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Abstract: The deployment of Internet of Things (IoT) devices is widespread in different environments,
including homes. Although security is incorporated, homes can become targets for cyberattacks
because of their vulnerabilities. IoT devices generate Domain Name Server (DNS) traffic primarily
for communication with Internet servers. In this paper, we present a detailed analysis of DNS traffic
from IoT devices. The queried domains are highly distinctive, enabling attackers to easily identify the
IoT device. In addition, we observed an unexpectedly high volume of queries. The analysis reveals
that the same domains are repeatedly queried, DNS queries are transmitted in plain text over User
Datagram Protocol (UDP) port 53 (Do53), and the excessive generation of traffic poses a security
risk by amplifying an attacker’s ability to identify IoT devices and execute more precise, targeted
attacks, consequently escalating the potential compromise of the entire IoT ecosystem. We propose a
simple measure that can be taken to reduce DNS traffic generated by IoT devices, thus preventing it
from being used as a vector to identify the types of devices present in the network. This measure
is based on the implementation of the DNS cache in the devices; caching few resources increases
privacy considerably.

Keywords: DNS; IoT privacy; network traffic

1. Introduction

The Internet of Things (IoT) is a term that refers to the interconnection of physical
objects through the Internet. These objects range from thermostats, security cameras, and
household appliances to lighting or the presence sensors, among others. The home is one
of the areas where IoT is having a significant impact. IoT devices connected to homes,
known as smart homes, offer a wide variety of advantages, such as convenience, security,
and energy efficiency. The deployment of IoT is growing at an exponential rate. According
to some studies, the number of connected IoT devices is expected to reach one trillion
by 2030 [1]. This growth is attributed to the reduction in the costs of IoT devices and the
increasing demand for applications.

Connected IoT devices in homes can be vulnerable to cyber attacks, especially if the
user does not configure and update them properly. These attacks begin by identifying the
type of device, manufacturer, and model and then exploiting any known vulnerabilities.
In [2], it is shown how a third party could indirectly determine the type of product,
manufacturer, and model of devices in our home, exploiting the unencrypted information
in the response data of the application layer of IoT devices. This information can be inferred
using specific tools such as ZMap [3] and comparing messages with databases, and even
using machine learning techniques to identify home devices [4]. Once the device type is
identified, an attacker can exploit known weaknesses or simply use factory preconfigured
keys (not changed by most users) to access devices for (i) either obtaining information
violating their privacy or (ii) use in distributed denial-of-service (DDoS) attacks [5].

Fortunately, most devices nowadays use secure versions of application-level protocols
(such as CoAP, MQTT, or HTTP), preventing someone from observing the traffic and
obtaining information through the method explained earlier. However, Domain Name
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Server (DNS) queries often continue to be transmitted in plaintext and can be used to
extract information from IoT devices present on the network [6].

The aim of this paper is to study the DNS traffic generated by a wide range of devices
found in homes, most of which are IoT devices but also including computers or mobile
phones. We will examine the different characteristics of queries based on the type of device
and apply different machine learning techniques to identify different devices based on
DNS features extracted from network traffic. The main goal is to analyze the impact of
the queries of transmitted DNS traffic on the identification of IoT devices connected to
the network.

We propose some simple measures that can be taken to reduce DNS traffic generated
by IoT devices, thus preventing it from being used as a vector to identify the types of devices
present in the network. This study evaluates the proposed measures by analyzing the
impact of DNS traffic on the identification of IoT devices. The performed evaluation reveals
that the proposed measures reduce the generated DNS traffic, restricting the sensitive
information of a device that would be at risk of being exposed to an attack.

This paper proposes an improvement to the privacy of IoT devices by reducing
excessive DNS traffic. The key contributions of this paper are as follows: (i) privacy
analysis of IoT devices in a home network focusing on DNS traffic; (ii) proposal to reduce
the DNS traffic exposed to possible attacks based on the implementation of the DNS cache
in the devices; (iii) study of the appropriate cache size of an IoT device to reduce the
device information revealed in DNS queries; and (iv) evaluation of the proposed solution
through simulations.

The paper is organized as follows: Section 2 presents the related work on IoT device
identification. The DNS traffic analysis relying on domain names queried is provided in
Section 3, while Section 4 provides a more detailed analysis of the DNS traffic behavior
pattern to provide insights into the presence of the DNS protocol in IoT devices. We
examine the high volume of DNS queries performed by IoT devices in Section 5. Section 6
gives the implementation of a simple measure proposed to reduce DNS traffic and the
comprehensive evaluation performed. Finally, conclusions are offered in Section 7.

2. Related Work

In recent years, there has been a surge of research efforts aimed at identifying IoT
devices through their network traffic patterns. This ability to identify IoT devices within
a network is crucial for assessing the potential vulnerability to cybersecurity attacks that
exploit these devices as attack vectors. A prime example of such an attack is the Mirai
botnet [7], which leveraged a simple vulnerability in specific IoT devices to infect over
60,000 devices.

Attacks are becoming increasingly sophisticated, and it is difficult to detect and
mitigate the threats present in the IoT ecosystem. However, the improvement in security
and detection of this type of attack is feasible by applying different techniques such as
machine learning [8].

Feature extraction from network traffic is critical in the identification of IoT devices.
An evaluation of feature extraction is presented in [4]. Features can be at the packet level or
at the flow level. The most important flow-level features can be categorized into volume-,
protocol-, and time-related features.

A critical challenge in IoT profiling lies in selecting a minimal yet informative set of
features that accurately capture network behavior [9]. Existing approaches employ a variety
of features, including size-related metrics (packet size, payload length, traffic rate, traffic
volume), service-related indicators (protocol number, port number, DNS and Network
Time Protocol (NTP) queries), time-related measures (flow duration, active/sleep duration),
and statistical features (flow size, minimum, maximum), among others.

Notably, the in-depth analysis of DNS traffic generated by IoT devices has emerged
as a valuable tool for device identification. In recent years, several research efforts have
delved into this approach.
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In [6], authors develop a lightweight DNS traffic monitoring system in edge networks
to capture DNS traffic of IoT systems for behavioral analysis and modeling. This work
starts with the study over time of DNS queries generated by IoT devices. They focus on two
distinct levels of DNS names: (1) Fully Qualified Domain Name (FQDN) and (2) effective
second-level domain (e2LD). Their system is based on a Bloom filter that monitors and
detects emerging and novel FQDNs and e2LDs sent by IoT systems in order to detect
anomalous behaviors.

The identification of the device type combined with vulnerability databases allows
for spotting the vulnerability of the device, implying a privacy leak in IoT devices. Table 1
collects some works on device identification based on network traffic analysis. We specify
(i) the dataset used (if it is public or if it was collected by the authors) and how many
devices were analyzed; (ii) the number of features used and if DNS traffic is covered; and
(iii) the best-performing machine learning technique, as well as the accuracy obtained.

Table 1. Related work review with respect to the dataset, features extracted used in the classification,
and techniques used. N.A.: Not Available.

Reference Year
Collect

Data Public Dataset # Devices Extracted Features DNS ML Accuracy
Available IoT Non-IoT

Meidan et al. [10] 2017 N.A. 9 4 4 RF 99%
Miettinen et al. [11] 2017 Aalto 27 23 ✓ RF 85%
Bezawada et al. [12] 2018 N.A. 10 20 ✓ GBRT 99%

Thangavelu et al. [13] 2018 N.A. 16 111 ✓ RF 98%
Sivanathan et al. [14] 2018 UNSW 28 12 ✓ NB + RF 99%

Perdisci et al. [15] 2020 IoTFinder 53 ✓ developed system 100%
Kumar et al. [16] 2021 [14] 20 14 ✓ CNN 97%

Liu et al. [17] 2022 18 2 CNN 99%
Kostas et al. [18] 2022 [11,14] 31 28 112 ✓ RF 94%

Fan et al. [19] 2022 [14,20] 69 ✓ CNN 99%
Fan et al. [21] 2022 N.A. [14,22] 71 56 RF 99%
Hao et al. [23] 2023 [14,20] 20 30 50 ✓ - 98%
Zhao et al. [24] 2023 [14,25] 19 28 2 LR 99%

Most of the works included in Table 1 extract features from network traffic, covering
DNS traffic generated by devices.

Meidan et al. [10] used machine learning techniques to classify IoT devices based on
tuples given by IP addresses and ports, extracted from the network traffic. The Random
forest (RF) model obtained 99.28% accuracy in IoT device classification.

Miettinen et al. [11] proposed a system, called IoTSentinel, based on machine learning
techniques to identify device types using 23 features at the packet level. The first set has
16 protocol-based features, and the remaining features include packet content, IP addresses,
and ports. The classification system, based on the RF model, obtained 95% of accuracy in
the identification of 17 devices and around 50% in the rest of the devices.

The authors of [12] presented a method for device type identification based on the
behavioral fingerprinting performed. They used features extracted from network traffic
at the packet level, 17 header features (based on the protocols used), and three payload
features (entropy, TCP Window size, and payload length) to train machine learning models.
A mean accuracy between 95% and 99% is obtained in the K-Nearest Neighbor (KNN),
Decision Tree (DT), and Gradient Boosted Regression Tree (GBRT) models applied.

A distributed device fingerprinting technique (DEFT) to identify IoT devices is an
approach proposed by Thangavelu et al. [13]. The traffic fingerprints of the devices are
collected, and supervised models (RF, KNN, Gaussian, and Bernoulli Naive Bayes) are
applied after dimensionality reduction to identify devices based on statistical characteristics
extracted from application-layer protocols. Features of the DNS protocol considered are
statistics of packet length and time between query and response, number of packets,
number of queries, most queried domain name, and number of DNS errors. The RF
classifier achieved the best performance, obtaining an accuracy of 98%, and Naive Bayes
(NB) is the worst model, with 85% accuracy.
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In [14], the authors applied RF and NB models to classify devices based on 12 extracted
features, including domain names queried and DNS intervals regarding the DNS protocol.
The accuracy obtained in the classification was 99.88%. Additionally, the authors studied
the impact of the different features in the device identification.

Kumar et al. [16] evaluated different machine learning techniques using features of
network traffic. The features used were divided into packet level (ports and packet lengths),
flow level, and behavior level, including DNS Interval and DNS Queries. The following
machine learning algorithms were evaluated: Neural Network (NN), Gaussian Naive Bayes
(GNB), DT, RF, Support-Vector Machines (SVM), AdaBoost, XGBoost, Artificial Neural
Network (ANN), Convolutional Neural Network (CNN), and Long short-term memory
(LSTM). The best results obtained were 97.51% accuracy with CNN at the behavior level
at the flow level, 80.67% accuracy with ANN, and at the packet level, 74.76% accuracy
with CNN.

The approach presented in [17] used directional packet length sequences to identify
the device based on machine learning techniques. The techniques applied were CNN and
Multi-layer Perceptron (MLP), with 99% and 77% accuracy, respectively.

In [18], the authors presented IoTDevID, a method to identify devices eliminating
redundant features based on feature selection and the genetic algorithm. In the classification,
the Gradient Boosting (GB), DT, NB, KNN, RF, and SVM models are compared. The
classification method relies on features extracted at the packet level, including features
related to DNS protocol header fields.

AutoIoT [19] is a semi-supervised learning method used to distinguish between IoT
and non-IoT devices and classify IoT devices with 95.82–99.96% accuracy. The authors used
CNN to reduce the dimensionality of the extracted features. EvoIoT [21] also identifies
IoT and non-IoT devices. The proposed model based on the RF technique is evaluated
in different groups, in which the devices studied are grouped. The range of classification
accuracy for all devices spans from 97% to 99%.

IoTTFID [23] is an incremental device-identification method based on device fin-
gerprints. The average accuracy obtained for UNSW and Yourthings datasets is 98.19%.
Characteristics of the application layer are analyzed, including features related to DNS
protocol header fields and the size of responses.

Zhao et al. [24] performed efficient IoT device identification based on time series
analysis and Logistic Regression (LR) considering packet lengths with directions with an
accuracy of 99.81%. This study only considers two characteristics to define the devices
pattern, and DNS traffic is not considered in the analysis conducted.

The only paper listed in Table 2 that uses only DNS traffic as a feature to characterize
IoT devices is [15]. IoTFinder [15] is a machine-learning-based identification system that
relies on DNS fingerprints of IoT devices. The authors collected passive DNS data from
a wide range of IoT devices, although the collected data are not publicly available, and
developed a system based on machine learning. IoTFinder achieves high accuracy in
detecting various IoT devices based on the traffic generated within a local network or a
network hosted behind a NAT.

Table 2. Comparison of different datasets used in related work.

Dataset Year Devices Type DNS Duration AvailabilityNon-IoT IoT Idle Interaction Setup

UNSW [14] 2018 3 28 ✓ ✓ ✓ 2 months (September 2016) ✓
IoTSentinel [11] 2018 0 31 ✓ ✓ 20 times/device ✓
IoTFinder [15] 2020 0 53 ✓ ✓ ✓ 2 months (August 2019) ✓
YourThings [20] 2020 0 45 ✓ ✓ ✓ 13 days (March 2019) ✓

In this paper, we focus on DNS traffic generated by different devices. We analyze the
DNS traffic found and study the impact on the identification of the analyzed devices. The
objective is to evaluate the capability of identification of an IoT device in an attack based
on the information provided by the generated DNS traffic.
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3. DNS Traffic Analysis

IoT devices generate DNS traffic mainly to communicate with Internet servers. In this
section, we examine the different characteristics extracted from DNS traffic.

The analysis is focused (i) on the distinction between IoT and non-IoT devices based
on the DNS traffic behavior pattern and (ii) the identification of different IoT devices.

3.1. Dataset

Some datasets containing IoT network traffic are available for the research commu-
nity [26]. Some datasets used in the literature are summarized in Table 2. For comparison,
the number of devices contained, the type of traffic captured, the duration of the traffic
captured, and the availability of the dataset are shown.

In this study, we use the dataset collected by the University of New South Wales,
abbreviated as UNSW [14]. The authors captured the traffic by building a testbed emulating
a typical smart home environment. The traffic was captured over 26 weeks, although only
a limited period is available for research.

This public trace contains network traffic from more than 30 devices, including IoT
and non-IoT devices. These are devices ranging from appliances to health monitors, but
also non-IoT devices such as computers, mobile phones, and tablets. Table 3 summarizes
information about IoT devices categories. We analyze 27 IoT devices divided into the
following categories: appliances, cameras, controllers, energy management, and health-
monitors, and 7 non-IoT devices, devices involving user interaction or control, including
computers (laptop, Macbook), mobile phones (Android phone, Android phone 2 and
iPhone) and tablets (Samsung Galaxy Tab).

The overall duration of the dataset is approximately 60 days. The dataset contains
both raw traffic in PCAP files and processed traffic in CSV files. We have used the raw
(PCAP) traffic for our study. There are available daily network traces, and the size of the
daily logs varies between 61 MB and 2 GB, with an average of 365 MB.

Table 3. List of IoT devices included in UNSW dataset [14] and analyzed in this study.

Appliances Cameras Controllers Energy Management Health-Monitor

Google Chromecast Canary Camera Amazon Echo Belkin Motion Sensor Awair Air Quality Monitor

HP Printer Dropcam Smart Things Belkin Switch Blipcare BP Meter

PIX-STAR Photo-Frame Insteon Camera iHome PowerPlug NEST Smoke Sensor

Triby Speaker Insteon Camera 2 LiFX Bulb Netatmo Weather Station

Nest Dropcam Phillip Hue Lightbulb Withings Scale

Netatmo Camera TP-Link Plug Withings Sleep Sensor

Samsung SmartCam

TP-Link Camera

Withings Baby Monitor

3.2. DNS Features Extraction

We process the raw traffic to obtain the information concerning the DNS queries made
by the different devices. The network trace is not labeled, but we can identify the traffic
generated by each device using the MAC address provided by the authors.

We read the data packets from the PCAP file and process the information obtained in
each packet. We analyze the protocols present; if the packet contains the application layer,
specifically, DNS, we analyze the content of the packet. The processing followed to extract
the information from the devices at the DNS level is illustrated in Figure 1.
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Python Script

PCAP files CSV files

ts MAC Domain TTL AA
DNS

Features Extraction
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Figure 1. Processing network traffic data and extracting DNS features.

We filter the packets by port and packets containing a DNS layer. After the filtering is
performed, we extract the DNS data features. The features extracted are as follows:

• Timestamp: The timestamp of the DNS packet.
• MAC Address: This address permits the identification of the device.
• DNS Domain: The domain name that has been queried for resolution.
• Resource Record (RR) type: The data record that identifies the type of RR that has

been requested.
• Time To Live (TTL): The lifetime, in seconds, that the record remains in the cache.
• Authoritative Answer (AA): The flag that indicates if the response was sent by an

authorized server for the queried domain name.

We obtain the features of the daily DNS traffic flow and, in addition, based on the
MAC address, we extract the corresponding device. DNS traffic will differ in characteristics
depending on the behavior of the flow pattern. In the following subsection, we analyze the
traffic pattern of IoT and non-IoT devices based on the features extracted.

3.3. Domains Names

Firstly, we analyzed the number of domains queried by IoT devices and compared
them with non-IoT devices. It is important to analyze whether the domains consulted
are significant. If the domains are unique, information about the device connected to
the network can be revealed. As we can see in Figure 2, the domains are very signifi-
cant. For example, the Insteon Camera only queries two domains, and one of them is
connect.insteon.com, the manufacturer of the device is well-known due to the information
provided. These domains could contribute to the identification of the different devices
present in our environment, for example, in our home.

(a) Insteon Camera. (b) Dropcam. (c) Android Phone. (d) iPhone.

Figure 2. Word Cloud of domain names in devices.

Note that IoT devices query fewer domains, and these domains are very significant.
Next, we analyze the number of queried domains. In Figure 3, the distribution can be
seen followed by both types of devices; note that the axis is in the logarithmic scale. IoT
devices query very few domains because they can be used in a very specific context. The
unique domains are concentrated in values of less than ten; specifically, an average of
6.2 domains are queried. However, in non-IoT devices, the user launches many different
applications that query different domains with their own number of domains, thus leading
to more diversity in the number of domains queried by non-IoT devices. In this case, these
devices query an average of 903.7 domains, which amounts to almost 150 times more than
IoT devices.
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Figure 3. Number of different domains queried in IoT and non-IoT devices.

We want to study if the queried domains provide sufficient information to identify the
devices connected to the network.

3.4. Machine Learning Classification

Machine learning techniques are applied to identify IoT devices based on the queried
domains. The objective is to identify IoT and non-IoT devices considering only the domain
names queried.

We consider the following machine learning techniques according to the related
works [27–29]: DT, LR, NB, and RF. We randomly divide the data into two sets according
to the following 80–20% split. The first set we use for classifier training and the second set
as a test set to evaluate the different models and obtain the performance metrics.

The input variable to the classification models is a bag of domain names because the
domain name is a categorical variable. We convert the categorical variable into numeric
values following a binary encoding. We create binary columns for each domain queried.
The resulting bag of domain names has the number of different domain queries as columns,
and the number of rows corresponds to the number of queries performed by all devices.

The results obtained in the RF model are collected in Figure 4, depicting the confusion
matrix obtained in the classification. The overall accuracy obtained is 92.2% for the RF.
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Figure 4. Confusion matrix of the model.

The confusion matrix obtained is a sparse matrix; by exploiting the matrix sparsity,
misclassified samples can be further analyzed. The first case of misclassification is in the
Belkin Motion Sensor and Belkin Switch devices; the second one is 100% wrongly classified
as the first one, which is because both devices are developed by the same manufacturer.
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The Insteon cameras are another example of this hypothesis. The same results are obtained
for the two devices developed by Withings. This implies that it is feasible to identify
the manufacturer.

The sparsity observed in the confusion matrix further implies inherent limitations in
distinguishing certain types of devices. Through careful analysis of results, general-purpose
devices, such as the Macbook or Samsung Galaxy Tab, can be identified. One device is
the iPhone, which achieves less than 50% of correct classification and is misclassified as
a MacBook.

Table 4 shows the accuracy obtained in the classification. It shows that the domain names
provide enough information to correctly identify the devices connected to the network.

Table 4. Accuracy obtained in classification.

DT LR NB RF

Accuracy 0.9221 0.9202 0.7993 0.9223

We demonstrate that it is feasible to identify specific IoT devices with more than 92%
accuracy based on the behavior of DNS traffic on the network, specifically, the domain
names queried.

Comparison with Other Works

We made a comparison with the results obtained in other works in order to evaluate
the previous classification and verify that the information provided by the domain names
is sufficient. In [14], the authors present an architecture with different layers for IoT
device classification. In the first layer, one feature is the bag of domain names, and taking
into account only this variable, a precision of 79.48% is obtained using an NB classifier.
Consequently, the results obtained are similar.

Additionally, we assess the results obtained in comparison with other studies men-
tioned above, particularly those employing the same dataset and machine learning methods
based on DNS traffic. This comparison is presented in Table 5.

Table 5. Comparison with related work.

Reference Method Features Accuracy

This work RF 1 0.92
[14] NB 1 0.79
[14] NB + RF 12 0.99
[16] CNN 6 0.97
[18] RF 112 0.94

A detailed analysis of the DNS traffic generated will be provided in the following
section, relating the domains consulted and the number of queries made.

4. Deep DNS Analysis

To provide insights into the presence of the DNS protocol in IoT devices, we analyzed
the behavior pattern of queries performed and domains queried by each device.

4.1. Domains Names

The number of queries made and the domains queried are important, as these will
influence the information revealed and the likelihood that attackers will be able to extract
that information. The number of queries performed and the number of domains queried
are illustrated in Figure 5.

In this context, some IoT devices, despite consulting few domains, consult them
repeatedly, in the order of 100,000 queries made by Amazon Echo and Insteon Camera. In
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addition, few domains are queried repeatedly, which reveals information about the device,
leaving it exposed to future attacks that rely on device identification.

At first sight, one might expect that the number of domains consulted is directly
related to the number of queries made, but it is not necessarily correlated. A device that
queries few domains may repeat queries frequently; in the graph, this behavior can be
observed in the Insteon Camera device.
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Figure 5. Number of different domains queried and queries by each device.

Table 6 provides information about domains queried in detail. Also, the most fre-
quently consulted domain and its occurrence as a percentage are shown.

Table 6. Details on the queries generated by each device.

Device Queries Domains % Frequent Domain

Amazon Echo 116,760 18 30.43 www.example.com.
Awair Air Quality Monitor 1617 5 37.66 pool.ntp.org.

Belkin Motion Sensor 5398 6 48.13 d3gjecg2uu2eaq.cloudfront.net.
Belkin Switch 5927 6 48.8 d3gjecg2uu2eaq.cloudfront.net.

Blipcare BP Meter 4 1 100 tech.carematix.com.
Canary Camera 832 6 85.1 b.canaryis.com.

Dropcam 79 3 40.51 pool.ntp.org.
Google Chromecast 804 33 67.83 www.google.com.

HP Printer 205 6 63.41 chat.hpeprint.com.
iHome PowerPlug 135 2 68.89 api.evrythng.com.

Insteon Camera 93,251 2 83.33 time.nist.gov.
Insteon Camera 2 9 2 88.89 time.nist.gov.

LiFX Bulb 31,493 2 99.51 pool.ntp.org.
Nest Dropcam 198 7 34.34 nexus.dropcam.com.

NEST Smoke Sensor 22 4 27.27 frontdoor.nest.com.
Netatmo Camera 3143 12 70.89 apicom.netatmo.net.

Netatmo Weather Station 11,869 1 100 netcom.netatmo.net.
Phillip Hue Lightbulb 1624 12 62.61 dcp.cpp.philips.com.

PIX-STAR Photo-Frame 1120 3 98.49 api.pix-star.com.
Samsung SmartCam 31,101 6 55.91 smtp.gmail.com.

Smart Things 8887 3 99.29 pool.ntp.org.
TP-Link Camera 1110 3 97.84 aps1-relay.tplinkcloud.com.

TP-Link Plug 891 4 59.82 uk.pool.ntp.org.
Triby Speaker 10,654 12 94.34 sip.invoxia.com.

Withings Baby Monitor 5586 4 99.86 babyws.withings.net.
Withings Scale 103 1 100 scalews.withings.net.

Withings Sleep Sensor 7119 6 99.45 scalews.withings.net.

In most devices, the most consulted domain is a very characteristic domain because
it reveals information about the manufacturer of the device, or indeed, of the device. An
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example of this type of device is the Withings Baby Monitor device, and the most queried
domain is babyws.withings.net.

The relation between the queried domains with the pattern of the behavior of the
queries made would allow the attacker to extract information about the device. Next, we
analyze the pattern of flow-related DNS queries.

4.2. Behavior Pattern

Depending on the DNS behavior, it would be possible to know when the device is
being used because the DNS traffic generated by each device is different. To understand
the behavior of the different devices, we analyzed the number of days during which the
devices perform queries.

The number of daily queries is illustrated in Figure 6. A fluctuation in the number
of daily queries can be observed. This fluctuation may be due to the use of the different
devices and their behavior pattern.

Figure 7 shows the distribution of queries made by the devices each day. Different
behaviors can be highlighted. There are devices that perform queries every day, or even
perform the same number of queries every day, presenting a recurrent behavior. This is
the behavior presented by Amazon Echo. Other devices present the same DNS traffic
flow, although the daily pattern is not presented every available day. And finally, we
find the devices that do not present a periodic behavior, as would be the case of the
Samsung SmartCam.
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Figure 6. Number of queries generated per day by all devices.
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Different behaviors can be observed in the flow pattern of DNS queries: (a) queries
performed periodically, (b) queries performed when the device is turned on, and (c) queries
performed when the user interacts with the device.

In addition, the number of daily queries is shown. The purple color refers to the lower
number of queries performed, while the yellow color reflects a higher number of queries
performed. It can be seen that the Samsung SmartCam device presents a greater number of
queries than the rest of the devices. This volume corresponds to the increase observed in
Figure 6 around 5 October.

If we disaggregate the queries made on an hourly basis, we can observe the different
behaviors in Figure 8. To obtain this distribution, we have grouped the queries made in
an hour, and the average of all days is generated. By doing this, the hourly pattern of
DNS queries on the different devices is obtained. The number of queries is normalized to
observe the maximum and minimum relative to each device.

Each device has a different hourly pattern. Although a higher volume of DNS queries
is observed during the early hours compared to the rest of the day. Other devices show a
periodic pattern throughout the day, such as Awair Air Quality Monitor.

A time-related feature at the flow level is studied below after analyzing the queries
performed individually at the packet level.
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Figure 8. Pattern of behavior of the queries made by each device performed per day in a
one-hour interval.

4.3. DNS Interval

The DNS interval is the time that elapses between two consecutive DNS queries made
by a device. The elapsed times depend on the device configuration and the DNS cache
implemented. DNS intervals provide insights into the behavioral pattern of the device.

The difference between two queries for each device is calculated to analyze how often
the query is repeated. The distribution of DNS intervals obtained can be seen in Figure 9.
The X-axis scale in the figure is on a logarithmic scale to appreciate the distributions
followed by the devices that perform queries more frequently, and therefore, its distribution
is concentrated in low values. This is the case of Amazon Echo or Light Bulbs LiFX Smart
Bulb. In addition, if the devices have focused DNS intervals in a narrow span, it implies
that queries have been generated periodically because the same time elapses between one
query and the next. This is the case of Insteon Camera.
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Figure 9. Range of DNS interval values determined, time elapsed between one query and the
succeeding query (with logarithmic scale on the X-axis).

The analysis conducted has revealed an unexpectedly high volume of queries, and
IoT devices perform many queries to few domains. Although this may be due to different
reasons, we will now evaluate the indispensability of the queries performed. Consequently,
the reason for the queries performed will be deduced. In the next section, we will analyze
the TTL of the queries made to evaluate the indispensability of the queries made.

5. Analysis of the High Volume of Queries

The volume of queries generated is conditioned by the implementation of the cache.
DNS data remain in the cache for a specific time, the lifetime is determined by the TTL.
However, if IoT devices have limited resources, the cache size could be imposed on a small
size, causing repeated requests.

5.1. Time Space Analysis

To examine the reason for the high volume of queries and to determine an imperative
recurrence of requests, we studied the TTL size values obtained in the DNS packet field.
The TTL determines how long a record will remain in the cache before it is deleted and
needs to be queried again. We first analyze the TTL values obtained from the resource
records of the examined DNS traffic to understand if the TTL influences the behavior
pattern in the flow of DNS queries. The distribution of the TTL values can be observed in
Figure 10. The histogram shows the distribution of all the devices.

A wide variability can be observed in most of the IoT devices. The average lifespan
of responses received on the Belkin devices, Belkin Motion Sensor, and Belkin Switch, is
higher than the rest.

High TTL values do not indicate anything; these values could indicate that queries
may remain in the DNS cache for a long time. However, to obtain insight into the volume
of queries generated, one can analyze the queries temporarily by studying the relationship
between the TTL and the DNS interval.
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Figure 10. Range of TTL values obtained in the response section fields (with a logarithmic scale on
the X-axis).

Next, we analyze the TTL of the record and the timestamp of the next response
received. Figure 11 shows the difference between the interval DNS obtained and the TTL
value registered in the first response.

Getting negative values in the time difference means that the queries are repeated
before the TTL expires. Therefore, we deduce that the devices do not cache as much as
possible and explain the repetition of queries every short interval of time. The next question
would be, assuming the devices had a DNS cache without limited size and could conserve
the necessary resources, what insight the generated DNS traffic would provide.
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Figure 11. Values obtained from the difference between the DNS intervals and the TTL values of the
corresponding response field, and values calculated for each domain.

5.2. Redundant Queries

The elapsed time between two queries compared to the TTL of the first query details
the requirement of the queries performed. This analysis provides the queries performed
before the TTL expires and, therefore, how many are performed without being required.
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We analyze the raw traffic packet by packet and filter the DNS traffic. The objective is to
analyze what percentage of the queries performed are redundant and, therefore, how many
queries are providing additional information about the devices.

We create a cache for each device, and in the cache, we store the queried domains and
the timestamp when they will expire. The first step when a packet arrives is to remove the
domains from the cache that have expired and check if the queried domain is in the cache,
which would imply that the query is redundant. In addition, the cache is updated with all
the RRs of the responses with the timestamp, obtained from the packet timestamp plus the
TTL. As a result of the processing described above, we obtain data about the DNS queries
performed and a flag that differentiates between redundant queries and queries according
to the TTL received.

The result obtained is shown in Figure 12, where the percentage of the queries per-
formed that are redundant is illustrated. More than 90% of the queries generated by
five devices (Amazon Echo, Belkin Wemo switch, Belkin Wemo Motion Sensor, Insteon
Camera, and Netatmo Weather Station) are redundant. But analyzing the results, we dis-
cover that more than 50% of the queries generated by half of the devices were redundant.
This means that the DNS traffic generated could be reduced by half if the devices had a
large enough cache.

The flow diagram of the devices analyzed, as well as the device types and category,
are shown in Figure 13. The last component of the diagram is the results obtained in the
number of redundant queries in percentage.
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Figure 12. Percentage of redundant queries on each device compared to all queries analyzed.

This diagram shows the different behaviors of categorized DNS queries on different
types of IoT devices. No pattern is observed in the volume of redundant queries by device
type. However, one conclusion can be drawn, and that is that devices that generate a
higher number of queries have a higher percentage of redundant queries. These devices
are (i) Amazon Echo (controllers), (ii) Insteon Camera (cameras), (iii) LiFX Bulb (energy
management), and (iv) Samsung SmartCam (cameras).

This analysis reveals a security problem in IoT devices. IoT devices present reduced
caches, so more queries than necessary would be generated, resulting in a vulnerability
because the information exchanged by the devices is increased; at the same time, attackers
are more likely to listen to that information and identify the devices on the network
more efficiently. IoT devices could be identified in real time based on their DNS queries.
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Depending on the DNS behavior, attackers could know at what time the device is being
used; even in certain scenarios, we could infer whether users are at home or not from
this information.
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Amazon Echo

Awair Air Quality Monitor
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Triby Speaker
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33 < x < 66
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Figure 13. Sankey Diagram (IoT devices).

5.3. Evaluation of the Limitation-Redundant Queries

We apply the same techniques we have applied previously but remove redundant
queries. We want to verify that the identification of the devices is less accurate if the traffic
generated by the devices is reduced.

Table 7 shows the results obtained for all the machine learning techniques used
compared to the previous classification. A decrease is noted in the accuracy obtained, and
a a reduction of 10% was achieved in three techniques, and a reduction of up to 20% was
achieved for the NB model.

Table 7. Accuracy obtained in classification.

DT LR NB RF

All data 0.9221 0.9202 0.7993 0.9223
No redundant 0.8206 0.8150 0.5812 0.8207

If we quantify the accuracy obtained by the classification algorithms, we manage to
reduce this accuracy by 10%.

5.4. Insights

We observed a high number of queries that would not be necessary if the TTL policy
were complied with, and DNS queries are made when the TTL expires. The following
conclusions can be drawn from the results obtained: (a) devices from the same manufacturer
have queries to common domains; (b) IoT devices generate a high volume of queries to
specific domains; and (c) the queried domains are limited. An IoT device is identifiable
based on the queried domains, so it is important not to repeat queries excessively.

DNS traffic is sufficient to identify IoT devices connected to the network because the
queried domains are characteristic. Nevertheless, restricting redundant queries would
reduce the information provided and consequently render the identification of the device
more difficult. Establishing new cache policies on IoT devices would increase privacy. In
the next section, we evaluate different cache sizes to establish a suitable cache size.

6. Measure Proposed

The proposed measure is based on the simplification of the DNS cache following
the implementation of a small and simplified cache of Android devices (https://android.
googlesource.com/platform/bionic/+/master/libc/dns/resolv/res_cache.c (accessed on
27 February 2024)). This simplification buffers DNS responses for a specified time; this time

https://android.googlesource.com/platform/bionic/+/master/libc/dns/resolv/res_cache.c
https://android.googlesource.com/platform/bionic/+/master/libc/dns/resolv/res_cache.c
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is defined by the smallest TTL found in the response records. The goal is to reduce DNS
traffic through a very simple design.

The objective of this study is analogous: a simple measure to reduce DNS traffic while
maintaining device privacy. An excessively large cache is susceptible to a DNS spoofing
attack, and attackers introduce malicious data into the DNS server cache [30].

In this section, we propose and evaluate different possible cache sizes. In addition, we
evaluate the impact of this cache simplification on device identification.

6.1. Implementation

The implementation of the new cache policies is based on answer sizes, and the goal is
to find the optimal size that enables the storage of a few answers without an excessive size,
considering the privacy trade-off between having no cache and having a very large cache.

First, to optimize the number of answers to be allocated in the cache size, we study
the number of unique domains queried by each device. Figure 14 shows the number of
unique domains queried by each device using three different levels. These settings will be
the maximum number of records that can be stored in the cache.

0 5 10 15 20 25 30

Number of Domains Queried

Amazon Echo
Awair Air Quality Monitor
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Belkin Switch
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Canary Camera

Dropcam
Google Chromecast
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Nest Dropcam
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Netatmo Weather Station
Phillip Hue Lightbulb
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Smart Things
TP-Link Camera

TP-Link Plug
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Withings Baby Monitor
Withings Scale

Withings Sleep Sensor

D
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# domains ≤ 2

Figure 14. Number of domains consulted by each device. The blue color represents the devices that
query fewer than two domains, the pink color represents fewer than five domains, and the green
color represents fewer than ten domains.

Based on the above criteria, the sizes established for implementing the DNS cache
and evaluating its impact are 2, 5, and 10. Additionally, a cache of unlimited size will
be evaluated that is the worst possible scenario in terms of memory. This assumption
would be the one requiring the largest capacity, which will be compared to the simplified
cache implementation.

A cache is created where the obtained answers are stored; the limit size is the number
of recorded answers. In addition, all the resources obtained in the response section are
stored with the minimum TTL obtained in all the resources of the response section. First,
expired cache entries are removed by comparing the current time with the lifetime of the
cache entries. Secondly, the cache is checked to verify if the queried domain is found. If it
is, the query would not be necessary and is marked as redundant, and if it is not found, it
is added to the cache and updated with the new values.
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Updating the cache involves two steps. The first step is checking the cache size, and
if the cache has the maximum size set, the oldest response is removed and the current
response is added. Then, the time to live is calculated as the sum of the packet timestamp
and the minimum TTL found in the response section of the DNS packet.

The results obtained for the different sizes are presented below.

6.2. Required Queries

Based on the simplification of the cache, we obtain the number of DNS queries re-
quired with the different sizes established compared to the network traffic of the analyzed
dataset. Table 8 shows the number of queries required as a percentage according to the
different cache sizes established; the objective is to analyze the most appropriate cache size
considering a compromise between privacy and usability.

Looking at the percentages obtained, from Cache2 to Cache3, there is a considerable
decrease in some devices, including almost 50% for the Amazon Echo device. However,
from the enlargement of Cache3 to Cache4, no such considerable fluctuations are observed.
For this reason, we have selected this implementation for further evaluation.

One particular scenario is the Insteon Camera device, for which the results obtained
are remarkable. The decrease when an infinite cache is implemented is outstanding. The
reason lies in the fluctuation of the TTLs obtained in the TTL field resources in the response
section; in the simplification, we used the minimum TTL. The cache entries are removed
earlier, and therefore, the number of queries required is considerably higher.

Table 8. Percentage of the number of queries required according to the different cache sizes imple-
mented. Cache1: Cache with only one entry; Cache2: Cache with two entries; Cache3: Cache with
five entries; Cache4: Cache with ten entries; Cache5: Cache without any restrictions.

Devices Cache1 Cache2 Cache3 Cache4 Cache5

Size 1 2 5 10 inf
(Resource) (min TTL) (min TTL) (min TTL) (TTL)

Amazon Echo 53.04 52.84 8.22 8.16 8.03
Awair Air Quality Monitor 56.52 47.87 47.8 47.8 47.8

Belkin Motion Sensor 99.65 51.17 51.02 51.02 50.69
Belkin Switch 99.27 50.51 50.18 50.18 49.86

Blipcare BP Meter 75 75 75 75 75
Canary Camera 90.87 90.5 90.5 90.5 90.5

Dropcam 96.2 89.87 72.15 72.15 72.15
Google Chromecast 43.41 39.55 37.31 36.69 24.75

HP Printer 39.51 42.93 42.93 42.93 38.54
iHome PowerPlug 90.37 86.67 86.67 86.67 86.67

Insteon Camera 35.76 68.22 68.22 68.22 13.62
Insteon Camera 2 33.33 100 100 100 22.22

LiFX Bulb 47.12 47.09 47.09 47.09 47.09
Nest Dropcam 100 100 54.55 54.55 54.55

NEST Smoke Sensor 99.49 99.49 99.49 99.49 99.49
Netatmo Camera 76.52 83.49 82.41 79.19 70.09

Netatmo Weather Station 9.18 9.18 9.18 9.18 9.18
Phillip Hue Lightbulb 34.67 23.28 18.9 18.35 18.35

PIX-STAR Photo-Frame 36.16 35.45 35.36 35.36 35.36
Samsung SmartCam 59.99 36.09 36.04 36.04 24.49

Smart Things 96.57 96.65 96.65 96.65 96.55
TP-Link Camera 99.37 99.1 99.1 99.1 99.01

TP-Link Plug 84.29 84.18 84.18 84.18 84.18
Triby Speaker 25.84 24.68 24.27 24.23 24.21

Withings Baby Monitor 37.7 37.68 37.68 37.68 37.68
Withings Scale 100 100 100 100 100

Withings Sleep Sensor 22.12 21.89 21.81 21.81 21.81
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On the other hand, devices that query very few different domains only need a very
small cache size. Table 9 illustrates how the number of devices fluctuates relative to the
percentage of traffic required across different cache sizes.

Table 9. Number of devices in relation to the percentage of required traffic according to the different
cache sizes implemented. Cache1: Cache with only one entry; Cache2: Cache with two entries; Cache3:
Cache with five entries; Cache4: Cache with ten entries; Cache5: Cache without any restrictions.

Required Traffic Cache1 Cache2 Cache3 Cache4 Cache5

<90% 17 20 21 21 22
<80% 16 16 18 19 20
<70% 14 15 16 16 17
<60% 14 14 15 15 17
<50% 11 11 12 12 15

The first row indicates the number of devices that would generate less than 90% of the
traffic considering the size of the cache. The number of devices decreases as the percentage
of required traffic decreases. The variation in the number of devices is observed as the
cache size increases. As previously mentioned, the difference between Cache3 and Cache4

is negligible, with only one device reducing the required traffic when the cache is expanded.
As the trade-off between utility and privacy becomes relevant, it is imperative to consider
that larger cache sizes entail higher costs. Therefore, we have established a cache size of
five as the appropriate size, balancing considerations of privacy and usability.

Based on this implementation, the impact of the decrease in DNS traffic will be
evaluated by applying machine learning techniques.

6.3. Evaluation

The proposed new cache policy will then be evaluated by setting the size to five
resources. In this case, we want to analyze the impact of a possible attack when attackers
are listening to a day’s traffic. We want to evaluate what information is provided during
one day of usage.

The instances are the number of queries made to each domain in the interval of one
hour. The objective is to obtain the devices connected to the network in the interval of one
hour with the algorithm trained.

Data preprocessing is based on the grouping of queries made by each device on an
hourly basis. The model is trained with the queried domain names; in the training matrix,
the columns are the domains queried by the device, and the target is the device.

For the evaluation, we use 70% of the queries needed in this assumption to train the
machine learning model. The RF model achieves 73% classification accuracy based on
traffic captured on 22 November.

One observation from the results obtained is that there is hardly any difference in
DNS traffic over the hours. However, analyzing the number of queries of all traffic with
respect to the number of queries after implementing the cache simplification results in
a lower number of queries over the hours, as can be seen in Figure 15; however, at the
hourly level, queries are still obtained. Accordingly, this is the behavior observed for the
devices analyzed.
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Figure 15. Difference between the number of queries generated by different devices during one day
(22 November) on an hourly level.

The advantages achieved with this proposed measure are (i) a reduction in generated
DNS traffic, (ii) a reduced number of stored responses, and (iii) increased privacy because
less information about the device is exposed.

7. Conclusions

The deployment of Internet of Things (IoT) devices is widespread in different environ-
ments, including homes. These devices bring automated services to homes that incorporate
security and energy efficiency. However, homes become targets for cyberattacks because
IoT devices can present certain vulnerabilities. IoT devices generate DNS traffic primarily
for communication with Internet servers.

In this paper, we have demonstrated from real IoT traffic traces that DNS traffic
provides sufficient information to identify IoT devices. Furthermore, IoT devices generate
more DNS queries than necessary. Despite the often limited number of distinct domain
names consulted and the long time to live (TTL) of response records allowing for caching
and minimizing queries, the absence of a cache or the implementation of overly simplistic
caching strategies in IoT devices results in a significantly higher DNS query volume than
expected. This easily enables an observer of such traffic to discern the types of devices
present in the network.

Implementing novel policies for the DNS cache in IoT devices increases user privacy
while still preserving the trade-off between privacy and usability, because IoT devices have
limited capabilities. We propose a simple measure in implementing a DNS cache simplifica-
tion to store at most five responses with the minimum possible TTL. This implementation
leads to a decrease in the DNS traffic generated, rendering the identification of an IoT
device in a potential attack more difficult.

In future work, we will quantify the extent to which the utilization of caches, in
conjunction with differential privacy mechanisms, can prevent an attacker from using DNS
queries to identify devices, and we will assess the associated costs. In addition, we will
evaluate the impact of the use of secure DNS protocols on device identification, as well as
the enhancement of privacy.
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