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Abstract: Rotational jumps are crucial techniques in sports competitions. Estimating ground reaction
forces (GRFs), a constituting component of jumps, through a biomechanical model-based approach
allows for analysis, even in environments where force plates or machine learning training data
would be impossible. In this study, rotational jump movements involving twists on land were
measured using inertial measurement units (IMUs), and GRFs and body loads were estimated
using a 3D forward dynamics model. Our forward dynamics and optimization calculation-based
estimation method generated and optimized body movements using cost functions defined by
motion measurements and internal body loads. To reduce the influence of dynamic acceleration
in the optimization calculation, we estimated the 3D orientation using sensor fusion, comprising
acceleration and angular velocity data from IMUs and an extended Kalman filter. As a result, by
generating cost function-based movements, we could calculate biomechanically valid GRFs while
following the measured movements, even if not all joints were covered by IMUs. The estimation
approach we developed in this study allows for measurement condition- or training data-independent
3D motion analysis.

Keywords: biomechanical analysis; human model; contact model; optimization; Kalman filter;
ground reaction moment; joint angle; joint torque

1. Introduction

In sports focusing on artistic expression (e.g., figure skating, gymnastics, and ballet),
rotational jumps involving twists are indispensable for success and high scores. A crucial
element in these jumping maneuvers is the force generated during takeoff, determining
factors such as jump distance [1] and height [2] as well as midair posture [3]. The analysis
of this takeoff force involves the ground reaction force (GRF) and its moment (ground
reaction moment, GRM). In particular, in the case of rotational jumps involving twists,
conducting a 3D analysis along with joint torques, muscle forces, and ligament forces
derived from body movement allows for a control strategy evaluation for optimizing
sports movements [4] and injury risks in sports [5,6], among other aspects. Such kinematic
indicator measurements often involve the use of a force plate fixed to the ground. While
force plates can accurately measure GRFs during movements, their use requires specialized
measurement facilities. For successful measurements, the participants have to perform
movements with their entire foot on the force plate, potentially leading to unnatural
movements. Consequently, such measurements might not accurately reflect the same
movements as those performed during actual athletic competitions. In addition, continuous
tracking of movements becomes challenging in facilities with no possibility of multiple
expensive force plate installations. Moreover, measurement facility establishment could
be difficult in places in which equipment installation is possible only underneath the
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surface (e.g., ice- and snow-covered surfaces or spring-based floors). GRF measurement
costs in such environments are substantial, posing further difficulties. To overcome these
drawbacks, various lightweight and compact measurement devices have been developed.
However, these may not be sufficient for sports motion analysis due to durability concerns,
constraints from wearing, and other factors. Wearable force plates save facility installation
costs but add weight and height to the shoes, limiting their applicability in high-difficulty
movements. Insole-type force sensors address certain challenges but might raise durability
and reproducibility concerns, affecting the credibility of their accuracy [7].

To address such challenges, methods have been assessed to measure kinematic ele-
ments using only motion capture systems or inertial measurement units (IMUs) and to
estimate kinetic elements, such as GRF and GRM [8]. In this study, we focused on using
IMUs to estimate GRFs. In measuring sports and daily activities, a small, lightweight, and
self-contained measurement method has advantages for clinical applications that avoid
movement restriction [9,10]. IMUs meet these conditions, allowing for measurements
with minimal location constraints in vast areas (e.g., outdoors; skating rink). Previous
studies have explored methods such as using IMUs and machine learning to estimate
the three-dimensional (3D) GRFs of gait motion [11] and sagittal-plane GRFs of double-
limb jumping [12]. These machine learning-based methods estimate GRFs solely from
IMU-recorded motion data, employing a statistical model that incorporates training data
collected with both IMUs and force plates. While this approach achieves high accuracy in
GRF estimation, it faces challenges in situations in which collecting training data is difficult,
such as outdoors or on a skating rink. Another method involves calculating the posture
relative to the absolute coordinate system of each body segment from IMU measurements
and estimating GRFs through inverse dynamics calculations using the aforementioned
values as inputs [13]. However, this method requires a high number of IMUs, thereby
potentially hindering movement in sports motion analysis. Therefore, estimation methods
that reduce the number of body-mounted sensors attached are crucial for advancing sports
motion analysis, in which minimizing sensor interference on natural movement is essential.

In this study, we focused on a GRF estimation method based on forward dynamics
calculations using joint torque [14], generating and optimizing body movements using
a 3D human model and motion measurement- and internal load-defined cost functions.
Using a 3D biomechanical model allows for targeting asymmetrical and nonperiodic sports
movements. Moreover, cost function-based movement generation makes biomechanically
valid GRF calculation possible while following the measured movements, even if not all
joints are covered by IMUs, thereby enabling biomechanically valid GRF estimation with a
small number of IMUs. Haraguchi and Hase [14] directly used the acceleration and angular
velocity data obtained from the IMUs in this cost function. However, in the case of sports
movements, significant noise could be present in the IMU data due to movement intensity.
Therefore, in this study, we estimated the 3D orientation using sensor fusion composed
of acceleration and angular velocity data obtained from IMUs and an extended Kalman
filter, aiming to reduce this noise influence using the estimated values in the optimization
calculation.

In this study, we aimed to estimate GRFs and body loads using a 3D forward dynamics
approach incorporating sensor fusion with an extended Kalman filter, based on rotational
jump movement measurements on land using IMUs.

2. Ground Reaction Force Estimation Methods

In this study, we established a biomechanical simulation system that combined for-
ward dynamics simulation using a human model with motion measurement using IMUs.
From the forward dynamics simulation-derived generated body movements, the system
estimated the GRF, GRM, joint angle, and joint torque. The simulation comprised a forward
dynamics model and optimization calculations aimed at cost function minimization, com-
posed of errors between the model and IMU measurements and the internal biomechanical
load evaluation of the model. This enabled the model to reproduce biomechanically plau-
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sible body movements while following the IMU measurements. Based on the optimized
body movements, the GRFs were estimated using a contact model between the human and
the ground.

The overall flow of the GRF estimation method was as follows:

1. Height and weight are input into the system and human model construction based on
the inertia parameters calculated from them.

2. Based on the reference joint angles formed by the node points, body movement is
generated by the forward dynamics model.

3. Body movement evaluation by cost function comprises errors between the generated
body movement and measurements from the IMUs and internal biomechanical loads.

4. Repetition of steps 2 and 3 while adjusting the node points of the reference joint angles
for cost function value minimization.

5. GRF, GRM, and joint motion estimation using optimized node points in the forward
dynamics model.

2.1. Forward Dynamics Model
2.1.1. Human Model

Figure 1 illustrates the human model we created, comprising rigid links representing
each segment of the body with rotational degrees of freedom (DOFs) defined at the junctions
to represent the joints. The segments include the trunk, pelvis, upper arms, forearms,
thighs, shanks, and feet, totaling 12 links. The joints exhibit rotational DOFs: three DOFs
for right/left hip joint, one DOF for right/left knee joint, one DOF for right/left ankle joint,
three DOFs for the lumbar joint, three DOFs for right/left shoulder joint, and one DOF
for right/left elbow joints, totaling 21 DOFs. In addition, six virtual DOFs accounted for
rotational and translational motion between the pelvis segment and the global coordinate
system, bringing the total to 27 DOFs. The knee and elbow joints exhibit flexion-extension,
whereas that of the ankle demonstrates plantarflexion-dorsiflexion. The hips, lumbar
region, shoulder joints, and pelvic segment are represented by Euler angles in the X
(flexion-extension), Y (adduction-abduction), and Z (rotation) sequences. The lengths,
inertia moments, and mass centers are determined using estimation equations based on
height and weight in Japanese [15,16]. Figure 1 presents how the neutral position for each
joint was set and determined by the postural estimation system described in Section 2.2.1.
In addition, we defined a sensor coordinate system on the pelvic segment of the human
model, allowing for the output of relative acceleration to the global coordinate system,
enabling a comparison between the motion generated by forward dynamics simulation
and that obtained from the IMU.

In this simulation, motion was generated by calculating joint motion when torque was
applied to the joints (defined in Figure 1) using forward dynamics calculations. Figure 2
presents the calculation flow at each time step of the forward dynamics calculation. The
forward dynamics model motion equations were as follows:

M
..
q + Γ

(
q,

.
q, Fv, Fh, τvirtual

)
= τ, (1)

where M, Γ, and τ refer to the inertia matrix, vector (consisting of Coriolis forces, centrifugal
forces, gravity, and external forces), and joint torque, respectively. q denotes the state
variable vector, including the joint angles and the six DOFs between the pelvis and the
global coordinate system. Finally, Fv and Fh are the GRF vectors in the vertical and
horizontal directions, respectively, and τvirtual represents an external torque vector that
prevents the model from falling. We calculated the state variable vector by adding joint
torque τ as an input into Equation (1), thereby generating the body movement of the
model. We developed the human model using MATLAB/Simulink (10.7) (MathWorks,
Inc., Natick, MA, USA) and applied the ode45 variable-step solver, which implemented the
Runge–Kutta method.
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Figure 1. Human body model. The human body model consists of 12 rigid body links representing 
individual body segments. Joints are modeled using rotational degrees of freedom (DOFs) defined 
at each link’s connection point. The entire body has 27 DOFs, including a virtual joint with 6 DOFs 
between the pelvis segment and the global coordinate system. The sensor coordinate system was 
defined on the pelvic segment of the model and aligned with the orientation of the inertial meas-
urement unit (IMU) used in the experiment. 
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state variable vector, including the joint angles and the six DOFs between the pelvis and 
the global coordinate system. Finally, 𝑭  and 𝑭  are the GRF vectors in the vertical and 
horizontal directions, respectively, and 𝝉  represents an external torque vector that 
prevents the model from falling. We calculated the state variable vector by adding joint 
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model. We developed the human model using MATLAB/Simulink (10.7) (MathWorks, 
Inc., Natick, MA, USA) and applied the ode45 variable-step solver, which implemented the 
Runge–Kutta method. 

Figure 1. Human body model. The human body model consists of 12 rigid body links representing
individual body segments. Joints are modeled using rotational degrees of freedom (DOFs) defined
at each link’s connection point. The entire body has 27 DOFs, including a virtual joint with 6 DOFs
between the pelvis segment and the global coordinate system. The sensor coordinate system was de-
fined on the pelvic segment of the model and aligned with the orientation of the inertial measurement
unit (IMU) used in the experiment.
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of active (𝝉a) and passive (𝝉p) components, are then calculated to determine the joint angles (𝒒). 
Ground reaction forces (𝑭v and 𝑭𝒉) and an external balancing force (𝝉virtual) are obtained from the 
external force model. 
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between the ground and the foot. We determined the horizontal forces by frictional forces, 
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Figure 2. Forward dynamics model flowchart. The model generates body movements through
forward dynamics simulation using reference joint angles (qr) as input. Joint torques (τ ), comprised
of active (τa) and passive (τp) components, are then calculated to determine the joint angles (q).
Ground reaction forces (Fv and Fh) and an external balancing force (τ virtual) are obtained from the
external force model.

2.1.2. Joint Torque Model

The joint torque τ comprises the active and passive torques τa and τp, generated by
muscle forces and acting prominently near the joint motion limit range, respectively:

τ = τa
(
q,

.
q, qr,

.
qr
)
+ τp

(
q,

.
q
)
. (2)

τp is represented by a double exponential function that increases the torque near the

anatomical joint limits, which are defined by related research [17–20]. The active torque τ
j
a

for the joint j, a component of τa, is calculated using proportional-derivative (PD) control
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torque based on the joint angle qj for the joint j, a component of q, and reference joint angle
qj

r for the joint j:
τ

j
a = KPD

(
qj

r − qj
)
+ DPD

( .
qj

r −
.
qj
)

, (3)

where KPD and DPD are gains in PD control, empirically set to KPD = 1000 N·m/rad and
DPD = 10 N·m/(rad/s). The reference joint angle qj

r was determined by the optimization
calculation described in Section 2.2.

2.1.3. External Force Model

Fv and Fh in Equation (1) were defined as external forces acting on the foot of the
human model and modeled by the contact model. In the human model, there are challenges
in dynamic calculations when both feet are in contact and form a closed-loop structure.
In gait analysis, statistical models (e.g., transition and distribution functions for GRF and
GRM during both-foot support) are often used based on past experiments and data [11,21].
However, in sports movements, existing data remain limited, and statistical models, such
as those used in gait analysis, cannot be defined. Therefore, in this study, we applied a
contact model to calculate vertical reaction forces by solving the contact problem between
the ground and the foot. We determined the horizontal forces by frictional forces, calculated
based on the vertical reaction forces. We set the contact points at 22 points for each foot
segment, similar to the model of Haraguchi and Hase [14], including distances from the
ankle to the heel, metatarsophalangeal joint, and the tip of the second proximal phalanx, as
well as heel and metatarsophalangeal joint width, the width between the first and second
proximal phalanx, and the heights from the ground to the ankle and the first proximal
phalanx. The vertical GRF Fi

v at contact point i, a component of Fv, and the horizontal GRF
Fi

h at contact point i, a component of Fh, were calculated using Equations (4) and (5).

Fi
v = −KG

(
ri

z − rz0

)
− DG

.
ri

z, (4)

Fi
h = −µ

( .
ri

x,
.
ri

y, µs, µd

)
Fi

v, (5)

where ri
x, ri

y, and ri
z represent the position of the contact point, and rz0 is set as the height of

the ground (rz0 = 0). In addition, KG and DG are the elastic and viscous coefficients of the
ground, respectively. The friction coefficient µ is defined as a function of the penetration
velocities

.
ri

x and
.
ri

y at each contact point, along with the static and dynamic friction coeffi-
cients µs and µd, respectively. We determined the values for KG, DG, µs, and µd through
trial and error, set to KG = 1.0 × 103 N/m, DG = 1.0 × 104 N/(m/s), µs = 0.7, µd = 0.5.

Furthermore, to prevent the model from tipping over during the simulation, we
defined a virtual torque τvirtual to constrain the model rotation. In forward dynamics
analysis, model balance maintenance is essential. When the model attempts to rotate
forward, backward, or sideways related to the point of tipping over, virtual torque is
applied to a virtual joint. We set the virtual joint between the mass center position of the
pelvic segment and the global coordinate system.

τvirtual = −Kvirtual qvirtual − Dvirtual
.
qvirtual, (6)

where qvirtual =
[
qx qy qz

]T refers to the virtual joint angle represented by the Eu-
ler angles of the pelvis relative to the global coordinates. Kvirtual and Dvirtual denote
gains determined through trial and error, set as Kvirtual =

[
400 400 0

]T N·m/rad and

Dvirtual =
[
40 40 0

]T N·m/(rad/s).

2.2. Optimization Calculation

We generated the body movement of the forward dynamics model based on the
reference joint angle qj

r used in the joint torque model. Optimization calculations for
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the reference joint angle are typically performed at each time step of the simulation. By
performing optimization calculations at high frequencies over the time steps, the generated
motion becomes closer to the measured motion. However, this approach also displays
certain limitations, such as requiring significant computation time or being susceptible
to measurement errors due to large IMU-related noise during certain time steps. In this
study, to generate motions closer to the measured motions while reducing the optimization
calculation frequency, we applied a method using reference joint angles optimized not
at each time step but over the entire measurement period. We used multiple nodes as
simulation inputs and determined their values through optimization calculations to create
reference joint angle waveforms by cubic spline interpolation. We determined the reference
joint angles qj

r, as follows:

qj
r(t) = spline

(
N j

1, . . . , N j
m, t

)
, (7)

where spline represents a spline function defined by multiple nodes N j
1, . . . , N j

m and the
sampling time t. We determined the number of nodes m through trial and error: each
upper body joint (i.e., the shoulders, elbows, and lumbar region) displayed two nodes at
the motion start and end, and each leg joint involved in the jump (i.e., the hips, knees, and
ankles) contained five nodes evenly spaced from the motion start to its end. The other joints
are disposed of three nodes set from the motion start to its end. The gait motion model
of Haraguchi and Hase [14] sets node points periodically and symmetrically. However,
for asymmetric and nonperiodic movement generation, we set the node points as variable
numbers for all joints with DOFs.

We established a cost function to assess forward dynamics simulation-generated body
movements, and we performed optimization calculations to minimize this value. In this
study, we applied genetic algorithm optimization methods and defined the cost functions
as follows:

Iall = ξ1 IQ + ξ2 Ia, pelvis + ξ3 Imuscle, (8)

where IQ and Ia, pelvis represent the cost functions for evaluating errors in the 3D orienta-
tions of each segment and the acceleration of the pelvis segment, respectively, between the
simulation model and the experimental record by the IMUs, as follows:

IQ =
12

∑
s=1

∫ {(
ϕs

model − ϕs
exp

)2
+

(
θs

model − θs
exp

)2
+

(
ψs

model − ψs
exp

)2
}

dt, (9)

Ia,pelvis =
∫ {(

apelvis
model,x − apelvis

exp,x

)2
+

(
apelvis

model,y − apelvis
exp,y

)2
+

(
apelvis

model,z − apelvis
exp,z

)2
}

dt, (10)

where ϕs
model, θs

model, and ψs
model denote the simulated orientations of the sth segment with

respect to the global coordinates, represented by Euler angles in the X, Y, and Z sequences,
determined by the Qs

model. ϕs
exp, θs

exp, and ψs
exp, measured orientations of the sth segment

with respect to the global coordinates, represented by Euler angles in the X, Y, and Z
sequences. These Euler angles were determined by the measured 3D orientations Qs

exp
expressed by quaternions in the global coordinate system recorded by the IMUs, calculated
by the extended Kalman filter, as described in Section 2.2.1. apelvis

model,x, apelvis
model,y, and apelvis

model,z

stand for the simulated pelvis segment acceleration. apelvis
exp,x , apelvis

exp,y , and apelvis
exp,z represent

the measured pelvis acceleration by the IMUs. Qs
model, apelvis

model,x, apelvis
model,y, and apelvis

model,z were
calculated after the computation of q,

.
q, and

..
q based on the forward dynamics calculation.

IQ and Ia, pelvis aim for alignment with the measurements from the IMUs regarding joint
motion and for matching the acceleration related to the impact at the moment the foot
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makes contact with the ground and the translational motion of the body, respectively.
Imuscle defines the cost function for the overall muscle load as follows:

Imuscle =
21

∑
j=1

∫ (∣∣∣σj
+

∣∣∣3 + ∣∣∣σj
−

∣∣∣3)dt, (11)

σ
j
+ =

0 : τ
j
a < 0

τ
j
a

τ
j
+,max

: 0 ≤ τ
j
a

, (12)

σ
j
− =


τ

j
a

τ
j
−,max

: τ
j
a < 0

0 : 0 ≤ τ
j
a

, (13)

where σ
j
+ and σ

j
− represent the active torques normalized by the maximum positive and

negative joint torques τ
j
+,max and τ

j
−,max, respectively, for joint j. For instance, the maximum

flexion and extension torques at the hip joint are τ+,max and τ−,max, respectively, which
were determined from previous studies across whole joints at the neck [22], lumbar [23–25],
shoulder [26–28], elbow [29], hip [30–32], knee [26], and ankle [33]. Imuscle contributes to
generating biomechanically valid movements while reducing the overall physical load. In
addition, ξ represents the weight factors for each term of the cost function, determined
through trial and error, as follows: ξ1 = 103, ξ2 = 103

(
rad2

)
, ξ3 = 10

((
m/s2) 2

).

2.2.1. Orientation Estimation

IMU orientation estimation algorithms have already been developed that use data
from 3-axis accelerometers, gyroscopes, and magnetometers to estimate orientation [34].
This approach relies on the IMU’s measurement of gravitational acceleration. However,
accurately estimating sensor orientation during high-acceleration sports activities is chal-
lenging. Extracting the gravitational acceleration component from the IMU data becomes
difficult under such conditions, leading to compromised estimation accuracy. In addi-
tion, they rely on magnetometer-derived magnetic field information, making their use
challenging in indoor sports settings prone to magnetic disturbances.

In this study, we estimated 3D orientations using sensor fusion of the 3-axis accelerom-
eter and gyroscope data from IMUs [35,36]. Figure 3 presents the algorithm for orientation
estimation during motion, which is based on the relationship between the acceleration out-
puts of the two IMUs attached to each of the two links, making it insensitive to acceleration
magnitudes. This approach effectively mitigates the negative impact of large accelerations
during sports activities on orientation estimation. Furthermore, it offers the advantage of
enabling sensor orientation estimation indoors without requiring magnetometers.

The acceleration output in an IMU as
exp attached to the segment was represented as

the sum of translational, centripetal, tangential, gravitational, and Coriolis accelerations. In
this study, Coriolis acceleration could be neglected due to the constant distance between
the joint and the IMU. In addition, the gravitational and translational acceleration could be
obtained by subtracting the centrifugal and tangential acceleration from the sensor output.
Considering the entire system, IMU sensors provide the same gravitational and transla-
tional acceleration. Therefore, by expressing the centrifugal and tangential acceleration
vectors of the sth segment at sampling time t as as

exp,ct, we expressed this relationship as in
the observation equation of the extended Kalman filter (Equation (15)). Furthermore, we

set the state values xj =
[
Qs

exp Qs+1
exp

]T
as the 3D orientations calculated by integrating

the angular velocity [37] (Equation (14)). In this study, we described 3D orientations using
quaternions unaffected by the gimbal lock. The quaternion represents the real part as the
first element and the vector of the imaginary parts as the subsequent elements.
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xs(t + 1) =
(

I +
dt
2

[
Ωs O
O Ωs+1

])
xs(t) + ws, (14)

[
as

exp − as
exp,ct

as+1
exp − as+1

exp,ct

]
=

s
s+1R(xs(t))

{
as+1

exp − as+1
exp,ct

}
s+1
s R(xs(t))

{
as

exp − as
exp,ct

}+ vs, (15)

as
exp,ct = ωs

exp ×
(

ωs
exp × ls

)
+

.
ω

s
exp × ls, (16)

where s
s+1R denotes the rotation matrix from segment s to s + 1. ωs

exp refers to the an-
gular velocity vector of the sth segment at the sampling time t, expressed as ωs

exp =[
ωs

exp,x ωs
exp,y ωs

exp,z

]T
, and ls represents the position vector indicating the sth segment-

attached IMU location from the proximal joint j. We expressed Ωs in terms of angular
velocities as follows:

Ωs =


0 −ωs

exp,x −ωs
exp,y −ωs

exp,z
ωs

exp,x 0 ωs
exp,z −ωs

exp,y
ωs

exp,y −ωs
exp,z 0 ωs

exp,x
ωs

exp,z ωs
exp,y −ωs

exp,x 0

. (17)
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Figure 3. (a) Two-link model used for constructing sensor fusion. (b) Algorithm for 3D attitude
estimation. The IMUs attached to the two links measure accelerations that include translational and
gravitational components, which are identical for both sensors. To isolate these components, the
centrifugal and tangential acceleration components are subtracted from the IMU outputs, resulting in
the sum of gravitational and translational accelerations. This relationship serves as the observation
equation in the estimation process. The state values are defined as the angles obtained by integrating
the 3D angular velocity. Sensor fusion using an extended Kalman filter is then employed to calculate
the 3D sensor orientation (represented as a quaternion) while removing noise, such as drift error.
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In this study, we adapted these orientation estimation systems to adjacent IMUs
across each joint. In addition, we set the process noise in the extended Kalman filter
to ws =

[
10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3]T and the observation noise to vs =[

10−1 10−1 10−1 10−1 10−1 10−1]T(m/s2). We set the initial value of the posterior error
covariance matrix Pt to Pt0 = diag

{
102, 102, 102, 102, 102, 102, 102, 102}. We determined

these values through trial and error, taking into account the magnitude of noise from the
accelerometers and gyroscope sensors.

We determined the initial state values of Equation (14) and the neutral position of the
model using the IMU data from the calibration posture and this posture estimation system.

3. Experiment
3.1. Participants

We included seven and three healthy adult males and females, respectively, in the
measurements (average ± standard division (SD) value of body height: 1.69 ± 0.10 m,
body weight: 63.3 ± 12.7 kg, age: 23.5 ± 2.5 years). This study was approved by the
Ethics Committee of Tokyo Metropolitan University. All participants were provided with
written and verbal explanations of the measurement details, and their consent was obtained
through signed agreement documents prior to initiation.

3.2. Conditions

The jumping movement involved a run-up, followed by a jump with a takeoff using
the left leg. The run-up motion was initiated in the direction of the jump, and on the second
step of the run-up, a takeoff motion was performed followed by a counterclockwise half-
turn jump. We adjusted the run-up distance so that the participants could jump naturally.
We determined the jumping distance considering safety and the athletic abilities of the
participants, with an average ± SD value of 0.52 ± 0.19 m. All participants familiarized
themselves with the movements prior to the experiment.

3.3. Measurements

We applied IMUs (TSND151, ATR-Promotions Inc., Kyoto, Japan) to measure 3-axis
acceleration and angular velocity (sampling frequency: 1000 Hz, accelerator measurement
range: ±16 G (resolution: 0.48 mG), gyroscope measurement range: ±2000 dps (resolution:
0.061 dps)). We attached 12 IMUs to the trunk (1), pelvis (2), upper arms (3), forearms (4),
thighs (5), shanks (6), and feet (7) of the participants, positioned as follows: (1) at the upper
thoracic vertebrae, (2) at the midpoint of the bilateral posterior superior iliac spines, (3) at
a quarter of the distance from the elbow joint along the line connecting the shoulder and
elbow joints, (4) at the midpoint along the line connecting the elbow joint and the ulnar
styloid process, (5) at a quarter of the distance from the lateral condyle of the femur along
the line connecting the greater trochanter and the lateral condyle of the femur, (6) at the
midpoint along the line connecting the lateral malleolus and the medial malleolus of the
tibia, and (7) at the midpoint along the line connecting the calcaneus and the first metatarsal
bone base. We attached two cylindrical rods to the IMUs on the forearms to enclose the
radius and ulna and secured all IMUs to each segment with elastic belts.

To validate the simulation, we measured the GRFs using a force plate (TF-4060-D, Tech
Giken Co., Ltd., Kyoto, Japan) at a sampling frequency of 100 Hz. In addition, we measured
the 3D coordinates of markers attached to the entire body at a sampling frequency of 100 Hz
using an optical motion capture system (OptiTrack Flex 3, Natural Point Inc., Corvallis, OR,
USA). We aligned marker positions and calibration poses using a full-body musculoskeletal
model [38] to calculate joint angles and torques. We processed all measurements with a
low-pass filter (Butterworth fourth-order type, −3 dB at 18 Hz).

3.4. Data Analysis

We used the IMU-derived measurements as input for the forward dynamics model. To
validate the model, we calculated the GRF, GRM, joint angle, and joint torque as reference
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values using force plates and an optical motion capture system. We computed the GRF and
GRM from the force plate measurements. The ankle joint center was the point projected
onto the ground as the origin. We performed the calculations in a coordinate system
aligned with the horizontal direction of the foot. The ankle joint center was determined
as the midpoint between markers on the medial and lateral sides of the heel obtained
from the motion capture system. In addition, we normalized these values by the body
weight (BW) and the BW and body height (BH) product. Furthermore, using the motion
capture system and open-source musculoskeletal modeling software OpenSim 4.4 [39,40],
along with the full-body musculoskeletal model [38], we performed inverse kinematics
and dynamics calculations to compute joint angles and torques, including virtual joints.
We normalized joint torques by the BW and BH product, as well as the results from the
moment the stepping foot made contact with the ground until it left the ground.

We assessed the concordance between the estimated and true values using Pearson’s
correlation coefficient (ρ), defining weak, moderate, strong, and excellent correlations at
ρ ≤ 0.35, 0.35 < ρ ≤ 0.67, 0.67 < ρ ≤ 0.9, and 0.9 < ρ, respectively [41]. Finally, we
calculated the root mean square error (RMSE) and the relative RMSE (rRMSE). rRMSE
normalized the RMSE by the average values of the two data ranges.

4. Results

Figure 4 presents the time-series data of the GRFs ((a) the medial direction, (b) the
anterior direction, and (c) the vertical direction) and GRM ((d) the sagittal plane, (e) the
frontal plane, and (f) the transverse plane). The red line and area indicate the mean ± SD
of the estimation, and the gray line and area present the mean ± SD of the measure-
ment. We observed strong correlations in the vertical GRF (ρ = 0.749, RMSE = 63.5%BW,
rRMSE = 27.4%), moderate correlations in the sagittal GRM (ρ = 0.520, RMSE = 5.67%BW·BH,
rRMSE = 61.6%), and weak correlations in the medial GRF (ρ = −0.0326, RMSE = 32.1%BW,
rRMSE = 72.9%), anterior GRF (ρ = −0.206, RMSE = 44.5 %BW, rRMSE = 158%), frontal
GRM (ρ = −0.481, RMSE = 9.38%BW·BH, rRMSE = 84.0%), and transverse GRM (ρ = 0.157,
RMSE = 168%BW·BH, rRMSE = 73.7%).

Figure 5 presents the time-series data of the joint angle ((a–c) hip flexion, abduction,
external rotation joint angle, (d) knee flexion joint angle, and (e) ankle dorsiflexion joint
angle). The red line and area indicate the mean ± SD of the estimation, and the gray line
and area present the mean ± SD of the measurement. Table 1 summarizes the cost function
estimation accuracy for the joint angles and torques. We detected strong correlations in the
case of the hip, knee, and ankle joint flexion angles. We observed weak correlations for the
hip and all joint torque abduction and external rotation angles.

Table 1. Pearson’s correlation coefficient (ρ), the root mean square error (RMSE), and the relative
RMSE (rRMSE) for the joint angles and torques.

Hip Knee Ankle

Flexion Abduction External
Rotation Flexion Flexion

ρ

Joint angle 0.682 −0.291 −0.818 0.781 0.723
Joint torque 0.203 −0.510 0.285 0.376 0.313

RMSE

Joint angle (deg) 20.1 15.9 15.9 15.6 12.3
Joint torque (BW·BH) 13.7 10.1 3.39 12.2 4.67

rRMSE

Joint angle (%) 56.4 73.7 67.5 43.3 38.6
Joint torque (%) 55.0 55.1 66.0 42.1 59.5
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Figure 4. Ground reaction forces (GRFs) (a–c) and ground reaction moments (GRMs) (d–f). (a) medio-
lateral with the medial direction as positive, (b) antero-posterior with the anterior direction as positive,
(c) vertical with the upward direction as positive, (d) sagittal plane around the medial axis, (e) frontal
plane around the anterior axis, and (f) transverse plane around the vertically upward axis. These axes
originate from the point projected onto the ground from the ankle joint center, and the horizontal
direction coincides with the coordinate system of the foot. We defined the timing at the stepping foot
heel strike and that at the stepping toe-off as the 0% and 100% phases, respectively. We normalized
GRF and GRM by the body weight (BW) and BW × body height (BH), respectively. The red and gray
areas and the red and gray solid lines indicate the mean ± standard deviation (SD) of the estimated
and measurement values and the mean of the estimated and measurement values, respectively.
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Figure 5. Time-series data of the joint angle. (a) hip flexion, (b) hip abduction, (c) hip external rotation,
(d) knee flexion, and (e) ankle dorsiflexion joint angle. We defined the timing at the stepping foot
heel strike and that at the stepping toe-off as the 0% and 100% phases, respectively. The red and gray
areas and the red and gray solid lines indicate the mean ± SD of the estimated and measurement
values and the mean of the estimated and measurement values, respectively.

5. Discussion
5.1. Advantages of the Proposed Approach

In this study, we presented a method that successfully achieved accurate estimation for
joint angles (i.e., hip, knee, and ankle flexion angles) with relatively large displacement by
optimizing biomechanically plausible flexion angles using forward dynamics calculations
and the cost function defined by motion measurements and internal biomechanical loads.
The accurate estimation of the flexion joint angles led to the correct computation of the
vertical movement of the contact points, resulting in high precision in estimating vertical
GRF and sagittal GRM.

A previous study used 17 IMUs to estimate the GRF in jump movements using IMUs
and biomechanical models [42]. In addition, machine learning-assisted methods require a
substantial amount of experimental data for training [12]. However, employing a hybrid
cost function including internal biomechanical loads and less noise data estimated from
sensor fusion with an extended Kalman filter, our system requires fewer IMUs and elimi-
nates the need for extensive training data. It enabled the cost-effectiveness of GRF, GRM,
and joint movement estimation in sports movement. Our proposed estimation approach
significantly reduced the hindrance caused by sensor attachments. This minimized sensor
interference with a participant’s natural movements during sports motion analysis. While
our current system necessitates attaching 12 IMUs, our method inherently allows for GRF
estimation, even without sensors on all body segments. This means that the number of
sensors may be further reduced in the future, highlighting the potential of our approach to
facilitate the clinical applications of GRF estimation in sports movement analysis.
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5.2. Accuracy

Although the proposed method achieved relatively high accuracy, further improve-
ment is necessary for practical applications. Previous studies have reported estimation accu-
racy below 20% BW in RMSE for vertical GRFs during jumping and jogging motions [12,42].
A key challenge in IMU-based GRF estimation lies in the inherent susceptibility to noise
during measurement, which requires robust attachment and careful calibration to avoid
movement inhibition. In this study, we manually attached 12 IMUs to predefined posi-
tions, thereby potentially introducing positional inaccuracy-related errors in the estimated
GRFs. Furthermore, segment movements during jumping and noise from soft tissues could
have adversely affected the GRF estimations. IMUs measure soft tissue acceleration and
angular velocity relative to bones [43]. During the measurements, we selected the attach-
ment positions to minimize soft tissue influence, and we secured the sensors with elastic
straps. However, in vigorous activities, such as sports movements, IMUs within soft tissues
or the belt could experience significant vibrations, potentially leading to considerable
measurement errors.

Vigorous sports movements significantly impact GRF estimation accuracy. Compared
to the gait analysis results from Haraguchi and Hase [14], our method exhibited decreased
accuracy in estimating anterior and medial GRFs. This can be attributed to the inability to
accurately calculate foot–ground contact. In this method, there was a significant estimation
error in the hip joint angles of abduction and external rotation. In actual movement, the
foot was placed forward and outward on the transverse plane, and it landed while rotating
in the direction of the rotation, causing the hip joint angles to start from an adducted and
internally rotated position. However, in the simulation, the hip joint angles started from an
externally rotated position without abduction, causing the foot to land on the transverse
plane aligned with the body axis. Small movements, such as abduction and rotation of the
hip joint, are susceptible to noise in the IMU measurements, leading to errors in joint angle
estimation and inaccurate foot contact. As a result, the accuracy of the GRF ultimately
decreased. A potential solution lies in incorporating a damping effect for acceleration into
the observation equations of the extended Kalman filter used for 3D orientation estimation.
Accurate modeling of the damping effect of acceleration as it propagates through body
segments could reduce calculation errors in the sum of translational and gravitational
accelerations obtained by the extended Kalman filter’s observation equations for each link.
This has the potential to significantly improve the estimation accuracy of both 3D human
body orientations and GRFs.

Furthermore, while Haraguchi and Hase incorporated virtual forces for fall prevention
in the lateral direction based on the relationship between the overall center of gravity
position and the support base, in this study, we introduced virtual torques corresponding to
the virtual joint rotation angles to allow for unstable movement generation, such as jumping
with a single foot while preventing falls. The addition of virtual torque to the sagittal and
frontal plane rotations of the body could result in limited movements. The anterior GRF
and frontal GRM accuracy reduction might be attributed to the force application akin to
brakes in those directions through virtual torques. Although the system cannot entirely
eliminate virtual torques for fall prevention, their impact can be mitigated. One approach
involves incorporating an evaluation of virtual torque into the optimization’s cost function.
Additionally, employing control methods that maintain balance through joint torque control,
such as those using a computational model with nonlinear model predictive control [44],
has the potential to further reduce the reliance on virtual torques for balance.

5.3. Limitations

We involved healthy, non-athlete participants in this study. When adapting the system
to athletes, errors could potentially occur in the estimated GRFs. The current model relies
on inertial parameters determined using height- and weight-based estimation formulas
and internal values, such as joint torques and muscle forces. These data were obtained from
a population that did not represent athletes. However, when targeting sports movements
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with athlete participants, the use of participant-specific parameters or the average values of
athlete populations might be necessary in this sport [45].

The proposed method utilizes a contact model comprised of contact points based on
barefoot geometry. To expand clinical applicability, future development efforts will focus
on incorporating footwear models, such as sports shoes.

In this study, focusing on rotational jump movements, we set 55 nodes as optimization
calculation parameters. We used these node points to calculate the reference joint angle qj

r,
serving as a simulation input. Increasing the node point number might enable more com-
plex body movement generation and enhance ground reaction force estimation accuracy.
However, increasing the node point-represented number of variables in the optimization
calculation might negatively impact convergence speed and precision. To reduce measure-
ment and computation costs while improving measurement accuracy and optimization
calculation precision, kinematic synergy should be considered. Humans smoothly control
the redundant multi-DOF musculoskeletal system through a mechanism known as kine-
matic synergy, thereby reducing controlled DOFs [46]. This control mechanism flexibly
manages joint motion through synergistic groups, allowing for diverse body movement
generation. Kinematic synergy incorporation into this system and reference joint angle qj

r
controlling for groups with synergies might allow for body movement generation and GRF
estimation, even with fewer IMUs.

Despite its high vertical GRF accuracy, this system displayed lower anterior GRF
and frontal GRM precisions, which are potentially unsuitable for predicting the dynamics
of all sports. However, for example, on ice, the anterior GRF tends to be small, and the
frontal GRM is diminished due to the narrow blade width [47]. As virtual torque might
have possibly contributed to such low GRF estimation accuracies, our method could be
applicable to sports involving sliding and like figure skating rotation jump movements,
where these values are small. If this estimation method could be applied to figure skating,
it would allow for the estimation of forces exerted on the ice surface and physical loads
with simple measurements, facilitating their application in movement analysis.

This system completes a single trial in approximately 24 h (CPU: Intel® Core i9-
13900KF, with 24 cores, 32 logical processors, and an average speed of 3.0 GHz; memory:
128 GB; software: MATLAB R2023a (9.14); operating system: Windows 11 Pro). Therefore,
it is not currently adapted to the real-time analysis of sports movements. To reduce compu-
tational costs in future optimizations, minimizing the number of reference joint angles used
as search parameters could be effective. While the current method allows independent
movement of each joint in the human model, exploiting the natural coordination between
joints, like kinematic synergies, has the potential to control human motion with fewer
parameters. This approach could significantly reduce the number of required reference
joint angles.

6. Conclusions

We estimated GRFs and body loads using a 3D forward dynamics approach incorpo-
rating sensor fusion with an extended Kalman filter based on rotational jump movement
measurements on land using IMUs. By cost function-based movement generation, we could
calculate biomechanically valid GRFs while following the measured movements, even if the
IMUs did not cover all joints. Therefore, biomechanically valid GRF estimation is possible
using a small number of IMUs. To reduce the influence of the significant noise of IMUs due
to sports movements in the optimization calculation, we estimated the 3D orientation using
sensor fusion composed of acceleration and angular velocity data obtained from IMUs and
an extended Kalman filter. This estimation method enabled measurement environment-
and machine learning training data-independent 3D motion analysis.
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