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Abstract: Electrochemical measurements are vital to a wide range of applications such as air quality
monitoring, biological testing, food industry, and more. Integrated circuits have been used to
implement miniaturized and low-power electrochemical potentiostats that are suitable for wearable
devices. However, employing modern integrated circuit technologies with low supply voltage
precludes the utilization of electrochemical reactions that require a higher potential window. In this
paper, we present a novel circuit architecture that utilizes dynamic voltage at the working electrode
of an electrochemical cell to effectively enhance the supported voltage range compared to traditional
designs, increasing the cell voltage range by 46% and 88% for positive and negative cell voltages,
respectively. In return, this facilitates a wider range of bias voltages in an electrochemical cell, and,
therefore, opens integrated microsystems to a broader class of electrochemical reactions. The circuit
was implemented in 180 nm technology and consumes 2.047 mW of power. It supports a bias
potential range of 1.1 V to −2.12 V and cell potential range of 2.41 V to −3.11 V that is nearly double
the range in conventional designs.

Keywords: bidirectional potentiostat; miniaturized CMOS potentiostat; electrochemical instrumentation;
wide voltage range potentiostat; integrated microsystem

1. Introduction

Electrochemical measurements have a wide range of applications in science and tech-
nology as well as for the everyday lives of people. For instance, electrochemical tests
can be utilized to determine the quality of the food in a supply chain [1,2], assessing hu-
man health by analyzing human secretions such as sweat [3,4], detecting precursors for
cancer [5], monitoring air quality and detecting toxic gas or particulate matter [6,7] and
detecting heavy metals [8,9]. These applications allow people to make informed decisions
to enhance their health and quality of life. To best utilize electrochemical methods in
many practical applications, it is paramount to deploy these methods in small, low-power,
cheap and preferably wearable or point-of-care devices. For instance, rapid, frequent, and
cost-effective measurements of health metrics can become widely accessible to individuals.
Moreover, by deploying a network of low-cost electrochemical sensors in a densely pop-
ulated area, rich datasets of air quality with high temporal and spatial resolution can be
obtained for improved community health. However, achieving these capabilities requires
the development of miniaturized and low-cost electrochemical instruments. To this end, re-
searchers have utilized complementary metal-oxide semiconductor (CMOS) technology to
develop small and wearable potentiostats [10–13], and many advances have been made to
develop potentiostats that increase the range of current readout [4,14], decrease the power
consumption and size [15–17], lower the noise [18] and widen the dynamic range [19], and
support the bidirectional current of electrochemical cells [14]. New processes have also
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been developed for implementing quasi-reference electrodes on the CMOS chip for a fully
integrated electrochemical measurement [20].

Although these advances have enabled miniaturized electrochemical systems, as the
modern CMOS technologies scale down in size, the voltage supply has become smaller [21];
for example, while an older 0.5 µm CMOS technology used to support a 5 V supply, newer
technologies such as 180 nm support a maximum of 1.8 V for regular transistors or 3.3 V in
the case of high-voltage transistors. As a result, many electrochemical reactions cannot be
supported by modern integrated potentiostats, as illustrated in Figure 1.
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Figure 1. The graph shows voltammetry of different heavy metals that indicates bias potentials
for each target element to obtain peak current (adapted from [8]). The blue and green bars show
ideal ranges of bias potential that are supported with a traditional CMOS potentiostat and our novel
potentiostat, respectively, both with a 3.3 V supply. In this example, the reactions for some elements
such as Zn and Mn are not supported by a traditional CMOS potentiostat. Note that the gray bar
represents VCE-swing, the excess voltage beyond the bias potential required for an electrochemical cell.

Since a potentiostat needs to support bidirectional current for redox reactions, only
half of the supply voltage is available to be used for each direction in an ideal rail-to-rail
operation of the potentiostat. For a 3.3 V supply, this means only 1.65 V is available for
each reduction or oxidation reaction. Furthermore, as detailed in Section 2, because the
counter electrode in a typical three-electrode electrochemical cell must be allowed to swing
well beyond the bias potential, only a small portion of this 1.65 V is available to be used
as bias potential, as illustrated in Figure 1. However, many electrochemical reactions, for
example for detecting heavy metals such as manganese and zinc, require bias potentials
of about 1.6 V and 1.2 V, respectively. As shown in Figure 1, these potentials fall outside
the window that is supported by conventional CMOS potentiostats with power supplies of
3.3 V or lower. Therefore, conventional CMOS potentiostat designs implemented in newer
technologies with lower supply voltages do not support voltammetry for detection of these
elements. On the other hand, older CMOS process nodes such as 0.5 µm that support supply
voltages greater than 3.3 V are not offered by mainstream foundries as they are considered
obsolete [22]. Therefore, it is inevitable to utilize these newer CMOS technologies for
electrochemical measurements that come with the added benefits of a smaller feature
size, lower power consumption and higher speed. Consequently, overcoming the issue
of limited bias potential in CMOS potentiostats implemented in newer process nodes is
crucial to accommodate a wide range of electrochemical reactions.

In this paper, we present a novel potentiostat topology that addresses the limited sup-
ply voltage in newer CMOS technologies and supports bidirectional current measurement
in a wide range of electrochemical reactions. For a given supply voltage, this new topology
nearly doubles the voltage range for the electrochemical cell compared to conventional
designs. Hence, it enables the detection of a wider range of target elements than any previ-
ously reported integrated potentiostat. As desired with most integrated instrumentation
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circuits, this potentiostat also provides a small form factor and low power consumption for
a compact system implementation. The rest of the paper is organized as follows. Section 2
presents an in-depth analysis on the voltage requirements of a three-electrode electrochemi-
cal cell as well as the challenges of Conventional CMOS potentiostats. Section 3 presents
the methodology and design for enhancing the voltage range of the electrochemical cell.
Section 4 presents the results of electrochemical experiments as well as simulation results
of the CMOS potentiostat. Finally, Section 5 concludes the paper.

2. Manifestation of Electrode Potentials and Challenges for Conventional
CMOS Potentiostats
2.1. Electrochemical Cell Model and Manifestation of Potentials at Electrodes

As briefly asserted in Section 1, an important bottleneck in miniaturized CMOS
potentiostats is their ability to support a wide bias potential window to extend the range of
electrochemical targets that can be measured using CMOS instrumentation. To elaborate
on this point, consider the electrochemical cell model shown in the circle at the center
of Figure 2. A three-electrode electrochemical cell features a reference electrode (RE), a
working electrode (WE) and a counter electrode (CE). The resistance between CE and RE is
mainly attributed to the solution resistance. Similarly, the resistance between RE and WE is
attributed to the solution resistance in series with a parallel capacitance and resistance that
model the double layer capacitance and charge transfer resistance at the WE surface.
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Figure 2. Schematic of a traditional potentiostat with grounded working electrode. The electrochemi-
cal cell model is presented at the center of the figure with a circle symbol.

In this three-electrode cell, a bias voltage is traditionally applied to the RE with respect
to WE. In other words, VRE-WE is applied to the electrochemical cell as shown in Figure 2.
In this paper, we will refer to this applied voltage as Vbias. Note that Vbias is sometimes
defined as VWE-RE [8], which is thenegative of Vbias as defined here. Both definitions are
valid as long as one remains consistent. Therefore, throughout this paper, we define:

Vbias = VRE-WE = VRE − VWE (1)

This definition facilitates a clearer discussion about the integrated CMOS potentiostat.
While the Vbias is externally applied between RE and WE, the potential on CE can and will
swing beyond Vbias in order to establish a desired electrochemical reaction. Let us define
this CE swing voltage as:

VCE-swing = VCE-RE = VCE − VRE (2)

This VCE-swing depends on several factors such as electrolyte concentration and the
geometry and material of electrodes, and it can be as large as Vbias, which extends the
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maximum potential the potentiostat must support to beyond two times Vbias. Finally, let us
define the full cell potential, Vcell such that:

Vcell = VCE-WE = VCE − VWE = VCE-swing + Vbias (3)

Based on our extensive experience with integrated electrochemical platforms, we
expect voltages at the cell electrodes to generally manifest similar to the graph in Figure 3.
The absolute value of the cell potential is always more than that of the bias potential due to
the existence of CE-RE resistance. Moreover, by lowering the electrolyte concentration, the
CE-RE potential difference further increases due to the increase in the CE-RE resistance.
Therefore, for a potentiostat with a limited voltage supply, the voltage swing on CE is the
limiting factor.
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Figure 3. Conceptual representation of Vcell and Vbias. VRE-WE (Vbias) is always equivalent to the
Vbias voltage applied to the electrochemical cell. VCE-WE (Vcell), however, is more than Vbias and
further increases if electrolyte concentration decreases.

2.2. Challenges of Conventional CMOS Potentiostats

A conventional CMOS potentiostat is shown in Figure 2. An operational amplifier
is used to apply a bias voltage to an electrochemical cell. The current generated in the
electrochemical cell is usually read using a transimpedance amplifier (TIA) as shown in the
bottom right of Figure 2. The WE of the electrochemical cell in this design is tied to analog
ground which is usually set to Vsupply/2. This allows the potentiostat to support bidirec-
tional current measurement and hence supports both reduction and oxidation reactions.
For instance, in the old 0.5 µm CMOS technology with a 5 V supply, in an ideal rail-to-rail
operation of the circuit, the analog ground is set to 2.5 V. Therefore, the available voltage
for |Vcell| is 2.5 V in either direction (negative or positive). Basically, the bottom half of the
supply range (0 V to 2.5 V) is used to support negative Vcell (remember Vcell = VCE − VWE)
and the top half (2.5 V to 5 V) is used to support positive Vcell. Only a portion of this 2.5 V
in either direction can be assigned to Vbias because always Vbias < Vcell (the exact ratio of
Vbias to Vcell depends on the cell condition such as electrolyte concentration). This covers a
relatively wide range of electrochemical experiments [23]. However, 0.5 µm CMOS process
node is not offered by major foundries anymore [22]. On the other hand, the supply voltage
in newer CMOS technologies is drastically reduced compared to the older technologies.
For example, going from 0.5 µm CMOS to a newer 180 nm CMOS, the supply voltage
drops from 5 V to 1.8 V (or 3.3 V in case of high-voltage transistors). This reduction in
supply severely restricts the range of electrochemical experiments that can be conducted
using a conventional CMOS potentiostat. In other words, this reduced supply voltage is
not sufficient to support Vbias and Vcell in an electrochemical cell. In this case, for an ideal
rail-to-rail operation of a CMOS potentiostat with 3.3 V supply, only Vsupply/2 = 1.65 V is
available for the electrochemical cell in either direction (negative or positive). Therefore,
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the absolute value for the maximum |Vcell| = |VCE − VWE| in this case is 1.65 V (i.e.,
‘Vsupply − analog ground’ or ‘analog ground − gnd’). |Vbias| = |VRE − VWE| in this case
will be much lower than |Vcell| as described in the previous section. The results of our ex-
periments suggest Vbias ≈ 0.5 Vcell as presented in Section 4, but the exact ratio depends on
the characteristics of the electrochemical cell. Consequently, only around 0.9 V is available
as Vbias in this example with a conventional potentiostat. As shown in Figure 1, many of the
electrochemical reactions happen in bias voltages outside this potential window [8,23,24]
and hence are not supported by conventional methods. In this work, we present a novel
circuit architecture for CMOS potentiostats that widens the supported windows for Vbias
and Vcell to facilitate a wide range of electrochemical reactions.

3. Design Methodology for CMOS Potentiostats to Support High Voltage Requirements

To solve the problem of a limited potential window, a novel architecture is introduced
in this work to enable a wider range of electrochemical experiments using cutting-edge
CMOS technologies. The first step to widen the voltage swing is to allow the voltage on the
WE to switch between high and low supply rails, instead of being tied to analog ground.
This will allow Vbias to have a voltage swing of the full supply range in an ideal rail-to-rail
operation of the circuit. The limitation, however, arises in reading the current. Traditionally,
a TIA is used to read the current, whose reference point is tied to analog ground together
with the WE as shown in Figure 2. By employing the proposed method, the reference point
of the TIA should switch between high and low supply rails along with WE. However,
this does not allow reading current in the original direction as it will push the output of
the TIA beyond 3.3 V (the supply voltage) or less than 0 V (ground) which is not possible.
Therefore, a current conveyor was employed to reverse the direction of the current and
thus enable the TIA to read the current properly. The schematic of the current conveyor is
seen in the middle of Figure 4.
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ment while allowing WE to switch between supply rails.

3.1. Current Conveyor

The current conveyor in this work was designed with the objective of enabling wide
output voltage swing. In a typical current conveyor, a cascode current mirror is used to
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ensure the accuracy of the copying current from the left leg to the right leg. However, to
maximize the voltage swing at the output, a single transistor was used in the current mirror
to reduce the overhead voltage required for the circuitry and hence maximize the voltage
swing for electrochemical reactions. These single transistors (M7 and M8) are shown in the
bottom center of Figure 4. However, using single transistors results in mismatch between
mirrored currents if the transistor’s drain voltages do not follow each other. To ensure
matching of the current in both legs of the current mirror, an op amp was employed to
match the drain voltages of the transistors. The input pair of this op amp was constructed
of PMOS transistors to ensure that the op amp remains in saturation mode even with low
voltages at its input terminals. This op amp is placed in both positive and negative feedback
loops. As the impedance at the left leg of the current conveyor is higher than that of the
right leg, the positive terminal of the op amp is connected to the left side to form a negative
feedback loop (as shown with the purple curved arrow in Figure 4) that is stronger than
the positive feedback loop. Note that since M7 adds 180 degrees to the phase, the drain
of M7 is tied to the positive terminal of the op amp to ensure a strong negative feedback
loop. This guarantees the stability of the circuit, and it ensures the drain voltages of the
two transistors match and the current is accurately mirrored.

To maximize the voltage range for electrochemical cells, the transistors at the output
of the op amp in the current conveyor (M9 and M10) should be carefully designed. The
first option considered was the NMOS-based design shown in Figure 5. However, the high
threshold and overdrive voltages of the NMOS transistor at the output of the op amp was
found to limit the available voltage for electrochemical reactions. This higher threshold
voltage was due to the body effect of the NMOS transistor. To reduce the overdrive voltage
that limits output swing, it was noted that a design based on PMOS transistors in isolated
n-wells would eliminate the body effect and hence decrease the threshold and overdrive
voltages of the transistors, given our design utilizes an n-well CMOS technology. Therefore,
to decrease overdrive voltage and increase the range of voltage available for electrochemical
reactions, the PMOS transistors with isolated wells were employed in the final design, as
depicted in Figure 4. In addition, a PMOS transistor was added to the middle of the second
leg of the current conveyor to balance the current in both legs.
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3.2. Digital Control Unit

A digital control unit was employed to dynamically change the reference voltage that
is applied to WE (bottom left of Figure 4) and the positive terminal of the TIA (right side of
Figure 4). Also, a digital signal (I_ctrl) was created from the WE voltage, and this signal
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was used to control the current sources employed in the current conveyor, through the
switches depicted in the top center of Figure 4. This control of the bias current is crucial to
properly bias the current conveyor according to the voltage that is applied to the WE.

4. Results
4.1. Test Setup and Electrochemical Experiments

To assess the behavior of electrode voltages for varying electrochemical model pa-
rameters, chronoamperometry experiments were conducted using different electrolyte
concentrations. Electrodes in these experiments were built in-house using standard micro-
fabrication techniques, including photolithography and thermal evaporation. Interdigitated
electrodes were made by depositing 10 nm of titanium and 100 nm of gold on a silicon wafer
containing a thin silicon dioxide layer. The titanium was used as an adhesion layer between
the gold and the oxide substrate. For the electrolyte, phosphate buffer (PB) solution was
used in low concentrations to increase the lifetime of thin-film gold electrodes. Phosphate
buffer saline (PBS) solution was avoided because the chlorine (Cl) molecules released from
saline were observed to dissolve the gold electrodes in previous experiments.

Experiments with our custom interdigitated gold electrodes were performed in a
beaker using 0.05 M and 0.1 M PB solutions. A commercial electrochemistry instrument
(CHI 760E) was used for chronoamperometry measurements. An illustration of the test
setup and electrodes are shown in Figure 6, where a photo of the fabricated interdigitated
electrode is provided as an inset. The experimental measurements shown in Figure 7
confirm the initial expectation that, while Vbias (VRE-WE) stays at the applied bias potential,
Vcell (VCE-WE) is always greater than the applied bias potential. Notice also from Figure 7
that the CE potential further increases when the electrolyte concentration is decreased. For
instance, for a Vbias of 1.4 V, a Vcell of 2.2 V and 2.9 V were measured for high and low
electrolyte concentrations, respectively. This validates the importance of expanding the
potential window that a potentiostat could support.
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4.2. Electrochemical Cell Model

As described in Section 2.1. the parallel capacitance and resistance in Figure 8 model
the double layer capacitance and charge transfer resistance at the WE surface. For all
simulations of the novel wide-swing potentiostat, a typical value of 2.6 µF was chosen as
the model capacitance and a value of 64 kΩ was used to model the charge transfer resistance
based on the data presented in [25]. The solution resistance values of the electrochemical
cell were empirically modeled from the experiments described in Section 4. 1 as follows:
the measured steady state chronoamperometry current for a given bias voltage was used to
calculate the RE-WE resistance, and the measured cell voltage for each chronoamperometry
current was used to determine CE-RE resistance. For these calculations, measurements
were performed at Vbias = 1 V where Vcell was measured as 2.44 V. Then, the RE-WE
resistance was calculated as 10.2 MΩ and the CE-RE resistance was calculated as 14.7 MΩ.
This calculation is based on the fact that the RE in a three-electrode electrochemical cell
does not draw any current [26]. Therefore, the resistances in the electrochemical cell can
be considered to be in series and the voltage drop on the resistances can be calculated by
Kirchhoff’s circuit laws. The voltage and current distribution on the model electrochemical
cell are depicted in Figure 8. This gives a reasonable approximation of resistance values
that were used in simulations.
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4.3. Simulation Results for the CMOS Potentiostat

Using the transistor sizes listed in Table 1, the new potentiostat design from Figure 4
was simulated in Cadence along with the electrochemical cell model described above.

Table 1. Transistor sizing of the CMOS potentiostat.

Device W/L Fingers Device W/L Fingers

M1,2 4 u/500 n 1 M8 4 × 2 u/350 n 1

M3,4 8.5 u/500 n 2 M9 8 u/300 n 1

M5 7.5 u/500 n 4 M10 4 × 8 u/300 n 1

M6 10 u/500 n 20 M11 2 u/300 n 2

Mb 6 u/500 n 1 M12 2 u/300 n 8

Mb_c 2 u/300 n 2 M13 2 u/300 n 4

M7 2 u/350 n 1 M14 2 u/300 n 16

The simulation results are shown in Figure 9. Figure 9a demonstrates the voltage
support for positive Vbias and Vcell. In this case, the digital control unit fixes the WE voltage
at 0.88 V. By sweeping RE voltage from 0.88 V toward 3.3 V, Vbias increases until it saturates
at Vbias_max = 1.1 V. Consequently, Vcell also increases until it saturates at Vcell_max = 2.41 V.
Likewise, Figure 9b explains voltage support for negative Vbias and Vcell. In this case, the
WE voltage is fixed at 3.2 V and the RE voltage is swept from 3.2 V toward 0 V. As seen
in Figure 9b, a Vbias of −2.12 V to 0 V and a Vcell of −3.11 V to 0 V are supported. This
demonstrates that the new potentiostat enhances the potential window for oxidation and
reduction measurements by supporting a maximum Vcell of 2.41 V and −3.11 V in positive
and negative directions, respectively. In comparison, a conventional potentiostat, even with
an ideal rail-to-rail operation at a 3.3 V supply supports a maximum Vcell of only ±1.65 V.
Therefore, our new potentiostat architecture achieves a 46% and 88% increase in the voltage
range of Vcell for positive and negative voltages, respectively.
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The design operates from a 3.3 V supply and consumes only 2.047 mW of power.
Figure 10 shows the layout of the new potentiostat designed in 180 nm CMOS technology,
which occupies only 0.013 mm2. Table 2 highlights the design and performance characteris-
tics of the op amp designed for and employed in the potentiostat, and Table 3 illustrates the
characteristics of the whole potentiostat including the current conveyor, the digital control
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unit and the TIA. The 10% to 90% charge and discharge time of a typical 2.6 µF capacitor
within the model electrochemical cell was less than 1 µs. Considering the reaction times of
multiple seconds in a typical chronoamperometry experiment, the charge and discharge
times are negligible and the potentiostat meets the speed requirements.
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Table 2. Characteristics of the op amp.

Supply Technology Area Power Bandwidth Slew Rate

3.3 V CMOS 180 nm 964 µm2 435 µW 32.52 MHz 28.33 V/µs

Table 3. Electrical characteristics of the potentiostat.

Supply Area Max Power Max Cell
Voltage Support Load Capacitance

3.3 V 0.0132 mm2 2.047 mW 3 V 2.6 µF

5. Conclusions

Integrated circuits have been used to implement low-power potentiostats with small
form factor that can be used for wearable devices and play a key role in many applications
such as air quality monitoring and health assessments. However, integrated potentiostats
support a limited cell voltage range, Vcell, that fails to accommodate many electrochemical
reactions of interest. To resolve this challenge, we introduced a novel integrated potentiostat
topology that was verified to support Vcell range between 2.41 V and −3.11 V (with 3.3 V
supply). This increases the maximum supported Vcell by 46% and 88% for positive and
negative voltages, respectively, compared to a traditional potentiostat design. This dramatic
improvement in potential window permits the measurement of a much wider range of
electrochemical targets, expanding applications for portable sensing systems. The circuit
was implemented in CMOS 180 nm technology and consumes only 2.047 mW of power. For
a given electrochemical cell model, the maximum charge and discharge time was found to
be under 1 µs, easily meeting the speed requirements for most electrochemical experiments.
The greatly expanded potential window of this new potentiostat, along with its low power
consumption and high slew rate, make this design well-suited for many current and future
wearable electrochemical sensing platforms.
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