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Abstract: Existing retinex-based low-light image enhancement strategies focus heavily on crafting
complex networks for Retinex decomposition but often result in imprecise estimations. To overcome
the limitations of previous methods, we introduce a straightforward yet effective strategy for Retinex
decomposition, dividing images into colormaps and graymaps as new estimations for reflectance and
illumination maps. The enhancement of these maps is separately conducted using a diffusion model
for improved restoration. Furthermore, we address the dual challenge of perturbation removal and
brightness adjustment in illumination maps by incorporating brightness guidance. This guidance
aids in precisely adjusting the brightness while eliminating disturbances, ensuring a more effective
enhancement process. Extensive quantitative and qualitative experimental analyses demonstrate that
our proposed method improves the performance by approximately 4.4% on the LOL dataset compared
to other state-of-the-art diffusion-based methods, while also validating the model’s generalizability
across multiple real-world datasets.

Keywords: low-light image enhancement; diffusion models; Retinex decomposition strategy;
brightness guidance

1. Introduction

Low-light enhancement is a crucial yet challenging aspect of image processing. Under
low-light conditions, images are deteriorated by reduced brightness and a poor signal-to-
noise ratio (SNR), obscuring details and compromising the quality. This issue, primarily
due to sensor limitations in capturing weak light, results in noise that degrades the image
and can be intensified during enhancement, causing color distortions. Therefore, it is
crucial to develop methods to improve the visibility and quality.

Various convolutional neural networks (CNNs) [1–8] have been proposed in the field
of low-light image enhancement, many of which are based on Retinex theory [9]. This
theory guides the separation of images into reflectance and illumination maps. Diverse
methods [10–12] leverage Transformer models to restore the decomposed maps. However,
these approaches cannot be developed further due to the limited representation capabilities
of CNN-based models.

Recently, diffusion models have become increasingly important in image enhancement
tasks [13], including low-light enhancement [14–20], due to their excellent performance
in modeling complex noise and artifact distributions in images. Ref. [14] employs early
downsampling and a global corrector to accelerate processing and mitigate color shifts.
Ref. [16] also uses downsampling and gradual upsampling, but with a unique normaliza-
tion strategy. Ref. [20] incorporates prior knowledge, using color maps to represent image
color information. Refs. [15,17] introduce novel components; Ref. [15] reduces the input
size through a wavelet transform and maintains details with a high-frequency restoration
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module, while [17] enhances the effectiveness by feeding degradation features from a de-
signed DGNET to a U-Net in the diffusion model. However, these methods are susceptible
to color shifts, making the design of complex modules for color adjustment necessary.

Alternatively, some works [18,19] attempt to combine the diffusion model with Retinex
theory, which mitigates the issue of color shifts. Ref. [18] uses a Transformer-based structure
for decomposition and conditional diffusion models to restore reflectance and illumination
maps. Ref. [19] follows a similar approach but improves the decomposition method and
includes a refined module for enhanced color and detail restoration. Ref. [21], on the other
hand, uses the diffusion model to extract auxiliary features during Retinex decomposition,
integrating these into the RGformer network for enhancement. Ref. [20] indicates that using
low-light images and normal-light images with mixed noise directly as inputs to conditional
diffusion models yields subpar results, leading to the introduction of additional prior
knowledge like color maps and illumination embedding. However, these methods utilize
learning-based networks to predict estimates of the reflectance and illumination maps, and
such methods are inaccurate while causing the loss of some image structure information.

In this paper, we present a simple but effective image decomposition strategy as
a unique paradigm for Retinex decomposition. Specifically, we utilize the grayscaled
image as the illumination map; then, we divide the RGB channels of the input image
pixel by pixel by the grayscaled image to obtain the reflectance map, and we enhance
the reflectance and illumination maps separately using a diffusion model. Furthermore,
we introduce brightness guidance to guide the brightness adjustment module to better
learn the illumination pixel distribution of the reference images. Extensive experiments
demonstrate that our model performs favorably against existing state-of-the-art methods.

The main contributions of this work are as follows:

• We propose a simple but effective image decomposition strategy, which can serve as a
unique paradigm for Retinex decomposition;

• We introduce brightness guidance to guide the brightness adjustment and remove the
disturbance of the diffusion model;

• We conduct extensive experiments on a benchmark dataset to demonstrate the feasi-
bility of our proposed method.

2. Related Work
2.1. Traditional Methods

Traditional low-light image enhancement methods can be broadly categorized into
three types: gamma correction (GC) [22], histogram equalization (HE) [23], and Retinex
theory [9]. Bennet et al. [24] proposed employing bilateral filtering to decompose low-
light observations, followed by applying gamma curve methods with different parameter
settings to process the decomposed layers and then recombining them. Additionally,
Yuan et al. [25] attempted to perform gamma curve operations on each sub-region gen-
erated through segmentation. Furthermore, Rahman et al. [26] introduced an adaptive
gamma correction method, which dynamically determines the intensity transformation
function based on the statistical characteristics of the image. Overall, the existing gamma
correction-based methods still suffer from the largest problem of uneven exposure phe-
nomena. Pizer et al. [27] proposed adaptive histogram equalization (AHE) to map the
histograms of local regions to simple mathematical distributions. Building upon the princi-
ples of human visual locality, Pizer et al. [23] further introduced contrast-limited adaptive
histogram equalization (CLAHE). Jobson et al. [28] made some initial attempts based on
Retinex theory, estimating illumination through filter introduction, but obtained results
that deviated from the distribution of real natural images, leading to unknown artifacts and
color biases. With deeper exploration, a series of works [29–31] have focused on designing
regularization terms for variables within the Retinex model to assist in estimating accurate
target variables.
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2.2. Homomorphic-Based Methods

Homomorphic filtering is a technique that operates in the frequency domain to sep-
arate illumination and reflectance components in images. This method is particularly
advantageous in enhancing low-light images, where non-uniform lighting conditions pre-
vail. By transforming the multiplicative relationships of these components into additive
ones via a logarithmic domain, homomorphic filtering allows for the differential manip-
ulation of illumination and reflectance, thus enhancing the visibility and details in dark
regions while preserving the quality of well-lit sections. Sobbahi et al. [32] present a novel
approach by embedding homomorphic filtering within a deep learning architecture. The
model not only enhances low-light images but also tailors the enhancement process to
improve subsequent image classification tasks. This integration demonstrates the dual
benefit of image preprocessing for visual improvements and performance boosts in ma-
chine learning applications. Chavarín et al. [33] integrate cluster-chaotic optimization with
homomorphic filtering. The chaotic optimization approach adjusts the filter parameters
dynamically, optimizing the contrast enhancement process. The adaptation is guided by
the peculiarities of the image content, leading to superior enhancement results compared to
static parameter selection. While effective, homomorphic-based approaches face challenges
such as noise sensitivity, computational complexity, parameter sensitivity, poor handling
of non-uniform illumination, complex integration with advanced models, and reliance on
specific illumination models.

2.3. Learning-Based Methods

Compared to other low-level vision tasks, the development of deep learning-based
low-light image enhancement progressed relatively slowly until the advent of LL-Net in
2017 [34]. In 2018, Chen et al. [35] pioneered the development of a series of paired datasets
with weak light input and normal exposure labels using long- and short-exposure shots,
thereby propelling the advancement of deep network technologies for low-light image en-
hancement. Subsequently, methods based on deep learning gradually became mainstream.

The integration of Retinex theory with deep learning for low-light image enhancement
was first proposed by Shen et al. [36]. They combined convolutional neural networks
with Retinex theory, treating multiscale Retinex as a cascade of Gaussian convolutions
with skip connections or in residual form, and designed a multiscale convolutional neural
network, MSR-Net, based on paired data processed with Photoshop. The logarithmic
transformation was used in the network to convert the Retinex model from a multiplication
form to an addition form. However, this method tends to lose details due to the logarithmic
transformation, which suppresses gradient changes in bright areas.

Subsequent works introduced Retinex theory into deep neural networks [11,18,35,37–42].
Among them, Retinex-Net [35] is the most inspiring method; it combines physical models
and deep neural networks (DNNs). Following this, Zhang et al. proposed KinD [43]
and KinD++ [38], offering more effective solutions. Unlike complex multi-stage training
processes, Fu et al. [41] and Cai et al. [11] explored the possibility of end-to-end frameworks,
achieving significant performance improvements.

According to the current literature statistics, almost one third of methods combine
the design of deep networks with Retinex theory—for instance, designing different sub-
networks to estimate the components of the Retinex model and estimating illumination
maps to guide network learning. Although such combinations can integrate deep learning-
based methods with traditional methods, their respective weaknesses may also be intro-
duced into the final model: (1) the ideal assumption in Retinex-based low-light image
enhancement methods, i.e., that reflectance is the final enhancement result, still affects the
final outcome; (2) despite the use of Retinex theory, the risk of overfitting in deep networks
still exists.

In cases where Retinex theory is not used, recent works have focused on directly
sampling end-to-end methods [44–51] for low-light image enhancement. LLNet, proposed
by Lore et al. [34], inspired the emergence of end-to-end methods, mainly showcasing
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the potential of supervised methods in enhancement. To mitigate color biases, some
methods [52,53] employ three-dimensional look-up tables (3D-LUT) and histograms to
maintain color consistency. In other methods [49,50], attempts have been made to use
signal-to-noise ratio (SNR) perception priors and structure-aware features as guidance
to produce realistic results. Recently, with the popularity of ultra-high-definition (UHD)
images, methods such as LLformer, proposed by Wang et al. [12], and UHDFour, proposed
by Li et al. [54], have been used to enhance UHD images, and related UHD datasets have
been released to promote further research. Additionally, when training data are limited,
semi-supervised [55,56], unsupervised [42,57], and zero-shot learning [58,59] methods are
valuable research directions and important branches of deep learning-based low-light
image enhancement.

3. Methodology
3.1. Separated Enhancement

The proposed framework seeks to enhance the brightness of low-light images, drawing
upon the foundational principles of Retinex theory [9], as shown in Figure 1. Central to this
theoretical framework is the premise that low-light images can be systematically decom-
posed into two components: reflectance maps and illumination maps. The decomposition
process can be formulated as follows:

I = R ◦ L, (1)

where ◦ designates the element-wise product, I represents the input low-light images, and
R and L stand for the reflectance and illumination maps.

Figure 1. An overview of the framework. It contains four modules: image decomposition, brightness
adjustment, reflectance restoration, and illumination restoration.

As indicated by [11], while a clean image is free from corruption, applying Retinex
decomposition to low-light images results in reflectance and illumination maps that are
marred by noise and artifacts, further complicating their estimation. Mathematically, a
degraded low-light image can be naturally modeled as follows:

I = (R + R̂) ◦ (L + L̂), (2)

where R̂ and L̂ are the polluted terms that perturbate the reflectance and illumination
maps, respectively.

After the initial decomposition phase, the process of enhancing low-light images
involves the application of element-wise multiplication using a ‘light-up map’ L̄. This map
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is utilized to intensify the brightness of the input low-light image I. The mathematical
formulation of this enhancement process can be expressed as follows:

I ◦ L̄ = (R + R̂) ◦ (L + L̂) ◦ L̄ = (R + R̂) ◦ (L ◦ L̄ + L̂ ◦ L̄). (3)

According to the above theory, decomposing the images in a Retinex manner conse-
quently decouples the removal of the perturbation terms R̂ and L̂ ◦ L̄ into two separate
subspaces, allowing them to be better and more easily regularized/learned.

3.2. Retinex Decomposition Strategy

While we can recover low-light images by ensuring the better removal of pertur-
bation terms in both the reflectance and luminance subspaces, how the Retinex is de-
composed is still a fundamentally ill-posed problem, as indicated by a range of previous
studies [28,35,43,60–63]. Some of them [28,61,62] have employed traditional methods to
decompose low-light images into reflectance and illumination maps, which utilize channel-
wise Gaussian blur to compute the illumination maps, subsequently obtaining the re-
flectance maps through the channel-wise division of the original image by the illumination
maps. Meanwhile, learning-based methods typically involve the use of intricately designed
deep neural networks (DNNs) to generate initial estimates of the reflectance and illumi-
nation maps, as seen in [35,38,43], often supplemented by hand-crafted constraints and
priors [64–69], although these may be constrained by the model’s capacity.

Although these methods have marked significant advancements in the estimation
of reflectance and illumination maps, achieving precise outcomes remains a challenge.
Ref. [11] have demonstrated that while a clean image is free from corruption, the application
of Retinex decomposition to low-light images results in reflectance and illumination maps
that are marred by noise and artifacts, further complicating their estimation. Addressing
this challenge, this study diverges from the pursuit of increasingly complex networks for
more accurate initial estimations. Instead, we introduce a novel decomposition strategy
that employs a fixed pattern, decomposing images into a graymap and colormap as the
initial estimation of the reflectance and illumination maps, bearing similarity to [20,47],
but with notable distinctions. This innovative strategy presents a unique paradigm for the
problem of Retinex decomposition.

Graymap: We execute a weighted summation of the RGB channels, prioritizing the
green (g) channel, followed by the red (r) and blue (b) channels, in descending order
according to the weights set by the color space standards [70]. The formulation of this
function is expressed as follows:

L = 0.299 × r + 0.587 × g + 0.114 × b. (4)

For the graymap, as illustrated in Figure 2b,e, our strategy deviates from the method
in [47], which calculates the mean across the RGB channels. Recognizing the human eye’s
heightened sensitivity to green, we assign greater weight to this channel. Notably, this
weighting ensures that brighter pixels in the original image retain their prominence in the
weighted sum, thereby preserving the strong correlation between the illumination map
and the original image’s brightness. This characteristic renders the map suitable for use as
the illumination component in the Retinex model.

Colormap: With the acquisition of the graymap, we can obtain the corresponding
colormap by performing the pixel-wise division of each RGB channel by the graymap
as follows:

R =

(
r
L

,
g
L

,
b
L

)
. (5)

For the colormap, as illustrated in Figure 2c,f, the reflectance map exhibits a notable
degree of consistency, even amidst varying luminance levels. This steadfast characteristic
positions it as an apt candidate for the newly estimated reflectance map within the Retinex
framework, leveraging its stability across different lighting conditions.
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Figure 2. Examples of low-light and normal-light images, along with their corresponding colormaps
and graymaps—which can be viewed as reflectance maps and illumination maps—are shown. The
example image displayed is from the test set of the LOL dataset.

3.3. Conditional Diffusion Model

Conditional diffusion models are commonly used in image enhancement [13,71,72].
These models enhance images by inputting the degraded image as conditional information
into a noise prediction network, guiding the diffusion model to generate an enhanced
image corresponding to the degraded one.

Specifically, the forward process systematically introduces Gaussian noise into the
clean image X0. As delineated in [73], this Gaussian diffusion forward process incrementally
contaminates the clean data X0 through a sequential T diffusion time step mechanism,
thereby enabling the acquisition of the sampled intermediate state Xt:

q(Xt|Xt−1) = N (Xt;
√

αtXt−1, (1 − αt)ϵt), ϵt ∼ N (0, I). (6)

where αt = 1 − βt, βt represents the variance schedule, and Xt−1 is the intermediate state
of the previous sampling steps. Additionally, ϵt, drawn from a normal distribution N(0, 1),
possesses the same dimensionality as the input data X0.

Given that α̂t = ∏t
i=1 αi, the equation describing the aforementioned process can be

simplified as follows:

Xt =
√

α̂tXt−1 +
√

1 − α̂tϵt, ϵt ∼ N (0, I). (7)

The reverse process in diffusion models constitutes a denoising procedure, wherein
the model is trained to effectively reconstruct a clean original signal from noisy data.
Specifically, sampling is conducted using the Gaussian transitions pθ(X̂t−1|X̂t, X̃), which
are parameterized by learned parameters. This process initiates from X̂T ∼ N (0, I) through
the following mechanism:

X̂t−1 =
1√
αt

(
X̂t −

1 − αt√
1 − ᾱt

ϵθ(X̂t, t, X̃)

)
, (8)

where X̂t represents the sampled random Gaussian noise, X̂t−1 denotes the intermediate
result following one step of the denoising process, and X̃ is the conditional guide parameter.
In this study, we select the input low-light image to serve as the guide parameter.

Given its efficacy in addressing complex degradation patterns, this study utilizes
a conditional diffusion model, specifically a typical patch-based conditional diffusion
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model [13], to effectively eliminate perturbation terms in the reflectance and illumination
maps. The details of this framework are illustrated in Figure 1.

3.4. Brightness Adjustment Module

Given that the graymap effectively isolates color information, the primary objective is
to enhance the brightness while concurrently eliminating perturbations. As depicted in
Figure 2, the graymap of a low-light image typically exhibits a markedly low pixel intensity,
leading to the significant loss of visible details. Consequently, it becomes imperative to
augment the pixel values within the graymap. However, this enhancement process also
tends to amplify the noise, thereby exacerbating the perturbations, and, consequently, the
process of luminance enhancement can adversely impact the perturbation removal phase.

Previous research [20] has indicated that utilizing a low-light image directly as a condi-
tional input does not produce optimal outcomes, underscoring the inherent challenges and
inefficiencies in simultaneously achieving brightness enhancement and noise removal. To
tackle this issue, we adopt a two-step approach, initially focusing on brightness adjustment,
followed by the removal of perturbations. This methodology ensures that each aspect of
image improvement is addressed effectively without adversely affecting the other.

Brightness Guidance: Recent studies [18,35,43] have often overlooked the complex
interrelation between brightness enhancement and perturbation removal. Contrarily, our
approach prioritizes brightness adjustment through brightness guidance. This strategy
effectively elevates the brightness of low-light graymaps, albeit with a consequent increase
in noise and artifacts. The subsequent use of a conditional diffusion model, therefore,
concentrates exclusively on removing these noise and artifacts. This focused approach, by
distinctly separating the tasks of brightness adjustment and disturbance removal, results in
a more efficient enhancement process.

The utilization of brightness guidance is tailored differently for the training and
inference phases. In the training phase, paired images enable the use of normal-light
images for brightness reference. In contrast, the inference phase, lacking paired images,
leverages a pre-trained network to adjust the low-light graymaps towards normal light,
thus providing brightness guidance. The focus here is on matching the brightness levels,
primarily using Gaussian-blurred reference graymaps, rather than preserving fine details.
This approach ensures brightness alignment with the reference, making it an effective
strategy for brightness guidance despite the potential limitations in detail retention.

The method for brightness adjustment comprises the following steps.

1. Mean Gray Value Calculation: Compute the mean gray value g1 for blocks in low-
light images and g2 for blocks in normal light or as determined by the learned
light model.

2. Brightening Coefficient Determination: Establish the brightening coefficient γ using
the formula γ = g2

g1
. This coefficient represents the factor for the enhancement of

the brightness of the low-light graymap to produce the final conditional image. This
approach ensures that the conditional image matches the guidance image in terms of
the brightness level.

4. Experiments

We employ the Adam optimizer [74] to train the proposed diffusion model, with the
parameter configurations as follows: the initial learning rate is set to 2 × 10−5, and no
weight decay is applied. In the parameter updating process, exponential moving averages
are utilized with a weight of 0.999 to promote more stable learning. For an RGB image, it is
randomly cropped into image patches of size 64 × 64. Xavier’s method [75] is employed
for the random initialization of the parameters in each module of the network.

We employ the PyTorch [76] deep learning framework to implement the training and
testing processes of the neural networks. Throughout the network training, the total number
of iterations is 960k, with the learning rate remaining constant throughout. Additionally, to
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expedite the sampling phase, the DDIM [77] training method is adopted, where the final
augmentation results are obtained after every 15 iterations.

We train and evaluate the proposed model on the LOL [35] dataset, LOLv2-real [78]
dataset, and LOLv2-syn dataset [78]. The LOLv2-real dataset comprises 689 pairs of low-
/normal-luminance paired images collected from real scenarios, including 689 training
pairs and 100 testing pairs, with an image resolution of 600 × 400. The LOLv2-syn dataset
consists of 1000 pairs of synthetically generated low-/normal-luminance paired images,
also with a resolution of 600 × 400. The batch processing approach is employed to feed the
training data into the neural network, with each batch containing 16 pairs of samples. The
entire experiment is conducted on an NVIDIA 1080Ti GTX GPU, and the training of the
proposed network model takes approximately two days to fully converge.

5. Results
5.1. Comparison of Results on Real Datasets

We conduct the testing of the proposed method on low-light images captured in
real-world scenarios and visually compare its effectiveness with that of other algorithms.
Figures 3 and 4, respectively, depict the enhancement results of real-scene images captured
from two different datasets, the LOL dataset and the LOLv2-real dataset. It is evident from
the figures that the proposed method exhibits significant visual advantages over the state-
of-the-art algorithms. Previous methods exhibit various shortcomings: the Retinexnet [35]
method results in color distortion; the Retinexformer [11] method encounters difficulties in
over-/underexposed regions and noise suppression; the DiffLL [15] and CLE [20] methods
produce blurred areas; and the Kind++ [38] method introduces unnatural artifacts and
edge distortions. In contrast, the proposed method has achieved significant success in
enhancing the image clarity, as evidenced by the clearer visibility of the text in Figure 3. The
sharpening of text edges and the enhancement in contrast have been effectively applied. In
terms of brightness restoration, as shown in Figure 4, our method also demonstrates its
advantages, effectively recovering the brightness information of the enhanced image to
levels closer to the reference image. However, in terms of color restoration, although our
method provides satisfactory results in most cases, it falls slightly short in terms of color
accuracy and richness compared to the CLE method in certain specific scenes.

Figure 3. Visual comparison with other state-of-the-art methods on the LOL real-world dataset.
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Figure 4. Visual comparison with other state-of-the-art methods on the LOLv2-real real-world dataset.

In order to better comprehend the effectiveness of the proposed method and other
methods in enhancing real-scene images, various quantitative evaluation metrics, such
as the peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and learned
perceptual image patch similarity (LPIPS), were introduced. As depicted in Tables 1 and 2,
the quantitative metrics of the proposed method on both real datasets reached the state-of-
the-art level.

Table 1. Quantitative comparison with other state-of-the-art methods on the LOL dataset.

Model Type Method PSNR↑ SSIM↑ LPIPS↓

CNN Retinexnet [35] 16.77 0.539 0.474
Kind++ [38] 21.80 0.876 0.158

Transformer Retinexformer [11] 25.15 0.897 0.131

Normalizing Flow wang2022low [47] 25.19 0.930 0.110

Diffusion Model
CLE [20] 25.51 0.888 0.164

DiffLL [15] 26.32 0.898 0.118
Ours 27.47 0.929 0.098

Table 2. Quantitative comparison with other state-of-the-art methods on the LOLv2-real dataset.

Model Type Method PSNR↑ SSIM↑ LPIPS↓

CNN Retinexnet [35] 15.96 0.674 0.390
Kind++ [38] 17.66 0.783 0.217

Transformer Retinexformer [11] 22.79 0.866 0.171

Normalizing Flow wang2022low [47] 25.42 0.892 0.157

Diffusion Model
CLE [20] 20.72 0.806 0.232

DiffLL [15] 28.88 0.896 0.100
Ours 29.16 0.914 0.119
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5.2. Comparison of Results on Synthetic Datasets

We utilize the LOLv2-syn dataset [78] to evaluate the enhancement efficacy of the pro-
posed method and compare it with existing state-of-the-art algorithms. In the quantitative
comparison of the results, we calculate the peak signal-to-noise ratio (PSNR), structural
similarity index (SSIM), and learned perceptual image patch similarity (LPIPS) between
the enhanced images and reference normal luminance images to quantitatively assess the
enhancement quality of the methods. As depicted in Table 3, the proposed method exhibits
higher objective evaluation metrics on the simulated dataset compared to the current state-
of-the-art low-light image enhancement algorithms. Figure 5 displays a comparison of the
enhancement results on an outdoor scene low-light image among various methods in the
dataset. The proposed method effectively recovers the color fidelity of the image, rendering
it more akin to that of a reference image, exemplified by elements such as the wall of a
house. Additionally, the brightness levels and sharpness of the enhanced image align
closely with those observed in the reference image, demonstrating the method’s capacity to
maintain consistency in key visual parameters.

Table 3. Quantitative comparison with other state-of-the-art methods on the LOLv2-syn dataset.

Model Type Method PSNR↑ SSIM↑ LPIPS↓

CNN Retinexnet [35] 19.39 0.833 0.252
Kind++ [38] 17.48 0.813 0.232

Transformer Retinexformer [11] 25.67 0.952 0.059

Normalizing Flow wang2022low [47] 26.06 0.957 0.047

Diffusion Model
CLE [20] 28.17 0.941 0.078

DiffLL [15] 22.46 0.888 0.159
Ours 29.90 0.963 0.046

Figure 5. Visual comparison with other state-of-the-art methods on the LOLv2-syn synthetic dataset.
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It is noteworthy that the benchmark model trained by the proposed method is based
on a diffusion model. The performance improvement of the proposed method on the
simulated dataset compared to the current diffusion models reaches 1.73 dB. Further-
more, on the previously tested real datasets, the improvement is also significant, reaching
1.15 dB and 0.3 dB, respectively. This indicates that the prior brightness information pro-
posed by us contributes significantly to the low-light image enhancement task, showcasing
promising enhancement.

5.3. Generalization Ability to Real-World Images

This section aims to elucidate the generalization performance of the proposed method
by conducting a comparative analysis with current state-of-the-art methods. Training is
conducted using the LOL training dataset, while testing is carried out on a variety of
real-world low-light datasets captured in diverse scenes.

We conducted an extensive experimental analysis utilizing two classical low-light im-
age datasets: MEF [79], which comprises 17 test images, and VV, containing 24 test images.
The efficacy of our proposed method is illustrated through three sets of detailed visual com-
parisons in Figures 6 and 7, which provide an intuitive assessment of the visual effects. The
results reveal that our method effectively enhances dark regions while preserving the color
fidelity. The outcome is visually pleasing, devoid of significant noise and color casts. In
contrast, wang2022low and Retinexformer do not adequately enhance the image brightness,
resulting in inferior visualization outcomes. On the other hand, while DiffLL produces
visually appealing results, it sometimes suffers from localized overexposure or underex-
posure. These observations demonstrate that our method possesses robust generalization
capabilities, delivering more naturalistic image quality in real-world scenarios.

To further demonstrate the practical advantages of our method, we also performed
experiments on a dataset designed specifically for object detection and recognition. For this
purpose, we selected low-light images from the ExDark dataset [80] for testing. Figure 8
displays the comparative results, from which it is evident that Retinexnet is plagued by
severe artifacts. wang2022low offers improved visualization, albeit with notable overexpo-
sure issues. DiffLL is marred by blurring effects in its results. Retinexformer, meanwhile,
fails to adequately brighten the houses in the distance. Conversely, the results from our
proposed method are visually superior, rendering the images more natural and clearer,
particularly in areas such as the distant white houses and the sky.

Figure 6. Visual comparison with other state-of-the-art methods on the MEF dataset.
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Figure 7. Visual comparison with other state-of-the-art methods on the VV dataset.

Figure 8. Visual comparison with other state-of-the-art methods on the ExDark dataset.

The experimental results underscore not only the effectiveness of the proposed method
but also the superior generalization performance of diffusion models compared to tradi-
tional convolutional neural networks (CNNs). As an emerging deep learning architecture,
diffusion models excel in handling complex data distributions, offering significant improve-
ments in areas like image processing. These findings highlight the potential of diffusion
models to outperform traditional models in generalization capabilities, providing valuable
insights for future research.

6. Ablation Study

This section will analyze and discuss the effectiveness of the novel Retinex decomposi-
tion strategy proposed in our method, followed by a discussion of the effectiveness of the
prior brightness information proposed in our method.

6.1. Analysis of Differences in Image Decomposition Strategies

To rigorously evaluate our proposed Retinex decomposition strategy against tradi-
tional and contemporary methods, we conduct a series of comparative experiments. These
experiments distinctly contrast our approach with the classical Single-Scale Retinex al-
gorithm (SSR) [28] and the deep learning-based RetinexNet [35]. The aim is to validate
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our strategy’s effectiveness in enhancing the image quality and in detail preservation,
highlighting its advancements over existing methods. The experimental conditions were
standardized, except for the decomposition strategy, to ensure an accurate assessment of
its efficacy.

The experimental results, as shown in Table 4, reveal the relative disadvantage of the
traditional SSR method in the performance metrics. This disadvantage mainly stems from
the inaccuracies of traditional decomposition methods in estimating the luminance compo-
nent using Gaussian-blurred images. While Gaussian blur simplifies the representation of
the image luminance, it often leads to the loss of important details, thereby affecting the
naturalness and realism of the final image.

Table 4. Ablation study on the decomposition strategy.

Decomposition Strategy PSNR↑ SSIM↑ LPIPS↓
Classical Decomposition 24.58 0.850 0.171

Learning-Based Decomposition 23.69 0.912 0.095
Ours 27.47 0.929 0.098

On the other hand, decomposition methods based on deep learning, although demon-
strating comparable levels of learned perceptual image patch similarity (LPIPS, an index
for the evaluation of the perceptual similarity between images) to our proposed approach,
show a decline in performance in terms of the structural similarity index (SSIM, an index
for the measurement of image quality) scores and peak signal-to-noise ratio (PSNR, an
index reflecting the quality of image restoration). This outcome suggests that while deep
learning-based methods are effective in handling some image issues, they may lead to
the loss of image information in the encoder and decoder structures, particularly when
attempting to separate delicate luminance information from the reflectance components,
thereby revealing the limitations of such approaches.

To further demonstrate the effectiveness of the proposed image decomposition strategy,
the contrasting enhancement results of different decomposition strategies are provided. As
illustrated in Figure 9, the traditional SSR-based decomposition strategy exhibits severe
image blurring issues, while the deep learning-based decomposition strategy, although
capable of enhancing images reasonably well, performs comparatively poorer in terms
of color and saturation compared to the proposed decomposition strategy. Therefore,
the proposed decomposition strategy ensures better performance in enhancing low-light
images compared to existing decomposition strategies.

Our proposed image decomposition strategy is based on straightforward operations
that separate image data into luminance and chrominance components. This simplicity
leads to predictable and consistent outputs, which are particularly advantageous in sce-
narios where interpretability and reproducibility are critical. In contrast, learning-based
methods, often reliant on complex neural networks, introduce a level of opacity due to
their ‘black box’ nature. Moreover, because of its non-parametric nature, this decomposi-
tion strategy does not suffer from overfitting, a common issue in learning-based methods
that can detrimentally impact their generalizability to new, unseen data. In conclusion,
while learning-based decomposition methods continue to evolve and offer compelling
benefits in certain applications, the simplicity, efficiency, and robustness of our proposed
decomposition strategy make it an effective and reliable choice in many practical scenarios.
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Figure 9. Comparison of enhancement results from different image decomposition strategies.

6.2. Analysis of Effectiveness of Prior Brightness Information

The application of prior brightness information contributes to enhancing the visual
quality of images, particularly in processes involving brightness adjustment and distur-
bance removal. Prior brightness information not only guides enhancement algorithms to
adjust the image brightness more accurately but also helps to maintain the naturalness and
continuity of images when removing noise and disturbances.

To deeply understand the role of prior brightness information within the framework
of the method proposed in our method, a comparative experiment was designed. By
excluding the prior brightness information from the enhancement process, the impact of
this change on the enhancement effect was observed. The experimental results, as shown
in Table 5, indicate a significant decrease in the enhancement performance when the prior
brightness information is not utilized. Specifically, the enhanced images exhibit noticeable
inaccuracies and discontinuities in brightness, significantly compromising the visual quality
of the images.

Table 5. Ablation study on brightness guidance.

Prior PSNR↑ SSIM↑ LPIPS↓
w/o Brightness

Guidance 18.08 0.858 0.098

Ours 27.47 0.929 0.098

Without prior brightness information, the tasks of brightness adjustment and dis-
turbance removal have to be coupled together, making it difficult for the algorithm to
balance the relationship between them, thereby affecting the final enhancement effect. As
depicted in Figure 10, the brightness adjustment module struggles to accurately determine
how to adjust the brightness of various regions in the image without guidance from prior
brightness information, resulting in uneven brightness in the enhanced images. Similarly,
disturbance removal becomes less effective due to the lack of prior brightness information,
leading to the loss of image details or the generation of unnatural visual effects.
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Figure 10. Comparison of enhancement results when removing prior brightness information.

These comparative experimental results further emphasize the importance of prior
brightness information in the image enhancement process. Prior brightness information not
only helps to improve the accuracy of enhancement algorithms in brightness adjustment but
also effectively guides disturbance removal, ensuring that the enhanced images maintain
the natural brightness while enhancing the overall visual quality. Therefore, the guiding
role of prior brightness information is crucial in ensuring fidelity and naturalness in the
image enhancement process.

7. Conclusions

In this paper, we propose an adaptive brightness method. Utilizing a pretrained model,
adaptive brightness information is extracted and mapped from low-light images, which
is then enhanced through a brightness adjustment module. Subsequently, a conditional
diffusion model is employed to mitigate the noise perturbations introduced by the bright-
ness adjustment, thus separating the intertwined challenges of brightness enhancement
and noise perturbation removal and reducing the complexity involved in enhancing the
illumination component. Moreover, we introduce a simple yet effective image decomposi-
tion strategy that decomposes the image into graymaps and colormaps, serving as initial
estimates similar to the illumination and reflectance components in Retinex decomposition.

To enhance the performance of low-light image enhancement, we employ diffusion
models instead of convolutional neural networks to separately enhance the estimated
illumination and reflectance components. For the reflectance component, due to its con-
sistency under various lighting conditions, it is sufficient to directly use the conditional
diffusion model to remove noise perturbations. In the comprehensive quantitative and
qualitative analyses, our proposed method surpasses the current state-of-the-art across
multiple datasets. Additionally, it demonstrates generalization capabilities through its
performance on several real-world scenario datasets.
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