strongly related to safety performance. The direction of policy training is oriented toward
enhancing performance aspects like comfort and traffic efficiency while ensuring safety.

Sensors 2024, 24, 2657 13 of 18

(a) (b)
Figure 3. The training scenarios of the SFRL-ACC algorithm. The blue box represents the preceding
vehicle, and the red box represents the ego vehicle. Scenario (a) represents preceding vehicle braking,
while scenario (b) signifies a vehicle cut in.

(a) (b)
Figure 4. Analysis of performance during the training process of the SFRL-ACC strategy, including
reward and safe values. (a) shows the score curve; (b) shows the cost curve, where the blue line
represents the score and the red line represents the cost threshold.

4.3. Performance Comparison Post-Policy Deployment

This section compares the performance of the policy trained using the SFRL-ACC
algorithm post-deployment with that of a control policy based on MPC [2]. For performance
testing post-policy deployment, three typical scenarios were used: constant speed follow,
preceding vehicle braking and cut in. Typically, these scenarios are relatively common and
challenging in complex traffic environments, and they are used to verify the comprehensive
performance of the algorithm. For each scenario, we conducted tests in six sets, with each
set consisting of ten trials, to verify the stability and robustness of the algorithm. Typically,
these scenarios are relatively common and challenging in complex traffic environments,
and they are used to verify the comprehensive performance of the algorithm.

4.3.1. Constant Speed Follow Scenario

Figure 5 presents a performance comparison between the MPC-based ACC strategy
and the SFRL-ACC method in the constant speed follow scenario, focusing on speed
tracking, acceleration, and the number of near collisions with the preceding vehicle. As
evident from Figure 5a, the SFRL-ACC demonstrates a smoother velocity change process
in basic car following, which is attributed to its superior real-time performance. The
MPC-based ACC policy, due to its higher computational demands and longer compu-
tation times, shows significant latency in velocity adjustment, leading to larger velocity
fluctuations. Similarly, under steady car-following conditions, the MPC-based ACC ex-
periences greater acceleration fluctuations, as illustrated in Figure 5b. Figure 5c depicts
the TTC safety threshold violations for both methods. In a constant speed follow sce-
nario, both vehicles manage to meet safety requirements, maintaining a reasonable TTC
with the preceding vehicle. Figure 5d presents a comparison of the fuel consumption per
hundred kilometers for two methods. It is clear from the figure that the mean fuel con-
sumption per hundred kilometers of the SFRL-ACC method is consistently lower than that

Sensors 2024, 24, 2657 14 of 18

of the MPC method. This can be attributed to the comfort-related reward function embed-
ded within the SFRL-ACC approach, where increased comfort leads to fewer instances
of rapid acceleration and deceleration, thereby conserving energy. Both methods exhibit
minor fluctuations with similar magnitudes, which are due to the high level of randomness
in the testing environment.

(a) (b)

(c) (d)

Figure 5. Performance comparison of the SFRL-ACC method and the MPC-based control method
in terms of speed, acceleration, number of near collisions and fuel consumption per 100 km under
the constant speed follow scenario. (a) shows the variation of speed with time steps, (b) shows the
variation of acceleration with time, (c) shows the average number of collisions, and (d) shows the
average white kilometer fuel consumption.

4.3.2. Preceding Vehicle Braking Scenario

The performance comparison with the scenario where the preceding vehicle is braking
is illustrated in Figure 6. The three curves in the figure represent the preceding vehi-
cle, the ego vehicle using the MPC method, and the ego vehicle using the SFRL-ACC
algorithm, respectively.

Figure 6a shows the speed changes of the ego vehicles during emergency braking
by the preceding vehicle. It can be observed that the preceding vehicle is accelerating
in the first 60 time steps and suddenly decelerates between time steps 60 and 70, posing
a rear-end collision safe to the ego vehicle, which needs to decelerate rapidly to avoid
collision. The controlled vehicle based on the SFRL-ACC algorithm reacts almost without
delay, beginning to decelerate within two to three time steps of the preceding vehicle’s
deceleration. In contrast, the ego vehicle using the MPC method shows a significant delay,
primarily due to the longer computational time of the MPC algorithm, which delays the
response to the preceding vehicle.

Sensors 2024, 24, 2657 15 of 18

(a) (b)

(c) (d)

Figure 6. Performance comparison of the SFRL-ACC method and the MPC-based control method in
terms of speed, acceleration, number of near collisions and fuel consumption per 100 km under the
scenario of preceding vehicle braking. (a) shows the variation of speed with time steps, (b) shows the
variation of acceleration with time, (c) shows the average number of collisions, and (d) shows the
average white kilometer fuel consumption.

Figure 6b presents the changes in acceleration during the emergency braking scenario.
Acceleration is a classic indicator of ride comfort with lower acceleration peaks indicating
better comfort. The ego vehicle using the SFRL-ACC algorithm exhibits smaller acceleration
peaks, benefiting from the lower delay of the SFRL-ACC algorithm, allowing the vehicle
adequate time to decelerate rather than requiring rapid deceleration, thus indicating better
ride comfort.

Figure 6c illustrates the TTC safety threshold violations for both algorithms. From the
figure, it is evident that the MPC-based ACC algorithm experiences a few instances of TTC
safety threshold violations, indicating certain moments of danger, which are attributed to
the modeling errors and higher computational demands of the MPC method. On the other
hand, the SFRL-ACC algorithm consistently remains within the safety range throughout,
demonstrating the robustness and safety of the SFRL-ACC algorithm. Figure 6d displays
a comparison of the per hundred-kilometer fuel consumption between the two methods,
highlighting the superior performance of the SFRL-ACC.

4.3.3. Cut-In Scenario

Figure 7 demonstrates the performance validation in a cut-in scenario. In the figure,
the vehicle accelerates normally for the first fifty time steps, and between 50 and 60 time
steps, the preceding vehicle cuts in from a neighboring lane in front of the target vehicle
and then continues to travel in front of it. Figure 7a shows the velocity change process; it
can be seen that when the lead vehicle starts to change lanes, the control vehicle based on
the SFRL-ACC algorithm initially decelerates to give way, whereas the target vehicle based

Sensors 2024, 24, 2657 16 of 18

on MPC begins to decelerate to give way after a delay of dozens of time steps, reflecting
the lower computational power required by the neural network and the superiority of
the safety RL method. Figure 7b presents the acceleration change process, validating the
velocity change process, where the control method based on MPC exhibits greater latency
and larger acceleration peaks, indicating a poorer riding experience. As for Figure 7c, it
illustrates the TTC safety threshold violations for both methods. The MPC method, due
to its higher computational demands and modeling errors, experienced several instances
where it fell below the TTC safety threshold during the control process, indicating a risk of
collision. Moreover, compared to the preceding vehicle braking scenario, there were more
moments of violation, which were attributed to the higher danger inherent in the cut-in
scenario. In contrast, the control vehicle based on the SFRL-ACC algorithm consistently
maintained a safe distance from the threshold, thereby demonstrating the superiority of
the SFRL-ACC algorithm. Figure 7d displays a comparison of the per hundred-kilometer
fuel consumption between the two methods, highlighting the superior performance of the
SFRL-ACC.

(a) (b)

(c) (d)

Figure 7. Performance comparison of the SFRL-ACC method and the MPC-based control method in
terms of speed, acceleration, number of near collisions and fuel consumption per 100 km during cut-in
scenarios. (a) shows the variation of speed with time steps, (b) shows the variation of acceleration
with time, (c) shows the average number of collisions, and (d) shows the average white kilometer
fuel consumption.

5. Conclusions

This paper introduces a new adaptive cruise control system, named the SFRL-ACC,
which leverages the model-free and high real-time inference efficiency of DRL to address the
challenges in modeling and computational efficiency faced by current optimization control-
based ACC methods. The SFRL-ACC system not only maintains the safety advantages
but also optimizes ride comfort. To achieve this, the ACC problem is transformed into a
safe DRL formulation, CMDP, through the careful design of state, action, reward, and cost

Sensors 2024, 24, 2657 17 of 18

functions. A key component of this system is the PCPO algorithm, which is specifically
developed for solving the CMDP problem. PCPO integrates safety constraints into the DRL
policy updates by restricting the trust region defined by the KL divergence, thus ensuring
performance maximization within safe limits. The paper concludes with a comparative
analysis of the SFRL-ACC policy against current state-of-the-art MPC-based ACC methods,
demonstrating its superiority in computation time, traffic efficiency, ride comfort, and safety.
This establishes the SFRL-ACC as a significant advancement in the field of autonomous
vehicle control.

Author Contributions: Author Contributions: Conceptualization, R.Z.; methodology, K.W.; software,
W.C.; validation, Y.L.; formal analysis, Y.F.; investigation, F.G.; resources, F.G.; writing—original draft
preparation, K.W.; writing—review and editing, R.Z.; visualization, F.G.; funding acquisition, R.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Science Foundation of China under Grant
52202495 and Grant 52202494.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: On behalf of all the authors, the corresponding author states that there are no
conflicts of interest.

References
1. Althoff, M.; Maierhofer, S.; Pek, C. Provably-correct and comfortable adaptive cruise control. IEEE Trans. Intell. Veh. 2020, 6,

159–174. [CrossRef]
2. Wang, C.; Gong, S.; Zhou, A.; Li, T.; Peeta, S. Cooperative adaptive cruise control for connected autonomous vehicles by factoring

communication-related constraints. Transp. Res. Part C Emerg. Technol. 2020, 113, 124–145. [CrossRef]
3. Rezaee, H.; Zhang, K.; Parisini, T.; Polycarpou, M.M. Cooperative Adaptive Cruise Control in the Presence of Communication

and Radar Stochastic Data Loss. IEEE Trans. Intell. Transp. Syst. 2024. [CrossRef]
4. Wu, D.; Qiao, B.; Du, C.; Zhu, Y.; Yan, F.; Liu, C.; Li, J. Multi-objective dynamic coordinated Adaptive Cruise Control for intelligent

electric vehicle with sensors fusion. Mech. Syst. Signal Process. 2024, 209, 111125. [CrossRef]
5. Lefeber, E.; Ploeg, J.; Nijmeijer, H. Cooperative adaptive cruise control of heterogeneous vehicle platoons. IFAC-PapersOnLine

2020, 53, 15217–15222. [CrossRef]
6. Yang, F.; Li, H.; Lv, M.; Hu, J.; Zhou, Q.; Ghosh, B.K. Enhancing Safety in Nonlinear Systems: Design and Stability Analysis of

Adaptive Cruise Control. arXiv 2024, arXiv:2401.11961.
7. Das, L.; Won, M. D-ACC: Dynamic adaptive cruise control for highways with on-ramps based on deep qlearning. arXiv 2020,

arXiv:2006.01411.
8. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A survey of autonomous driving: Common practices and emerging technologies.

IEEE Access 2020, 8, 58443–58469. [CrossRef]
9. Rout, M.K.; Sain, D.; Swain, S.K.; Mishra, S.K. PID controller design for cruise control system using genetic algorithm. In

Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai,
India, 3–5 March 2016.

10. Chaturvedi, S.; Kumar, N. Design and implementation of an optimized PID controller for the adaptive cruise control system.
IETE J. Res. 2021, 69, 7084–7091. [CrossRef]

11. Bauer, K.L.; Gauterin, F. A Two-Layer Approach for Predictive Optimal Cruise Control; SAE Technical Paper; SAE 2016 World Congress
and Exhibition; SAE International: Warrendale, PA, USA, 2016.

12. Sakhdari, B.; Azad, N.L. Adaptive tube-based nonlinear MPC for economic autonomous cruise control of plug-in hybrid electric
vehicles. IEEE Trans. Veh. Technol. 2018, 67, 11390–11401. [CrossRef]

13. Lin, Y.; McPhee, J.; Azad, N.L. Comparison of deep reinforcement learning and model predictive control for adaptive cruise
control. IEEE Trans. Intell. Veh. 2020, 6, 221–231. [CrossRef]

14. Luo, L.H.; Liu, H.; Li, P.; Wang, H. Model predictive control for adaptive cruise control with multi-objectives: Comfort, fuel-
economy, safety and car-following. J. Zhejiang Univ. Sci. A 2010, 11, 191–201. [CrossRef]

15. Stanger, T.; del Re, L. A model predictive cooperative adaptive cruise control approach. In Proceedings of the 2013 American
Control Conference, Washington, DC, USA, 17–19 June 2013.

16. Moser, D.; Waschl, H.; Kirchsteiger, H.; Schmied, R.; Del Re, L. Cooperative adaptive cruise control applying stochastic linear model
predictive control strategies. In Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 15–17 July 2015.

http://doi.org/10.1109/TIV.2020.2991953
http://dx.doi.org/10.1016/j.trc.2019.04.010
http://dx.doi.org/10.1109/TITS.2023.3335310
http://dx.doi.org/10.1016/j.ymssp.2024.111125
http://dx.doi.org/10.1016/j.ifacol.2020.12.2304
http://dx.doi.org/10.1109/ACCESS.2020.2983149
http://dx.doi.org/10.1080/03772063.2021.2012282
http://dx.doi.org/10.1109/TVT.2018.2872654
http://dx.doi.org/10.1109/TIV.2020.3012947
http://dx.doi.org/10.1631/jzus.A0900374

Sensors 2024, 24, 2657 18 of 18

17. Naus, G.J.L.; Ploeg, J.; Van de Molengraft, M.J.G.; Heemels, W.P.M.H.; Steinbuch, M. Design and implementation of parameterized
adaptive cruise control: An explicit model predictive control approach. Control Eng. Pract. 2010, 18, 882–892.

18. Takahama, T.; Akasaka, D. Model predictive control approach to design practical adaptive cruise control for traffic jam. Int. J.
Automot. Eng. 2018, 9, 99–104. [CrossRef]

19. Munir, U.; Junzhi, Z. Weight changing model predictive controller for adaptive cruise control with multiple objectives. In
Proceedings of the 2018 IEEE International Conference on Mechatronics, Robotics and Automation (ICMRA), Hefei, China,
18–21 May 2018. [CrossRef]

20. Nie, Z.; Farzaneh, H. Adaptive cruise control for eco-driving based on model predictive control algorithm. Appl. Sci. 2020,
10, 5271.

21. Zhang, Y.; Lin, Y.; Qin, Y.; Dong, M.; Gao, L.; Hashemi, E. A new adaptive cruise control considering crash avoidance for
intelligent vehicle. IEEE Trans. Ind. Electron. 2023, 71, 688–696. [CrossRef]

22. Li, G.; Görges, D. Ecological adaptive cruise control and energy management strategy for hybrid electric vehicles based on
heuristic dynamic programming. IEEE Trans. Intell. Transp. Syst. 2018, 20, 3526–3535. [CrossRef]

23. Bradford, E.; Imsl, L. Stochastic nonlinear model predictive control using Gaussian processes. In Proceedings of the 2018 European
Control Conference (ECC), Limassol, Cyprus, 12–15 June 2018. [CrossRef]

24. Wang, Z.; Zhou, X.; Wang, J. Extremum-seeking-based adaptive model-free control and its application to automated vehicle path
tracking. IEEE/ASME Trans. Mechatron. 2022, 27, 3874–3884.

25. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief survey. IEEE Signal Process.
Mag. 2017, 34, 26–38. [CrossRef]

26. Li, Y. Deep reinforcement learning: An overview. arXiv 2017, arXiv:1701.07274. [CrossRef]
27. François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An introduction to deep reinforcement learning. Found.

Trends® Mach. Learn. 2018, 11, 219–354.
28. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. A brief survey of deep reinforcement learning. arXiv 2017,

arXiv:1708.05866. [CrossRef]
29. Wu, J.; Huang, Z.; Huang, C.; Hu, Z.; Hang, P.; Xing, Y.; Lv, C. Human-in-the-loop deep reinforcement learning with application

to autonomous driving. arXiv 2021, arXiv:2104.07246.
30. Li, G.; Li, S.; Li, S.; Qin, Y.; Cao, D.; Qu, X.; Cheng, B. Deep reinforcement learning enabled decision-making for autonomous

driving at intersections. Automot. Innov. 2020, 3, 374–385.
31. Chib, P.S.; Singh, P. Recent advancements in end-to-end autonomous driving using deep learning: A survey. IEEE Trans. Intell.

Veh. 2023, 9, 103–118. [CrossRef]
32. Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Al Sallab, A.A.; Yogamani, S.; Pérez, P. Deep reinforcement learning for autonomous

driving: A survey. IEEE Trans. Intell. Transp. Syst. 2021, 23, 4909–4926. [CrossRef]
33. Sallab, A.E.; Abdou, M.; Perot, E.; Yogamani, S. Deep reinforcement learning framework for autonomous driving. arXiv 2017,

arXiv:1704.02532. [CrossRef]
34. Chen, J.; Yuan, B.; Tomizuka, M. Model-free deep reinforcement learning for urban autonomous driving. In Proceedings of the

2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019.
35. Das, L.; Won, M. D-ACC: Dynamic Adaptive Cruise Control for Highways with Ramps Based on Deep Q-Learning. In Proceedings

of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021.
36. Das, L.C.; Won, M. Saint-acc: Safety-aware intelligent adaptive cruise control for autonomous vehicles using deep reinforcement

learning. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021.
37. Kakade, S.; Langford, J. Approximately optimal approximate reinforcement learning. In Proceedings of the Nineteenth Interna-

tional Conference on Machine Learning, Sydney, Australia, 8–12 July 2002.
38. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the International

Conference on Machine Learning, Lille, France, 6 July 2015.
39. ISO 15622:2018; Adaptive Cruise Control Systems Performance Requirements and Test Procedures (Intelligent Transport Systems,

USA). Available online: https://www.iso.org/standard/71515.html (accessed on 21 March 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.conengprac.2010.03.012
http://dx.doi.org/10.20485/jsaeijae.9.3_99
http://dx.doi.org/10.3390/app10155271
http://dx.doi.org/10.1109/TIE.2023.3239878
http://dx.doi.org/10.1109/TITS.2018.2877389
http://dx.doi.org/10.1109/TMECH.2022.3146727
http://dx.doi.org/10.1109/MSP.2017.2743240
http://dx.doi.org/10.1561/2200000071
http://dx.doi.org/10.1007/s42154-020-00113-1
http://dx.doi.org/10.1109/TIV.2023.3318070
http://dx.doi.org/10.1109/TITS.2021.3054625
https://www.iso.org/standard/71515.html

	Introduction
	Problem Definition and Methodological Framework
	Problem Definition
	Methodological Framework

	SFRL-ACC Algorithm
	Representation of ACC Problem to a Safe DRL Formulation CMDP
	Constrained Markov Decision Process
	Converting ACC to Safe DRL Model through CMDP

	Evaluation and Updating of the Policy
	Policy Neural Network Optimization
	Reward and Cost Value Networks Optimization

	Algorithm Overview

	Experiment
	Experimental Setting
	Analysis of Performance during Training Process
	Performance Comparison Post-Policy Deployment
	Constant Speed Follow Scenario
	Preceding Vehicle Braking Scenario
	Cut-In Scenario

	Conclusions
	References

