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Abstract: Nuclear fusion is a potential source of energy that could supply the growing needs of the
world population for millions of years. Several experimental thermonuclear fusion devices try to
understand and control the nuclear fusion process. A very interesting diagnostic called Thomson
scattering (TS) is performed in the Spanish fusion device TJ-II. This diagnostic takes images to measure
the temperature and density profiles of the plasma, which is heated to very high temperatures to
produce fusion plasma. Each image captures spectra of laser light scattered by the plasma under
different conditions. Unfortunately, some images are corrupted by noise called stray light that affects
the measurement of the profiles. In this work, we propose the use of deep learning models to reduce
the stray light that appears in the diagnostic. The proposed approach utilizes a Pix2Pix neural
network, which is an image-to-image translation based on a generative adversarial network (GAN).
This network learns to translateimages affected by stray light to images without stray light. This
allows for the effective removal of the noise that affects the measurements of the TS diagnostic,
avoiding the need for manual image processing adjustments. The proposed method shows a better
performance, reducing the noise up to 98% inimages, which surpassesprevious works that obtained
85% for the validation dataset.

Keywords: generative adversarial network; nuclear fusion energy; stray light

1. Introduction

Nuclear fusion is the process that powers the stars, such as our sun. Potentially, this
energy source could supply all the needs of the world for millions of years [1]. In contrast
to fission, the process releases large amounts of energy when a couple of atomic nuclei
fuse in a heavier nucleus. The fusion community has made a great effort to make possible
fusion energy. Nowadays, there are many experimental fusion devices in operation to
control this highly complex process. To this end, several experiments (called discharges or
shots) are performed to understand the physics of plasma, which is an ionized gas that is
magnetically confined inside the thermonuclear devices [2].

During the discharges, many data acquisition systems around the device acquire
data at a very high sampling frequency, which generates massive databases per campaign.
Bolometry, density, temperature, and soft X-rays are just some examples of the thousands
of data acquired during a discharge. Huge databases, with an enormous amount of data,
are a common situation in experimental fusion devices [3].

It is important to emphasize the use of machine learning techniques in fusion devices
for the real-time recognition of events. In particular, these techniques have been shown to be
effective in the prediction of incoming disruptions [4]. Disruptions are produced by sudden
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plasma instabilities that provoke a rapid loss of confinement (which occurs in specific
fusion devices called tokamaks). As a result, disruptions can damage the surrounding
plasma structures irreversibly. Therefore, their prediction in advance is essential for some
new tokamak devices (Japan Torus 60 Super Advanced (JT-60SA), located in Naka, Ibaraki,
Japan [5], International Thermonuclear Experimental Reactor (ITER), located in Saint-Paul-
lez-Durance, France [6,7], or the DEMOnstration power plant (DEMO), which location is
not defined yet [8]) to trigger avoidance actions or, in the case of imminent disruption, to
fire mitigation remedies.

Due to the high cost of collecting new data in nuclear fusion experiments, it is cru-
cial to find ways to access additional discharges or experimental runs. Therefore, it is
highly desirable to explore creating probabilistic models to generate new synthetic, but
realistic, fusion data. These models learn from existing datasets, capturing the underlying
relationships between the measured signals.

The potential use of generative deep learning models for this purpose was previously
explored in [9]. In this article, we move forward from that work to validate the application
and usefulness of such deep learning generative models on the existing nuclear fusion
databases. Particularly, a type of generative adversarial network (GAN) was applied for
noise reduction on the Thomson scattering (TS) diagnostic of the TJ-II experimental fusion
device. The Thomson scattering diagnostic measures density and temperature profiles by
processing five types of images [10,11]. Each image captures spectra of laser light scattered
by the plasma.

Four types of such TS images are frequently corrupted by noise called stray light.
The noise normally appears on the left side of captured images. This disturbance could
produce unreliable measurements of the temperature and density profiles. That is why it
is required that one applies a noise reduction technique to the acquired TS images before
the reconstruction of the profiles. Note that the stray light can be mixed with significant
information captured for the image, and therefore, the noise reduction can affect further
measurements. There are some classical solutions (e.g., notch laser-line rejection filters)
that could be applied to reduce the noise; however, since the shape of the noise is not
regular, the results with these solutions are not suitable. On the contrary, some advanced
image processing algorithms have shown very good results when trying to reduce the noise
without affecting most of the acquired data [12,13].

Although the performance of such advanced algorithms has been very satisfactory,
these techniques always need a manual tuning of some important parameters. For that
reason, the study of new approaches is needed that allow avoiding, or at least minimizing,
such manual settings of the algorithms to reduce the disturbance of stray light.

Our approach proposes the training of a deep neural network to perform the task
of mapping one TS image from the original domain (TS images with noise) into another
domain (TS images without noise). Specifically, a GAN was implemented to reduce noise
in the TS diagnostic of the TJ-II experimental fusion device. By utilizing a simple GAN
with nuclear fusion data, new synthetic data are probabilistically generated that closely
resemble data from a nuclear fusion experiment. However, these new data still exhibited
the same issue of stray light as the original data, so a variant of this network known as
pix2pix GAN was implemented. This work describes the application of the pix2pix GAN
for noise reduction and shows a comparison with previous work to decrease the effect of
stray light from TS images.

The main contributions of this paper are the following:

• Application of deep learning models to generate realistic data and images from nuclear
fusion databases.

• Application of GANs for stray light (noise) removal in Thomson scattering diagnostic images.
• Reduction by the proposed modelof the manual selection of tuning of the main

parameters. It does not use design parameters to obtain similar or better results than
those obtained by previous methods.

• Comparison of the proposed model with techniques developed in previous works [12,13].
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The rest of this paper is structured as follows. Section 2 introduces some basic aspects
of nuclear fusion energy and depicts the images of the Thomson scattering diagnostic.
Section 3 describes the basis of the GAN models. Section 4 presents the developed algorithm
to eliminate the noise of nuclear fusion images. Section 5 presents and analyzes the obtained
results of this work. Finally, the main conclusion and future works are presented.

2. Background
2.1. Nuclear Fusion

In nuclear fusion devices, the plasma (gaslike state of matter with ionized particles)
is heated to very high temperatures, around 150 million degrees Celsius. The reactor
uses deuterium and tritium [14] to produce the plasma, and magnetic fields are used to
confine the plasma inside the chamber. Stellarator [15] and tokamaks [16] are the most
common configurations of these devices for the magnetic confinement of the plasma. The
fusion process releases energy that could be used to heat water and then powers a turbine
generator that produces electricity [17,18].

There are several experimental nuclear fusion devices around the world. The most
recent example is the ITER [6,7], which is under construction in France, and it will be the
world’s largest and most advanced experimental tokamak nuclear fusion reactor. It aims to
be the first to achieve net energy gain (producing more energy than used). ITER is located
in Cadarache (France). After ITER, the first commercial demonstration fusion power plant,
named DEMO, will be intended.

Other notable devices include the following:

• JET located in Culham Centre for Fusion Energy in Oxfordshire, UK is currently the
largest operational tokamak reactor [19].

• DIII-D located in San Diego, California, USA, is a tokamak machine developed by
General Atomics [20].

• TJ-II located in Madrid, Spain, a medium-sized stellarator for plasma creation and
heating [21]. Figure 1 shows a view of the TJ-II device [22].

• The Wendelstein 7-X (W7-X) [23], an experimental stellarator built in Greifswald,
Germany, by the Max Planck Institute for Plasma Physics (IPP).

• K-STAR (Korea Superconducting Tokamak Advanced Research) [24], which is at the
Korea Institute of Fusion Energy in Daejeon, South Korea.

• Axially Symmetric Divertor Experiment (ASDEX-Upgrade tokamak) [25], is located in
Garching, Germany.

Figure 1. The TJ-II device.



Sensors 2024, 24, 2764 4 of 15

2.2. Thomson Scattering Diagnostic and Stray Light in TJ-II

The Thomson scattering (TS) diagnostic system, used to measure plasma properties, is
sensitive to stray light. The stray light can contaminate the five different types of images the
diagnostic acquires. These images are spectra (color breakdowns) of laser light scattered by
the plasma, taken under various conditions. Table 1 and Figure 2 describe the five types of
TS images.

Table 1. Description of the five types of TJ-II images.

TS Image Description

BKG CCD camera background

COFF Cut-off density during electron cyclotron
resonant heating

ECH Electron cyclotron resonant heating
NBI Neutral beam injection heating
STR Stray light

(a) (b) (c)

(d) (e)

Figure 2. Thomson scattering diagnostic images with noise. The images shown here correspond to
preprocessed versions to accentuate the stray light: (a) BKG, (b) COFF, (c) ECH, (d) NBI, (e) STR. The
red circle shows the stray light of a COFF image.

In Thomson scattering (TS) diagnostics, stray light emerges as the primary source of
noise. This persistent phenomenon has been an ongoing challenge in optical design for
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such diagnostics [26]. Commonly observed in gas discharges near glass walls, it is caused
by various phenomena such as Fresnel reflection on lens surfaces, air bubbles in glass, dust,
and diffraction at aperture edges. Additionally, it arises from the scattering of part of the
laser light in the static plasma environment and is often much more intense than Thomson
scattering itself. Its constant presence degrades both image contrast and measurement
accuracy, emphasizing the crucial importance of its control in optimizing the diagnostics.

According to experts in the field, this interference is commonly evident on the left side
of images, as highlighted in Figure 2. Without the application of noise reduction techniques,
raw images captured by the Charge-Coupled Device (CCD) camera in Thomson scattering
diagnostics, often affected by this type of interference, can generate temperature and density
profiles lacking reliability for the diagnosis. Additionally, stray light tends to integrate
with a substantial portion of relevant information, located in the center of these images,
occasionally complicating the distinction between data and noise. Although conventional
solutions, such as notch filters in front of the spectrograph [27,28], have been implemented
to mitigate stray light, the results are unsatisfactory due to the lack of a predefined location
for the noise and its irregular shape. Consequently, both parasitic light and information are
equally reduced.

Figure 3 depicts an example of the Thomson scattering profiles of plasma, where
the x axis stands for the position of a small plasma volume along the ruby laser chord
traversing the plasma. Hence, each z value labels a point in the plasma column from which
the analysis of Thomson scattered light produces the local electron temperature and density.

Uncorrected stray light has two main deleterious effects on Thomson scattering profile
reconstruction: on the one hand, stray light contributes additional counts to genuine
Thomson scattering ones, to artificially increase, i.e., overestimate, plasma density. On the
other hand, stray light tends to broaden the scattering spectrum (overestimating plasma
temperature) because it contributes counts overlapping with Thomson scattering in regions
of the CCD that would have nearly none of them for a given plasma temperature.

Figure 3. Example of a profile reconstruction.
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3. Generative Modeling
3.1. Discriminative Model vs. Generative Model

Roughly, a discriminative model, as its name suggests, is a supervised learning black-
box model which is trained with labeled data. The model is capable of learning to classify
(discriminate) a new observation with a level of precision. Figure 4 shows an example of a
discriminative model classifying if a picture is a dog or not [29].

Training Data
Discriminative 

Model

An observation

Training Prediction

0

0

0

1

1

1 An observation Label

Prediction

0.83

Figure 4. Discriminative model example.

As can be seen, the training dataset contains pictures of dogs labeled with 1 (right
side) and pictures of cats labeled with 0 (left side). After the training stage, the model is
capable of classifying whether a new picture is a dog or not with a level of precision, in this
example 83%. Note that a discriminative model is only capable of classifying a picture, but
it cannot generate a new one.

On the other hand, a generative model has the ability to create a new image based on
the training set without the need for labels (unsupervised learning). This model generates
fresh and unique instances that closely resemble those present in the original training
set. When considering a data set of observations, it is assumed that they are generated
according to an undisclosed probabilistic distribution. The goal of a generative model is
to emulate this unknown distribution. Success is achieved when the model can produce
examples that have characteristics similar to the same unknown distribution observed
in the training data set [29]. Figure 5 shows an example of a generative model which is
capable of creating a new human face picture from the training data set.

Training Data Generative Model Generated Sample

Random 

Noise

An observation

Training Sampling

Figure 5. Generative model example.

3.2. Generative Adversarial Network

A generative adversarial network (GAN) is a machine learning architecture in which
two neural networks engage in a competitive process to enhance the accuracy of their
predictions. GANs typically operate within the context of unsupervised learning, using a
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zero-sum cooperative game framework for learning purposes. The two neural networks
involved in a GAN setup are called the generator and the discriminator. The generator
and discriminator functions in a GAN, respectively, operate as a convolutional and a
deconvolutional neural network. The generator’s primary objective is to create outputs
that closely resemble genuine data, making them indistinguishable from real data. The
discriminator, on the other hand, distinguishes between genuine and artificially generated
outputs. GANs can generate their training data. As the iterative process between the
adversarial networks continues, the generator gradually improves its ability to produce
higher-quality outputs, while the discriminator enhances its proficiency in identifying
artificially generated data [30].

The conditional generative adversarial network (cGAN) extends the GAN framework
by providing precise control over the generated image, such as generating an image of a
particular class. A notable implementation of cGAN is the Pix2Pix GAN, which allows
conditional image generation based on a given image, making it a versatile method for
image-to-image translation tasks. To effectively train the Pix2Pix GAN, data sets must
consist of input images (pretranslation) and corresponding output or target images (post-
translation). The GAN architecture shown in Figure 6 requires careful configuration of
a generator model, a discriminator model, and an optimization procedure. Both the
generator and discriminator models use standard convolution-batch-normalization-ReLU
layer blocks, consistent with typical deep convolutional neural networks.

Input

Real output

U-Net

256×256×1 

PatchGAN

70×70×1

256×256×1

256×256×1

Generator

Discriminator

Optimize

weights

(Images with noise)

(images without noise)

Real or fake pair

(input, real output)

(input, generated

output)

Figure 6. Block diagram of the Pix2Pix GAN.

4. Proposed Approach

Our approach proposes the training of a deep neural network to perform the task
of translating one image into another to eliminate the stray light found in the Thomson
scattering diagnostic images. This type of network is better known as Pix2Pix GAN and is
a type of conditional GAN, where the generation of the output image is conditioned by
an input image (target), which is what the initial image (source) is to be translated into.
In our case, an image with noise is processed to translate into an image without noise.
These images without noise were obtained through an algorithm based on the extraction of
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regions with connected components (ERCC) [13], which is the one with which we want to
compare the efficiency of the noise reduction.

The ERCC algorithm is based on segmentation theory. Segmentation refers to the
process of partitioning a digital image into multiple segments. Image segmentation is the
process of assigning the same label to a pixel that shares similar visual characteristics. The
segmentation partitions an image into connected subimages (regions) such that all regions
are disjointed, and the union of all of them makes up the original image.

ERCC can be easily applied to detect the stray light (noise) in the TS images, but
although the performance of the ERCC algorithm is very high, it requires a suitable config-
uration to work successfully. For instance, in [13], it is noted that step 1 (convert the image
to a binary image) and step 4 (removing a region according to a criterion) of the ERCC
algorithm have an important impact on the whole noise reduction process. The selection of
such correct parameters in these steps is crucial for the performance of the ERCC algorithm.
That is why an automatic way to achieve stray light reduction, such as a GAN network,
motivates this work.

To implement the pix2pix GAN (GAN, henceforth, for short) approach, we have a total
of 942 images that are randomly divided into 701 for training and 241 for testing. To carry
out the model training process, it is necessary to have two sets of data. Set A contains the
original images with background stray light, while set B contains the same images as set A,
but they are processed with the ERCC algorithm to reduce the stray light. Thus, both sets
of training images are input to the GAN network, with set A being the source images of the
system and set B being the target images. Note that both sets (A and B) of training images
are distributed as follows: BKG (102 images), CUT (85 images), ECH (321 images), NBI
(107 images), and STR (86 images). The training images were resized from 385 × 576 pixels
to 448 × 576 pixels to optimize the algorithm performance and training. Figure 7 shows the
block diagram of the proposed approach’s training.

Training 

Thomson 

Images

Pre-processed 

Image with 

noise

Generator

Discriminator

Pre-processed 

ERCC Image 

without noise

Noise 

Elimination 

ERCC 

Algorithm

Pix2Pix GAN

Figure 7. Training GAN block diagram.

The training process took approximately one week (in a Xeon server with 8 GPUs RTX
2080Ti, from Santa Clara, California, USA), resulting in the successful acquisition of a model.
This model was then tested with different images and subsequently validated through an
iterative process. As mentioned earlier, the test set comprises 241 images distributed as
follows: BKG (50 images), CUT (42 images), ECH (49 images), NBI (50 images), and STR
(50 images). To use the model, it is fed a test image, and the model should output the same
input image but without the stray light noise (image translation). To evaluate how well
the noise of the images is reduced, the mathematical function described in Equation (1)
was selected.

D(I) =
{

1, δµBKG − 3σµBKG < δµ f < δµBKG + 3σµBKG
0, otherwise

(1)

This function called the denoising function D(I), compares the right and left sides of
each image (I), as shown in Figure 8. µle f t and µright denote the pixel mean on the left and
right sides of each image, respectively. The difference between these means is defined as
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δµ f = µle f t − µright. Such a difference is compared with the background images through
the computation of δµBKG and σµBKG, which represent the mean and standard deviation,
respectively, of δµ f for all background images (BKG).

The function D(I) outputs “1” when noise reduction is achieved and 0 otherwise [12].
It is important to note that this function operates under the assumption that the left and
right ends of the image, after noise reduction, should be similar. Figure 8 illustrates the
division of the left and right ends in a TS image.

Figure 8. Example of the left and right sides of a TS image to be considered in the validation process.

The application of the proposed process is quite simple, but the noise is not alwaysre-
moved in one iteration. That is why an iterative version of the algorithm for image
generation and validation is introduced. Figure 9 shows the block diagram of this step. As
can be seen, the operation of this algorithm follows the same basics of the process explained
above, where an image is generated by the GAN model from a test image. After that, the
result of the noise reduction is validated by the denoising function, which returns “1” if the
noise has been removed, and so the process ends. If the result of the denoising function
outputs “0”, it means that there is still noise, and therefore this generated image is intro-
duced again to the model to generate a new image with less noise than the previous step.
This process is repeated until the image noise is completely removed or until a maximum
number of iterations is reached.

GAN

Model
Validation

Image with reduced Noise

Image 

without Noise

Testing

Image

Generated

Image

Figure 9. Block diagram of the generation and validation of denoising images.

5. Experimental Results

Following the successful execution of the training and removal of stray light processes
in the images, highly promising results were achieved through the proposed approach.
These outcomes demonstrate significant improvements in various aspects compared to
previous methods, which will be described in what follows.
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Figure 10 shows a comparative analysis by applying the ERCC and GAN approaches
for two TS images. The first row (a, b, and c) illustrates the outcomes for an ECH image,
while the second row (d, e, and f) showcases the results for an NBI image. Similar to
previous instances, each row displays, from left to right, the original testing image, the noise
elimination outcome from the ERCC algorithm, and the GAN denoising generated image.

(a) (b) (c)

(d) (e) (f)

Figure 10. Two examples of noise reduction applications with ERCC and GAN approaches: (a) Origi-
nal ECH, (b) ERCC ECH, (c) GAN ECH, (d) Original NBI, (e) ERCC NBI, and (f) GAN NBI.

Figures 11–13 show the temperature and density profiles of plasma for the previous
original ECH, ERCC ECH, and GAN ECH images. As can be seen, both approaches seem to
have similar performance in the stray light reduction process. So to get a better comparison,
we used the denoising function D(I) described in Section 4.

Table 2 shows the noise reduction results as a percentage for both algorithms applied
to the TS images. The rows represent the algorithms, and the columns correspond to the
images. The percentage means the fraction of images without noise, i.e., 100% means that
all images for a given ST image type are without noise according to the denoising function
(see Equation (1)). While both algorithms demonstrate satisfactory outcomes, it is evident
that the GAN algorithm yields superior results.
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Figure 11. Original profiles of Thomson scattering diagnosis images.

Table 2. Comparison of the noise reduction for the approaches (GAN) and the ERCC algorithms.

BKG COFF ECR NBI STR Total

GAN 100% 100% 100% 100% 94% 99%
ERCC 74% 100% 94% 94% 65% 85%
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Figure 12. ERCC profiles of Thomson scattering diagnosis images.

Despite its good performance, the ERCC approach has an important drawback.
Figure 14 depicts how the algorithm, in some images, duplicates the noise presented
on the right side of the image. This is because the algorithm essentially replaces the pixels
that have been identified as noise with the pixels on the right-hand side of the image. In
contrast, the GAN algorithm manages to eliminate noise from the image without making
any duplication.

Finally, Figure 15 shows a comparison between both algorithms, taking into account
the number of iterations. The y axis represents the percentage of noise reduction, and
the x axis represents the number of iterations. Note that in the GAN algorithm, most
images have been effectively processed within the first 3 iterations, while the ERCC takes
11 iterations to reach its maximum value. This demonstrates that the GAN algorithm is
much faster than the ERCC algorithm, with a direct impact on the time needed to obtain a
single image. Specifically, with the ERCC algorithm, it takes around 1.20 s, although this
value may vary for different categories of images. On the other hand, the noise-free image
generated by the GAN takes 0.20 s, meaning that the time to obtain the data is five times
faster for the GAN algorithm.
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Figure 13. GAN profiles of Thomson scattering diagnosis images.

(a) (b) (c)

Figure 14. Example of noise duplication: (a) Original STR, (b) ERCC STR, and (c) GAN STR.

The GAN model was trained on a server with a Xeon, from Santa Clara, California,
USA, scalable processor with 2× 10 cores at 2.20 GHz, 256 GB of RAM memory, and 8 GPUs
NVIDIA RTX 2080 Ti. On average, the model took one week to be trained. For the testing
and validation of the model, a laptop was used. It has an Intel core i7 processor at 2.6 GHz
and 16 GB of RAM, and one Nvidia Geforce RTX 2060 graphics card, from Santa Clara,
California, USA, was used.
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Figure 15. Comparison between both algorithms.

6. Conclusions

In the Thomson scattering diagnosis in nuclear fusion, stray light adds disturbance to
the measurements and must be reduced/eliminated. To achieve this, an application based
on generative adversarial networks (GANs) was designed and used. This network allowed
for the “translation” of an image with noise into one without noise, based on unsupervised
training. Once the model was tested and validated, the results proved to be reliable, and the
model demonstrated the capability to generate data highly similar to those obtained in the
TS diagnostic system. To establish reliability, the obtained results were compared with those
of the ERCC algorithm. Among the advantages of the proposed method, it stands out for
its straightforward implementation, requiring only a good database to obtain a functional
model. Additionally, a notable advantage is the significant reduction in processing time
to obtain noise-free images. This efficiency results from both the low number of iterations
required by the algorithm to produce a clean image and the generative nature of the process,
contrasting with the ERCC approach, which inspects images at each iteration. Connected
to this, the validation process for noise reduction reveals a substantial increase in the
percentage of noise-free images. Another highly relevant aspect of the proposed approach
is that the GAN never duplicates information from the right side of the images to the left
side, resulting in cleaner images compared to the ERCC algorithm. This phenomenon
is reflected in a precise Thomson scattering diagnosis, where preserving image details is
essential. Last but not least, the developed method enables the generation of realistic and
processed data without the need to modify the original data. In future work, the focus
will be on enhancing the reliability of the generated data, a critical point to consider. The
developed approach allows for the application of different types of data, thus generating
realistic synthetic data that can balance various databases.
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