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Abstract: Demand is strong for sensitive, reliable, and cost-effective diagnostic tools for cancer
detection. Accordingly, bead-based biosensors have emerged in recent years as promising diagnostic
platforms based on wide-ranging cancer biomarkers owing to the versatility, high sensitivity, and
flexibility to perform the multiplexing of beads. This comprehensive review highlights recent trends
and innovations in the development of bead-based biosensors for cancer-biomarker detection. We
introduce various types of bead-based biosensors such as optical, electrochemical, and magnetic
biosensors, along with their respective advantages and limitations. Moreover, the review summarizes
the latest advancements, including fabrication techniques, signal-amplification strategies, and integra-
tion with microfluidics and nanotechnology. Additionally, the challenges and future perspectives in
the field of bead-based biosensors for cancer-biomarker detection are discussed. Understanding these
innovations in bead-based biosensors can greatly contribute to improvements in cancer diagnostics,
thereby facilitating early detection and personalized treatments.

Keywords: bead-based biosensors; cancer; biomarker; electrochemical bead; magnetic beads;
optical beads

1. Introduction
1.1. Cancer-Cell Biology

Cancer is a complex and heterogeneous disease that requires early detection and
accurate diagnosis for effective treatment and improved patient outcomes [1]. The complex
biology of cancer cells is fundamental to comprehending cancer and developing effective
detection and treatment methods. Cancer is characterized by the abnormal and uncon-
trolled growth of cells, as opposed to normal cells with a regulated lifecycle. The evasion
of regulatory mechanisms by cancer cells leads to tumor formation. To thoroughly un-
derstand cancer cell biology, several crucial aspects need to be considered. First, genetic
mutations play a vital role in cancer development. Accumulated mutations in a cell can
disrupt normal regulatory mechanisms, resulting in uncontrolled cell division [2]. Thus,
identifying specific genetic alterations in cancer cells has become a fundamental aspect
of cancer research. Second, a critical aspect of cancer-cell biology is metastasis. One of
the most fatal characteristics of cancer is its ability to spread to other parts of the body.
This process is called metastasis. It involves cancer cells breaking away from the primary
tumor, entering the bloodstream, and establishing secondary tumors in distant sites [3].
Understanding the molecular and cellular mechanisms driving metastasis is pivotal in
fighting against cancer. Cancer is not a single disease, but rather a collection of disorders
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with unique characteristics. This heterogeneity poses significant challenges in cancer treat-
ment. Intra-tumor heterogeneity, which refers to diverse cell populations within a single
tumor, leads to distinct behaviors and responses to therapy among different populations [4].
Understanding the intricate biology of cancer cells is crucial to comprehending cancer and
developing effective detection and treatment methods. Genetic mutations, metastasis, and
intra-tumor heterogeneity are key aspects to consider in this complex field of research. By
unraveling the mechanisms underlying these phenomena, we can improve outcomes for
cancer patients.

1.2. Cancer Biomarkers

Cancer biomarkers are molecules or substances that indicate cancer’s presence, growth,
or spread. They can be found in various bodily fluids, such as blood, urine, or tissue
samples. These biomarkers can be molecular entities such as proteins, nucleic acids,
metabolites, or tumor cells that are specific to cancer or exhibit altered expression levels
under cancerous conditions [5,6]. Detecting and analyzing these biomarkers provides
valuable insights into the presence, progression, and response to therapy in various types
of cancer [7] (Figure 1).

Figure 1. Schematic of circulating cancer biomarkers frequently identified in liquid biopsy, showcas-
ing examples of contemporary trends and innovations in device technology.

Owing to statistical limitations and challenges related to biochemical factors, using a
single biomarker as a predictive or diagnostic marker for cancer is challenging particularly
when lacking specificity for a specific disease. Current research indicates the presence of
numerous biomarkers associated with various types of cancer. In clinical practice, a com-
bination of biomarkers and clinical indications is necessary to assess disease progression
accurately. Consequently, utilizing a single biomarker for disease diagnosis is difficult.
For example, prostate-specific antigen (PSA) levels can elevate in prostate cancer and
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also under benign prostate conditions, leading to diagnostic uncertainties. Consequently,
the influential early detection of cancers relies on the simultaneous evaluation of groups
of biomarkers. Assessing the levels of four to ten biomarkers is likely to provide more
statistically robust prognostic information and increased diagnostic value.

In the clinical setting, cancer patients may concurrently exhibit alterations in various
biomarkers, such as changes in inflammatory factors and PIK3CA gene mutations in pe-
ripheral blood ctDNA of breast cancer patients. In this context, developing methodologies
that enable the simultaneous measurement of these biomarkers in a single detection assay
is essential. Multiplexed assays should be able to detect an analyte within the cancer
panel with a significantly distinct concentration from the others while maintaining the
accuracy of detecting the remaining biomarkers, particularly the crucial cut-off values for
distinguishing between cancer and healthy subjects. Currently, some common protein
biomarkers are associated with different types of cancers (Table 1).

Table 1. Common cancer biomarkers detectable by bead-based biosensors.

Cancer Type Biomarkers References

Breast Cancer HER2, ER, BRCA1, BRCA2, CA15-3 [8–10]
Lung Cancer CYFRA21-1, LncRNA MEG3, EGFR, PD-L1, KRAS mutation [11–15]
Colorectal Cancer CA19-9, EGFR, CEA [16–18]
Prostate Cancer PSA, LncRNA PCA3, PAP [19–21]
Gastric Cancer HER2, PD-L1, CA72-4, CEA [22]
Hepatic Cancer AFP, AFP-L3, DCP [23]
Pancreatic Cancer CA19-9, CEA, KRAS, TP53 [24]
Ovarian cancer CA-125, BRCA1, BRCA2, CA 19-9, AFP [25]
Leukemia BCR-ABL [26]

HER2: Human Epidermal Growth Factor Receptor 2, ER: Estrogen Receptor, BRCA1: Breast Cancer Gene 1,
BRCA2: Breast Cancer Gene 2, CA15-3: Cancer Antigen 15-3, CYFRA21-1: Cytokeratin 19 Fragment, LncRNA
MEG3: Long Non-Coding RNA Maternally Expressed Gene 3, EGFR: Epidermal Growth Factor Recep-
tor, PD-L1: Programmed Death-Ligand 1, KRAS mutation: Kirsten Rat Sarcoma Viral Oncogene Mutation,
CA19-9: Carbohydrate Antigen 19-9, CEA: Carcinoembryonic Antigen, PSA: Prostate-Specific Antigen, LncRNA
PCA3: Long Non-Coding RNA Prostate Cancer Gene 3, PAP: Prostatic Acid Phosphatase, CA72-4: Cancer Anti-
gen 72-4, AFP: Alpha-Fetoprotein, AFP-L3: Alpha-Fetoprotein-L3 Fraction, DCP: Des-γ-Carboxy Prothrombin,
TP53: Tumor Protein p53, CA-125: Cancer Antigen 125, BCR-ABL: Breakpoint Cluster Region-Abelson Murine
Leukemia Viral Oncogene Homolog 1.

Cancer biomarkers are indispensable tools in oncology because they play a vital role
in diagnosing, monitoring, and predicting the disease. These biomarkers furnish valuable
information that can guide treatment decisions and enhancing patient outcomes. The
significance of the cancer biomarkers is highlighted as follows. First, diagnostic biomarkers
have been proven to be valuable in early cancer detection. These biomarkers can indicate the
presence of cancer cells or specific genetic alterations associated with cancer. For instance,
PSA in the blood is a diagnostic biomarker for prostate cancer. Detecting PSA in the
blood raises suspicion of prostate cancer, prompting the need for further diagnostic tests to
confirm the diagnosis. Second, some prognostic biomarkers can provide information about
the likely trajectory of the disease. These biomarkers can help determine the aggression
of the cancer and the likelihood of recurrence. To illustrate, we take HER2 protein as
an example. It has been identified as a prognostic biomarker for breast cancer. Elevated
levels of HER2 indicate a more significant potential for more aggressive disease, enabling
better treatment decisions and targeted interventions. Finally, predictive biomarkers are
particularly important in guiding treatment decisions by indicating how a patient is likely to
respond to specific therapies. These biomarkers help personalize treatment plans, ensuring
patients receive the most effective interventions with minimal side effects. For example,
epidermal growth factor receptor (EGFR) mutations have been identified as predictive
biomarkers for the response to targeted therapies in lung cancer. Patients with EGFR
mutations are more likely to benefit from these therapies, making them ideal candidates
for targeted treatment approaches.
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Despite the significant advancements in cancer research, detecting cancer biomarkers
still presents numerous challenges. Traditional diagnostic methods including immunoas-
says and molecular techniques often suffer from the limitations of low sensitivity and lim-
ited multiplexing capabilities, as well as the requirement for sophisticated operations [27,28].
These methods are also often time consuming, expensive, and labor intensive. Thus, they
are less suitable for routine clinical applications and point-of-care (POC) settings [29,30].

1.3. Methodology

For the selection of articles included in this review, a search concerning bead-based
biosensors was implemented by looking up keywords, titles, and abstracts of papers.
Articles were selected if their abstracts indicated a relationship between cancer biomark-
ers, bead-based biosensors, and nanoparticles. Only original research articles, review
papers, and other scholarly publications written in English were considered for inclusion
in this review. The literature search was performed across multiple scientific databases,
including PubMed, Scopus, IEEE Xplore, ScienceDirect, and Google Scholar. We used
the following search terms: “biomarker” OR “Cancer biomarker” OR “Biosensor” OR
“nano-biosensor” OR “Bead-Based immunoassay” OR “immunoassay” OR “Bead” OR
“particle” OR “nanoparticle” OR “nanoparticles” in combination with a Boolean operator
“OR” to carry out the task.

2. Bead-Based Biosensors
2.1. Significance of Bead-Based Biosensors

In the ever-evolving landscape of cancer diagnostics, bead-based detection technolo-
gies have emerged as a promising frontier. They offer a spectrum of advantages that
have redefined possibilities in biomarker detection. At the heart of their efficacy is a
high surface-to-volume ratio, rapid response, and high throughput, which have propelled
these technologies to the forefront of cancer research. The ability to achieve simultane-
ous multiplexed detection, process large sample volumes with automation, and maintain
high sensitivity and specificity positions bead-based biosensors as indispensable tools in
both research and clinical settings. However, these advantages come with accompanying
challenges, such as the standardization of protocols, validation of clinical utility, and repro-
ducibility across different settings, all of which require careful consideration. See Table 2.
The three principal advantages of bead-based detection technology are discussed below.

Table 2. Advantages and disadvantages of bead-based biosensors.

Pros Cons

✔ High Surface to Volume Ratio
✔ High Throughput
✔ Fast Response
✔ Reduced Matrix Effects
✔ Enhanced Sensitivity and Dynamic Range
✔ Multiplexed Detection
✔ Minimal Sample Volume
✔ Miniaturization and Portability

• Reproducibility and Standardization
• Cross-Reactivity
• Instrumentation Complexity
• Clinical Translation

2.1.1. High Surface-to-Volume Ratio

Bead-based biosensors possess a significant attribute that contributes to their effective-
ness, that is, a high surface-to-volume ratio. This feature plays a pivotal role in enhancing
sensitivity and efficiency in detecting cancer biomarkers. The increased immobilization of
capture molecules on the bead’s surface, enabled by this feature, allows for a higher density
of immobilized capture molecules, creating a more significant number of binding sites for
target biomolecules. Recent studies have demonstrated the importance of this heightened
immobilization for detecting low-abundance cancer biomarkers, enabling accurate capture
and measurement even at minute concentrations [31].
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Another key benefit associated with the high surface-to-volume ratio in bead-based
biosensors is the improved signal-to-noise ratio. The increased surface area facilitates a
stronger signal from the bound biomolecules while minimizing non-specific interactions
that can contribute to background noise. This specificity is vital in cancer diagnostics, where
accurate identification of biomarkers amid complex biological matrices is crucial. Recent
advancements in surface modification techniques have further refined the signal-to-noise
ratio, thereby enhancing the reliability of bead-based biosensors in clinical applications.

The exploitation of the high surface-to-volume ratio in bead-based biosensors leads to
reduced limits of detection (LODs). These biosensors can detect trace amounts of biomark-
ers with high precision, and thus hold promise for early cancer diagnosis. The combination
of increased immobilization efficiency and reduced LODs positions bead-based biosensors
as invaluable tools in identifying subtle changes in biomarker concentrations associated
with early stage cancers.

2.1.2. High Throughput

Bead-based biosensors offer a distinct advantage in high-throughput capabilities,
allowing for the efficient and simultaneous processing of a large number of samples. This
characteristic has far-reaching implications for advancing cancer research and clinical
applications. The primary advantage of bead-based biosensors lies in their simultaneous
multiplexed detection capability. By incorporating various bead types, each functionalized
with specific capture molecules, these biosensors can detect multiple cancer biomarkers
in parallel. Thus, the efficiency of diagnostic assays is enhanced, and a comprehensive
overview of the patient’s disease profile in a single analysis is provided.

In addition to multiplexed detection, the high-throughput capability enables the
analysis of large sample volumes within a relatively short time frame. Recent studies have
demonstrated the scalability of bead-based assays, allowing high sample volumes to be
analyzed without compromising the sensitivity or specificity of biomarker detection [32].
Automation and miniaturization, often coupled with high throughput in bead-based
biosensors, streamline the analysis process, enabling rapid sample processing and reducing
manual intervention. The outcome is minimized risk of errors. Miniaturization leads
to smaller sample volumes, conserving precious clinical specimens and making these
assays compatible with POC applications. These technological advancements significantly
contribute to the efficiency and accessibility of bead-based biosensors in cancer-biomarker
detection. Moreover, the high-throughput advantage does not come at the expense of
sensitivity or specificity in bead-based biosensors. This combination of high-throughput
and high-sensitivity positions bead-based biosensors as formidable tools in the early and
rapid diagnosis of cancer.

2.1.3. Fast Response

Bead-based biosensors have revolutionized cancer diagnostics, offering the remark-
able advantage of a fast response. This characteristic is pivotal in the swift and accurate
detection of cancer biomarkers, with profound implications for patient outcomes and
treatment decisions.

The immediate detection of cancer biomarkers is a hallmark of the fast response ad-
vantage offered by bead-based biosensors. In clinical scenarios where time is of the essence,
these biosensors have demonstrated the capability to provide actionable results within
minutes. This rapid turnaround time expedites diagnosis and enables timely interventions,
potentially influencing treatment strategies and improving overall patient care.

Beyond immediate detection, the fast response capability allows real-time monitor-
ing of dynamic changes in biomarker levels. Cancer biomarkers often exhibit variations,
and the ability of bead-based biosensors to capture these changes in real-time is crucial.
Continuous monitoring owing to rapid response provides a dynamic picture of disease pro-
gression, offering insights into the evolving nature of cancer and its response to treatment.
Early detection of cancer is a key outcome of the fast response capability of bead-based
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biosensors. The subtle changes in biomarker levels characteristic of early stage cancer
can be swiftly identified, contributing to improving patient outcomes. The combination
of fast response and high sensitivity allows these biosensors to detect low-concentration
biomarkers, reinforcing their role as powerful tools in early cancer diagnosis [33].

The fast response advantage also applies to the dynamic monitoring of therapeutic
responses. Changes in biomarker levels serve as indicators of treatment efficacy that can
guide healthcare professionals in promptly customizing treatment plans. This real-time
monitoring aspect contributes to personalized medicine approaches, optimizing patient
care based on individual responses to treatment.

2.2. Signal-Amplification Strategies

Signal-amplification strategies are the key to enhancing the detection sensitivity of
cancer biomarkers. Various approaches are utilized, including enzymatic amplification,
rolling circle amplification (RCA), and hybridization chain reaction [34]. Among these
technologies, ultra-sensitive probes and nucleic acid amplification contribute to increased
specificity and efficiency. Additionally, concentration techniques play a crucial role in
boosting signal effects. This diversified approach broadens detection capabilities and holds
promise for advancing early cancer diagnosis and treatment precision.

2.2.1. Ultra-Sensitive Probes

Hybridization chain reaction (HCR) is a signal-amplification strategy that has been
applied to bead-based biosensors. HCR involves the sequential hybridization of short DNA
hairpin probes, forming long DNA duplexes. The HCR process amplifies the signal by
generating long DNA chains that can be detected using fluorescence or electrochemical
methods [35]. A novel radiometric electrochemical aptasensor is developed for sensitive
detection of carcinoembryonic antigen (CEA). The aptasensor utilizes a cascade reaction
triggered by CEA binding to hairpin probes and subsequent Exo III cleavage, resulting in
variances in oxidation peak currents of ferrocene-labeled hairpin probes and methylene
blue-intercalated DNA sequences. Finally, it enables the quantification of CEA with a
lower LOD of 30.5 fg/mL, demonstrating good selectivity, stability, reproducibility, and
practical application in biological samples such as serum [36]. A DNA detection assay
combines enzyme-free signal amplification using HCR with flow cytometry and magnetic
beads for sensitive and rapid analysis. The assay immobilizes biotinylated hairpin DNA
on streptavidin-functionalized magnetic beads, allowing for the target DNA to initiate a
cascade of hybridization events and accumulate fluorescent signals on the magnetic beads.
Flow cytometry enables quick analysis, providing quantitative results within minutes [37].
Furthermore, Kim et al. reported an enzyme-linked oligonucleotide assay that enables rapid
colorimetric detection of Engrailed-2 (EN2), which is a biomarker for bladder and prostate
cancer. An EN2-specific aptamer and an aptamer-mediated HCR are utilized for signal
amplification, which had the advantages of high specificity and a low limit of detection in
buffer and artificial urine, offering the potential for a simple, accurate, and early diagnostic
tool for bladder and prostate cancers [38]. HCR amplification improves the sensitivity of
bead-based biosensors and enables the detection of low-abundance cancer biomarkers.

The sensitivity of bead-based biomarker detection can also be enhanced through alter-
native means. An innovative biosensor using electrochemical impedance spectroscopy (EIS)
has been developed. This biosensor incorporates magnetic beads confined within a microw-
ell array, aiming to enhance the sensitivity of traditional bead-based EIS biosensors [39].
Moreover, a highly sensitive dual-signal ratio electrochemical aptasensor is exploited to
construct functionalized bimetallic nanocomplexes for HER2 detection. This sensor im-
proved the linear range of 0.75–250 pg/mL, and the LOD to 0.37 pg/mL, which provides an
alternative method to detect breast cancer tumor biomarkers [40]. Recently, Janus particles
(JPs) driven by rotational Brown motion have been used as novel probes for the rapid
detection of diseases based on enhanced nucleic acid amplification [41] and small protein
biomarkers [42]. By detecting the microviscosity change through loop-mediated isothermal
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amplification (LAMP) in the presence of target cDNA, SARS-CoV-2 nsp2, an LOD down to
70 ag/µL is achieved in 10 min, showcasing 100-fold higher in sensitivity and 15-fold faster
than conventional polymerase chain reaction (PCR). In another study, the trace protein
TNF-α is successfully measured from the decreased blinking frequency of JPs owing to
their increased particle size. In this system, an LOD of 1 pg/mL is eventually obtained
in 60 s.

2.2.2. Nucleic Acid Amplification

RCA is a powerful signal-amplification strategy integrated into bead-based biosensors.
RCA involves the circular replication of a target DNA sequence using a DNA polymerase
and a circular DNA template. Each replication cycle produces a long single-stranded DNA
concatemer, which can be detected using fluorescence or electrochemical tags [43]. RCA
combined with specific aptamer of aflatoxin B1 (AFB1) is used to establish a highly sensitive
and specific method for visual detection of AFB1. The surface of magnetic beads is coated
with the AFB1 aptamer, functioning as a molecular recognition probe. The binding of the
aptamer to AFB1 initiates RCA, resulting in the generation of lengthy DNA strands. These
strands capture signal probes and horseradish peroxidase (HRP), inducing a significant
color transformation of the solution from transparent to a deep blue hue, serving as a
visual indicator for AFB1 detection. Under optimal conditions, the detection range reaches
from 0.5 to 40 pg/mL and the limit of detection is 0.13 pg/mL [44]. A new self-assembly
approach based on RCA enabled the ultrasensitive detection of oral cancer biomarkers
micro-RNA (miRNA)21 and miRNA16, utilizing a DNA-decorated biosensor that exhibits
high selectivity, wide detection range, and low limits of detection, providing a potential
diagnostic tool for early stage oral cancer screening [45]. RCA amplification enhances the
signal intensity and enables ultrasensitive detection of cancer biomarkers, rendering it a
valuable tool in bead-based biosensors [46].

2.2.3. Enrichment by Concentration

Emphasis on integrating enrichment strategies to address the challenges of identifying
low-concentration or elusive biomarkers, especially in early cancer diagnosis, has grown
in recent years. This shift underscores the recognition of enrichment by concentration
mechanisms as a crucial tool in advancing the sensitivity, specificity, and precision of
bead-based biosensors, particularly crucial in the early diagnosis and monitoring of can-
cer. By functionalizing microbead surfaces with specific biomolecules such as antibodies,
these biosensors selectively capture cancer biomarkers. The subsequent enrichment pro-
cess amplifies the concentration of biomarkers, significantly improving LODs [47–49]. A
microfluidic-based liquid biopsy device that operates efficiently with a minimal plasma
sample volume (20–50 µL), achieving a low LOD (0.1 ng/mL) and the capability to identify
biomarkers swiftly within 55–75 min [50]. Chemiluminescence immunoassays also exhibit
a high sensitivity and signal-to-noise ratio on cancer-biomarker detection. Fe3O4@SiO2
microspheres modified with Anti-CEA monoclonal antibody serve as the core for captur-
ing CEA, whereas dendritic large-mesoporous silica nanospheres co-immobilized with
anti-human CEA monoclonal antibody and HRP act as the satellite for signal amplifica-
tion. These sensors demonstrate a broad detection range of 0.01−20 ng mL−1 and a low
LOD of 3.0 pg mL−1, facilitating the convenient and specific CEA determination in human
serum [51]. Moreover, bead-based biosensors equipped with enrichment mechanisms
offer real-time monitoring of biomarker fluctuations during treatment, aiding therapy
optimization [52].

2.2.4. Enzymatic Amplification

Enzymatic amplification strategies have been developed to enhance the bead-based
biosensors’ sensitivity and signal amplification. Enzymes can catalyze reactions that
generate detectable signals, such as the conversion of a substrate into a product with a
fluorescent or electrochemical signal [53]. Enzymatic amplification enables the detection
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of a low-concentration of cancer biomarkers by amplifying the signal through enzymatic
reactions. Enzymes such as HRP and alkaline phosphatase (ALP) are extensively used
in bead-based biosensors to achieve signal amplification and improve LODs [54]. For
instance, a photoelectrochemical immunoassay based on magnetic beads can reportedly
detect CEA specifically. Followed by magnetic separation, the HRP-labeled anti-CEA
detection antibody initiates enzymatic bio-etching of hollow cadmium sulfide, decreasing
photocurrent intensity. The sensing platform can work at a range from 0.02 ng/mL to
50 ng/mL and a low LOD of 6.12 pg/mL. HRP usage gives the system high precision and
strong anti-interference ability [18]. Moreover, the ALP-labeled magnetic beads are used
to develop an improved zinc oxide-modified carbon electrode, which is used to capture
CEA in cancer samples. This system can detect CEA from 0.01 ng/mL to 6.0 ng/mL with a
4.0 pg/mL LOD. Combining magnetic beads with ALP-linked immunoassay provides a
platform for rapidly and sensitively detecting biomarkers in cancer samples [55]. These
signal-amplification strategies significantly improve the LODs, allowing for the more
reliable and accurate diagnosis of cancer biomarkers. See Table 3.

Table 3. Signal amplification of bead-based biosensors for cancer biomarker detection.

Type Biomarker Detection Limit Linear Range Reference

Enzymatic
amplification

CEA 6.12 pg/mL 0.02–50 ng/mL [18]
CEA 4.0 pg/mL 0.01–6.0 ng/mL [55]

Nucleic acid
amplification

AFB1 0.13 pg/mL 0.5–40 pg/mL [44]
miRNA16 8.81 fM 10 fM–100 pM

[45]miRNA21 3.85 fM 10 fM–1 nM

Ultra-sensitive
probes

CEA 30.5 fg/mL 100 fg/mL–50 ng/mL [36]
DNA 0.5 pM 10 pM–50 nM [37]
EN2 0.34 nM 3.12–50 nM [38]

Enrichment by
concentration

CEA/CA15-3 0.1 ng/mL 0.2–30 ng/mL [50]
CEA 3.0 pg/mL 0.01−20 ng/mL [51]

Others
PSA 10 fg/mL 100 fg/mL–10 ng/mL [39]

HER2 0.37 pg/mL 0.75–250 pg/mL [40]
CEA: carcinoembryonic antigen; AFB1: aptamer of aflatoxin B1; miRNA: microRNA; EN2: Engrailed-2;
CA15-3PSA: cancer antigen 15-3, prostate specific antigen; HER2: human epidermal growth factor receptor 2.

2.3. Recent Trends and Innovations

Significant advancements have been made in developing bead-based biosensors for
cancer-biomarker detection. These innovations aim to enhance the sensitivity, selectivity,
and multiplexing capabilities of bead-based biosensors and enable integration with emerg-
ing technologies [56]. This section primarily discusses recent innovations in multiplexing,
state-of-the-art POC testing (POCT) cancer diagnostics, and integrating microfluidics and
nanotechnology for bead-based biosensors (Figure 2).

2.3.1. Integration with Microfluidics and Nanotechnology

Microfluidic systems have been integrated with bead-based biosensors to enhance the
assay performance and enable precise manipulation of samples and reagents [57]. Microflu-
idic platforms offer advantages such as reduced sample volumes, enhanced mixing, rapid
reaction kinetics, and improved sensitivity. Microfluidic bead-based biosensors have been
developed for on-chip sample processing, such as cell or virus isolation and enrichment [58],
as well as multiplexed detection of cancer biomarkers. A semiconductor sensor-embedded
microfluidic chip combined bead-based immunoassay with DNA strand labeling for de-
tecting protein biomarkers has been reported. This method utilizes a magnetic bead-based
immunoassay and an externally imposed magnetic force to address the issue of distance
between analyte protein and the sensor surface. The use of a normal ion intensity buffer
without dilution is enabled, and sensitivity is enhanced by applying longer DNA fragments
and smaller magnetic beads as solid support for the antibody [59]. A rapid and simple bead-
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based microfluidic platform is developed for detecting a specific 22-mer DNA sequence
via hybridization, utilizing single- and multi-mode interactions for probe immobilization
on commercial nano-porous chromatography beads, and using a quantum dot (QD) label
combined with multi-mode immobilization [60]. Moreover, an automated microfluidic
platform integrated a bead-based electrochemical immunosensor with a bioreactor for con-
tinuous monitoring of cell-secreted biomarkers, it utilizes disposable magnetic microbeads
for biomarker immobilization and combined microvalves into microfluidic chip to enable
programmable operations of the immunoassay, allowing for its convenient integration
with liver-on-chips for continual biomarker quantification [61]. From the above findings,
the integration of microfluidics with bead-based biosensors facilitates the development of
portable and POC devices for cancer diagnostics.

Nanoparticles (NPs) are extensively used to enhance the performance of bead-based
biosensors. Functionalized NPs can be conjugated with beads or capture molecules to
improve biosensors’ sensitivity, selectivity, and signal amplification [62]. For example, mag-
netic NPs can be used for efficient target capture and separation, whereas plasmonic NPs
can enhance the signal readout through enhanced fluorescence or Raman scattering [63].
A high-sensitivity bead-based immunoassay with nanofluidic preconcentration has been
reported for biomarker detection. It exploits an antibody-coated bead-based immunosensor
in a valve-integrated nanofluidic preconcentration device, where concentrated antigens and
antibody-coated nanobeads are isolated and the antigen concentration can be determined
in real time through micro-particle-tracking velocimetry. This method can rapidly detect
PSA with a 50 pg/mL LOD in only 20 min [64]. Thus, NP-enhanced bead-based biosensors
offer improved LODs, increased specificity, and the potential for multiplexed detection of
cancer biomarkers.

Nanopore-based biosensors have emerged as a promising approach for the detec-
tion of cancer biomarkers [65]. Nanopores are nanoscale pores that allow the passage of
biomolecules through them. By functionalizing beads with capture molecules and introduc-
ing them into a nanopore system, the binding events between the target biomarker and the
capture molecule can be detected based on changes in ionic current or impedance [66]. An
electrical biosensing method is established using synthetic nanopores and nanochannels
integrated into fluidic devices for versatile analyte detection through size calibrations.
The method is a low-complexity, low-cost fabrication technique suitable for industry
production [67]. In addition, a digital immunoassay utilized solid-state nanopores for
accurate quantification of biomarker concentrations, which addressed the challenges of
specificity, sensitivity, and consistency by using identifiable DNA nanostructures to repre-
sent the presence or absence of the target protein [68]. Chuah et al. developed a nanopore
blockade sensor approach for highly sensitive protein detection in complex biological
samples, which utilized antibody-modified magnetic NPs to capture the analyte. By
immune-sandwich formation in the nanopore, this system shortens the analysis times and
avoids non-specific signals, indicating its potential for quantitative analysis of diverse
protein and nucleic acid species [69]. Nanopore-based biosensors offer label-free, real-time
detection, high sensitivity, and the potential for single-molecule analysis [70]. Moreover,
an alternative exosome isolation method [71], known as the Exosome Total Isolation Chip
(ExoTIC), has also been reported. This novel size-based platform based on a polycarbonate
track-etched nanoporous filter membrane allows the efficient and standardized purification
of extracellular vesicles (EVs) from different biofluids. The ExoTIC system is notable for its
modular design, which facilitates the size-exclusive sorting of heterogeneous EV subpopu-
lations. In contrast to traditional ultracentrifugation techniques, ExoTIC demonstrates a
significant 4- to 1000-fold increase in EV yield. Furthermore, its capability to isolate EVs
effectively from small sample volumes ranging from 10 to 100 µL makes it particularly well-
suited for preclinical investigations involving small animal tumor models and point-of-care
clinical applications that rely on capillary blood samples acquired via finger pricks.
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2.3.2. Multiplexing

Standard immunoassays are limited in their ability to detect only one specific analyte,
which is inadequate for accurate early diagnosis under conditions like cancer where multi-
ple biomarkers are involved. Consequently, the use of multiple immunoassays becomes
necessary. However, these immunoassays require meticulous collection, labeling, storage,
and banking of samples according to strict laboratory protocols, and are thus challeng-
ing. Achieving early disease diagnosis depends on extracting the maximum information
from minimal clinical samples. In such scenarios, multiplexed immunoassays emerge as a
compelling solution particularly when dealing with limited sample volumes. The primary
advantage of multiplexed immunoassays is their ability to detect multiple biomarkers
qualitatively or quantitatively within a single sample. This method offers several benefits,
including increased data points per sample, reduced cost per data point, fewer errors owing
to fewer samples, and improved efficiency. However, a significant challenge remains in
cross-reactivity, thereby reducing the specificity of immunoreactivity and hindering the
proper functionality of multiplexed detection in complex biological and clinical samples.

Multiplex magnetic bead assays are widely utilized to analyze multiple substances
in clinical samples. The most commonly used method among them is the Luminex assay,
which combines an enzyme-linked immunosorbent assay (ELISA) with flow cytometry [72].
In this method, paramagnetic microspheres labeled with different fluorophores are con-
jugated to specific capture antibodies for the analytes. These beads bind to analytes in
the sample, resulting in the formation of an antibody-antigen sandwich structure upon
addition of biotinylated detection antibodies. The introduction of fluorophore-labeled strep-
tavidin enables detection using a dual-laser flow-based instrument, thereby facilitating the
identification and quantification of multiple biomarkers with precision in biofluid samples.
Alternatively, magnetic beads and QDs can be combined for detection, which is known as
the magnetic bead–QD assay. Researchers have explored various methods for detecting
lung cancer biomarkers. Liu et al. developed a multiplex magnetic bead–QD assay in a
microarray format to detect the biomarkers CYRFA 21-1, neuron-specific enolase (NSE),
and CEA associated with lung cancer. They utilized magnetic beads and QDs conjugated
with specific antibodies in serum samples, successfully detecting these biomarkers even at
low concentrations (LOD: 364 pg/mL for CYRFA 21-1, 38 pg/mL for CEA, and 370 pg/mL
for NSE) [73,74]. In another study, Bai et al. used a bead-based microarray to detect the lung
cancer biomarkers CEA, CYFRA 21-1, and ProGRP from exosomes [75]. They collected
exosomes using a microfluidic system from samples of lung cancer patients and used
QDs conjugated with detection antibodies to detect the tumor biomarkers. The results
of their method exhibit minimal differences from clinical data, suggesting its potential
applicability in clinical testing. Additionally, Li and collaborators developed barcodes
for multiplexed detection using magnetic beads and QDs [76]. They introduced barcodes
capable of detecting five tumor biomarkers simultaneously in serum samples, achieving
detection even at sub-ng/mL concentrations.

QD-linked immunosorbent assay (QLISA) is a variant of the ELISA that uses QDs
instead of enzymes. QDs act as amplifiers, enabling the detection of low-concentration
analytes. Owing to their optical and chemical properties, QDs are well-suited for multi-
plexing. QDs also can be used in multiplexed electrochemical immunoassay. Guo et al.
developed a novel multiplex electrochemiluminescence immunoassay for the simultaneous
detection of two tumor biomarkers (AFP and CEA) in human serum and saliva [77]. This
method used dual-color QD labels (525 nm and 625 nm) in conjunction with graphene
as a conductive bridge. Streptavidin-coated CdSe/ZnS QDs, along with biotin-labeled
secondary antibodies specific to AFP and CEA, are used to induce electrochemilumines-
cence reactions following the immunoreaction. The addition of graphene significantly
enhanced the intensity of the electrochemiluminescence signal. Quantification of AFP and
CEA levels is achieved by measuring the electrochemiluminescence responses of QDs525
and QDs625, respectively. The assay demonstrated a broad working range spanning from
0.001 to 0.1 pg/mL and a LOD of 0.4 fg/mL for both biomarkers. In a study conducted
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by Aneta et al. presented a novel magneto-immunosensor that utilized electrochemical
nanocomposites for the simultaneous quantification of three ovarian cancer biomarkers
(human epididymis secretory protein 4 (HE4), AFP, and CA-125) [78]. The sensor incorpo-
rated three distinct electroactive nanomaterials, including gold NPs (AuNPs), CdTe, and
PbS core QDs, each conjugated with specific antibodies. The addition of mesoporous silica
NPs (SiNPs) in the nanocomposite enhanced the electrochemical signal through increased
label loading.

AuNPs are non-toxic and biocompatible. Thus, they are commonly used in the research
and development of diagnostic tools, drug-delivery systems, novel therapeutics, and other
medical applications. Among the important methods for detecting biomolecules such as
DNA, RNA, enzymes, proteins, and small molecules are NP-based colorimetric assays.
The ability to change the color of a colloidal solution owing to variations in the size or
distance between noble metal NPs is a crucial factor in colorimetric sensing. Colorimetric
sensors have several types, namely, aggregation, etching, growth, and nanoenzyme. Di
et al. demonstrated various techniques for multiplexed colorimetric cancer detection in
their study [79]. They used decorated AuNPs and antibody-conjugated exosomes in a
nanozyme-assisted immunosorbent assay to detect exosomal proteins CD63, CEA, GPC-3,
PD-L1, and HER2 from cell lines and clinical serum samples. This approach allows for the
differentiation of protein levels without the need for additional labeling with detection
antibodies, thereby providing a faster and simpler testing procedure. Huang et al. present
a new wash-free immunoassay called the “differential assay”, which utilizes single-particle
inductively coupled plasma mass spectrometry to quantify unbound NP tags on a solid
support [80]. To facilitate effective multiplexed assessments, the researchers produced
NPs with four different sizes and determined the optimal size. The wash-free approach
is successfully implemented for concurrent evaluation of serological biomarkers (CA724,
CA199, and CEA), yielding results that align with established clinical methods.

In sum, recent advancements in bead-based biosensors have been primarily centered
around enhancing fabrication techniques, signal-amplification strategies, and the amalga-
mation of microfluidics and nanotechnology. These advancements significantly augment
the sensitivity, selectivity, and multiplexing capabilities of bead-based biosensors for de-
tecting cancer biomarkers. Integrating emerging technologies with bead-based biosensors
tremendously increases the potential to transform cancer diagnostics. It can facilitate the
creation of swift, sensitive, and portable devices for early prognostication and therapy
monitoring. Continued research and development in this domain are expected to further
propel the functionalities of bead-based biosensors and pave the way for their extensive
adoption in clinical settings.

2.3.3. State-of-the-Art POC Cancer Diagnostics

The development of POCT cancer diagnostics has revolutionized the field of cancer
detection, providing more effective and accessible options for patients. These advanced
technologies aim to bring the testing and evaluation of cancer biomarkers closer to patients.
Accordingly, the time and resources required for diagnosis are reduced. By bridging the
gap between laboratory-based tests and bedside or community healthcare settings, POCT
diagnostics deliver real-time results, enabling faster clinical decisions. Rapid detection is a
defining characteristic of POCT cancer diagnostics. These systems are designed to provide
results within minutes, helping healthcare professionals make immediate decisions. In the
case of cancer, early diagnosis is crucial. Thus, rapid detection can significantly improve
patient outcomes.

The miniaturization and portability of the state-of-the-art POCT devices render them
highly user friendly and accessible. These compact and portable devices are ideal for use
in resource-limited settings, remote areas, and even at-home testing. The miniaturization
of technology has also facilitated the development of handheld or smartphone-linked
POCT devices, further increasing accessibility for patients and healthcare providers. An-
other important feature of POCT cancer diagnostics is their high sensitivity and specificity.
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Sensitivity ensures the detection of even small amounts of cancer biomarkers, whereas
specificity ensures the test does not produce false-positive results. Advances in nanotech-
nology, microfluidics, and biotechnology have contributed to improving the accuracy
of POCT devices [81]. Many state-of-the-art POCT devices have multiplexing capabili-
ties, enabling the simultaneous detection of multiple cancer biomarkers [82,83]. This is
particularly valuable because cancer often exhibits complex molecular profiles. POCT diag-
nostics can provide a more comprehensive view of the disease by detecting a combination
of biomarkers.

Bead-based biosensors play a crucial role in POCT cancer diagnostics. These biosen-
sors utilize micro- or nanoscale beads, functionalized with specific antibodies or aptamers,
to capture and detect cancer biomarkers. Bead-based biosensors offer a high surface area
for biomarker binding, enhancing sensitivity. Additionally, they can be integrated into
microfluidic platforms, enabling efficient sample handling and analysis. Their adaptability
to various cancer biomarkers makes them versatile for POCT applications. Affordability
is another essential aspect of POCT diagnostics. These devices are designed to be cost
effective, reducing the need for expensive laboratory equipment and specialized personnel.
This makes them suitable for widespread adoption, particularly in healthcare systems with
limited resources. Some POCT devices offer real-time monitoring capabilities, allowing
for continuous tracking of cancer biomarkers. This feature is particularly valuable in
assessing treatment responses and disease progression, offering a dynamic approach to
cancer management. Many state-of-the-art POCT cancer diagnostics have wireless con-
nectivity, enabling data transmission to healthcare providers or electronic health records.
This connectivity enhances the sharing of diagnostic information and facilitates remote
consultations, ultimately improving patient care.

The development of state-of-the-art POCT cancer diagnostics has led to significant
advancements in cancer detection. These devices offer rapid detection, miniaturization,
high sensitivity, multiplexing capabilities, bead-based biosensors, cost effectiveness, real-
time monitoring, and wireless connectivity [84,85]. With the potential to revolutionize
cancer diagnostics, POCT devices can improve patient outcomes and make cancer screening
more accessible.
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Communications. (B) Multiplexing: Single-NP differential immunoassay for multiplexed gastric
cancer biomarker monitoring. This study used four different sizes of NPs to facilitate effective
multiplexed assessments. Reprinted with permission from [80]. Copyright 2022 American Chemical
Society. (C) Point-of-care testing: Merging electrochemical and microfluidic arrays enhances the po-
tential for sensitive, high-throughput ctDNA detection, creating options for portable POCT platforms.
Reprinted with permission from [86]. Copyright 2018 American Chemical Society.

2.4. Materials for Bead-Based Biosensors

The choice of materials greatly affects the development and efficacy of bead-based
biosensors in various applications, such as cancer detection. These materials serve as
the fundamental base for constructing biosensors and directly impact their sensitivity,
specificity, and overall performance. This discussion explores the commonly utilized
materials in bead-based biosensors and their vital role in advancing these innovative
diagnostic tools (Figure 3).

2.4.1. Magnetic Beads

Magnetic beads, often composed of materials like iron oxide, bring the advantage of
easy manipulation through external magnetic fields. This property facilitates rapid and
efficient separation, enhancing the overall sensitivity and speed of biosensing applications.
Meeseepong et al. established a movable magnetic bead-based biosensing platform, thereby
overcoming the limitations of fixed substrates, integrating digital imaging, and demonstrat-
ing improved signal-to-noise ratio using zinc oxide nanorod-decorated magnetic beads.
The platform combines fluorescence enhancement and a microfluidic chip, allowing contin-
uous biomarker detection and offering potential applications in diagnostics and biological
assays [87]. Self-assembly techniques are eliciting increased attention in the fabrication
of bead-based biosensors. Self-assembly involves spontaneously organizing beads into
well-defined patterns or structures through non-covalent interactions. By controlling the
beads’ size, shape, and composition, self-assembly techniques enable the fabrication of
highly ordered arrays or hierarchical structures, which can enhance the sensitivity and
reproducibility of the biosensors [88]. Magnetic beads made of iron oxide NP-embedded
polymer matrices can self-assemble at specific locations on functionalized surfaces [89]. Yue
et al. also used a magnetically induced self-assembly technology to establish a label-free
electrochemical biosensor on a magnetic nanocomposite to detect biomarker CA125 [90].
Self-assembly has been used to create 2D and 3D bead arrays, enabling high-density immo-
bilization of capture molecules and improved detection performance. Magnetic beads play
a pivotal role in magnetic biosensors are extensively used in biomolecule separation, cell
isolation, and magnetic bead-based assays.

2.4.2. Polymer Beads

Polymeric materials offer excellent biocompatibility and tunable properties. For in-
stance, hydrogels or microspheres can be engineered to encapsulate various biomolecules,
which provide a stable and protective environment for sensitive biological elements. A
glass-polymer biosensor utilizes distinct beads with oligonucleotide probes, sequentially
spotted on gel pads, enabling immobilization and identification without encoding. This
approach enhances throughput for DNA-based detection of single-nucleotide polymor-
phisms with single-mismatch specificity in under 10 min through passive hybridization [91].
Moreover, hydrogel-crosslinked hydrophilic polymers available in natural and synthetic
forms, they exhibit biocompatibility, sustainability, sensitivity, and control release acti-
vated by magnetic or fluorescent modifications, necessitating the ongoing development
of crosslinked polymers [92]. Moreover, a multifunctional nanobead is established via
the self-assembly of poly-3-hydroxybutyrate (PHB) with a ferritin-derived iron-binding
peptide and a protein A-derived antibody-binding Z domain. The outcome is efficient
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magnetic separation for enhanced electrochemical detection of cancer biomarkers, such
as methylated DNA and exosomes from cancer cells. Accordingly, a foundation for the
development of advanced nanomaterials for diverse and sensitive diagnostic applications
is established [93]. Polymer beads can be applied in controlled drug delivery and enzyme
immobilization. They can also serve as versatile carriers in biosensing platforms.

2.4.3. Quantum Dots

QDs are nanoscale semiconductor particles exhibiting unique optical or electronic prop-
erties. Their size-tunable emission spectra and high photostability make them valuable in
fluorescence-based biosensors, allowing for precise and multiplexed detection. Fluorescent
QDs, with a diameter <10 nm, represent a cornerstone in nanoscience and nanotechnology,
offering unique structural, electrochemical, and photochemical properties that make them
a promising platform for biosensing. QDs are characterized by high potential for signal
enhancement, high functionalization capacity with bioreceptors, and the ability to integrate
nanotechnology and biotechnology position. Thus, QDs are key elements in advancing
electrochemical biosensors for the early diagnosis of diseases, including tumor markers,
inflammatory biomarkers, depression markers, and diabetes-related biomolecules [94]. A
rapid electrochemical magnetic immune-sensing utilizes carboxylic acid-functionalized
magnetic beads and core/shell streptavidin-modified CdSe@ZnS QDs. It demonstrates a
linear detection range of 0.50–50 ng/mL and an LOD of 0.29 ng/mL for the breast cancer
biomarker HER2-ECD. The assay exhibits excellent selectivity for the HER2-positive breast
cancer cell line SK-BR-3 with a concentration-dependent signal 12.5× higher than HER2-
negative cells (MDA-MB-231) [95]. Utilizing QDs and magnetic NPs, the magnetic QD
microbeads are used as dual-functional carriers for optical encoding and magnetic separa-
tion. The introduced catalytic hairpin assembly and terminal deoxynucleotidyl transferase
(CHA-TdT) cascade amplification enables the detection of bladder cancer-related miRNAs
in clinical serum specimens with femtomolar sensitivity, a wide linear dynamic range,
and consistency with qRT-PCR, showcasing potential for multiplexed miRNA detection
in the clinical diagnosis and early detection of bladder cancer [96]. A chemiluminescent
homogeneous biosensor has been reported to utilize QD-doped polystyrene nanospheres.
It demonstrates exceptional sensitivity, achieving an unprecedented LOD of 2.56 × 10–13 M
(46 pg/mL) for CEA in 25 µL serum samples, with strong correlations (R2 = 0.99718, n = 107)
observed between this biosensor and commercial chemiluminescence immunoassay kits in
clinical serum detection. This approach is promising for early disease detection and progno-
sis evaluation [97]. A novel QD nanobead-based fluorescence-linked immunosorbent assay
platform has been developed for highly sensitive multiplexed detection of lung cancer
biomarkers, achieving a 100-fold improvement in detection sensitivity compared with
conventional approaches, and demonstrating consistency with the clinical gold-standard
electrochemiluminescence immunoassay (ECLIA) in human serum samples [98]. QDs
are extensively used in cellular imaging, medical diagnostics, and as labels in bioassays,
expanding the capabilities of optical biosensing.

2.4.4. Gold Nanoparticles

AuNPs possess exceptional optical properties, including surface plasmon resonance
(SPR), which contributes to their remarkable sensitivity in colorimetric biosensing. Their
ease of functionalization allows for the attachment of various biomolecules, enhancing
specificity. AuNPs, renowned for their exceptional physical and chemical properties, have
found extensive application in the development of biosensing strategies. AuNP-based
biosensing has been widely applied for detecting tumor-related biomarkers in bodily fluids,
encompassing optical, electrochemical, and mass spectrometric approaches known for
their outstanding performance in tumor biomarker assays [99,100]. Commonly utilized
in colorimetric assays, immunoassays, and DNA sensing, AuNPs have become integral
components in diverse biosensing strategies.
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2.4.5. Silica Beads

Silica beads offer a stable and inert matrix, providing an ideal support for the immobi-
lization of biomolecules. The porous structure allows for high loading capacity and efficient
diffusion of target analytes. Bu et al. developed a highly sensitive circulating cell-free
DNA (cfDNA) capture system using polydopamine (PDA) and silica, which increases the
capture efficiency by 1.34-fold compared with conventional silica-based methods. In clinical
samples, this system shows superior diagnostic accuracy over commercial cfDNA kits and
serum antigen tests, correlating well with tumor size and predicting distant metastasis.
Additionally, this technology exhibits high concordance with tissue biopsy results, par-
ticularly in detecting HER2-positive tumors [101]. By using monoclonal antibody-coated
polystyrene nanobeads, an ultra-sensitive biosensor has been assembled in microchip
trenches. It enables the detection of cancer biomarkers, specifically nucleosomes and CEA,
at concentrations as low as 62.5 and 15.6 pg/mL, respectively [23]. Ultralarge-pore silica
microbeads are synthesized via a one-pot method with optimized condensation, this mi-
crobeads can be used as a versatile three-dimensional (3D) substrate for the development
of an ELISA-like DNA detection, exhibiting superior bead-capturing ability and a two-fold
lower LOD compared with a standard flat surface assay or traditional ELISA [102]. This
kind of silica beads offer a stable and compatible surface for biomolecule immobilization
and are used in various biosensing platforms for cancer-biomarker detection.
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movable magnetic bead-based biosensing platform that combines fluorescence enhancement and a
microfluidic chip, overcoming the limitations of fixed substrates and demonstrating improved signal-
to-noise ratio by using zinc oxide nanorod-decorated magnetic beads. Reprinted with permission
from [87]. Copyright 2023 American Chemical Society. (B) The bioengineered multifunctional
core–shell structures comprise a poly-3-hydroxybutyrate core densely coated with protein functions
for use in bioseparation and immunodiagnostic applications. Reprinted with permission from [93].
Copyright 2021 American Chemical Society. (C) Quantum dots (QDs) present favorable photophysical
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Reprinted with permission from [97]. Copyright 2019 American Chemical Society. (D) This study
focuses on synthesizing large-pore silica microbeads to serve as 3D capturing structures, optimizing
a bead-based bioaffinity assay. Using an ELISA-like approach, the mesoporous system effectively
functions as the dispersed detection phase, demonstrating its capability to accurately measure DNA
concentration within the range of 0–1 nM. Reprinted with permission from [102]. Copyright 2020
American Chemical Society.
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2.4.6. Luminescent/Fluorescent Beads

Polystyrene or similar polymers containing embedded luminescent or fluorescent dyes
are engineered into microbeads to emit light upon excitation, enabling optical detection and
compatibility with fluorescence-based detection methods. A novel conceptual approach for
enhancing bead-supported assays introduces optical tweezers to enable precise imaging.
The strategy uses luminescence-confined NPs with a unique sandwich structure for efficient
energy transfer, achieving a high luminescent resonance energy transfer ratio to FAM
molecules. This approach enables miRNA analysis with a sub-femtometer LOD, and
low-abundance targets as few as 30 cancer cells can be accurately qualified. Thus, this
technique can serve as a valid cancer early warning tool for liquid biopsy [103]. Li et al.
introduces a bead-based assay by using holographic optical tweezers and upconversion
luminescence encoding, achieving stable excitation conditions for specifically detecting
two liver cancer-related biomarkers, including CEA and alpha-fetoprotein [104].

In conclusion, the materials selected for bead-based biosensors are pivotal in deter-
mining their effectiveness in cancer detection and other applications. The selection of
bead type in biosensors is a crucial decision that relies on the specific requirements of the
intended application. Each type of bead possesses distinct mechanical, optical, or magnetic
properties, enabling the customization of biosensors to cater to the demands of diverse
sensing environments. With the continuous advancement of the field, the incorporation of
innovative materials and the enhancement of existing bead-based biosensor technologies
hold the potential to unlock novel possibilities for achieving highly sensitive and specific
detection in various disciplines.

2.5. Biosensing Technologies

Bead-based biosensors offer a versatile platform for the detection of cancer biomarkers
by utilizing microscopic beads as a solid support. These beads can be functionalized with
specific capture molecules, such as antibodies [105], aptamers [106], or nucleic acids [107],
enabling the selective binding and detection of target biomolecules. Bead-based biosensors
are classified into different types based on the detection mechanism used. Generally, bead-
based biosensors have four main types, namely, optical, electrochemical, magnetic, and
mechanical bead-based biosensors (Figure 4).
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permission from [108]. Copyright 2018 American Chemical Society. (B) Electrochemical immunoassay
for tumor marker CA125. Reprinted with permission from [109]. Copyright 2022 by the authors.
Creative Commons Attribution (CC BY) license. (C) Analytes are identified and separated from a
complex sample matrix by using magnetic beads and then concentrating them in the magnetic trap-
ping/detection area for direct in situ fluorescence detection. Reprinted with permission from [110].
Copyright 2021 American Chemical Society. (D) In the E-DNA biosensor platform for early cancer
detection, alterations in molecular dynamics, such as size, flexibility, and diffusion rate, induce a
conformational shift in aptamers, leading to a detectable shift in the current readout. ENOX2 is shown
in green, biosensor in light blue, and methylene blue is shown as a dark blue sphere. Reprinted with
permission from [111]. Copyright by the authors. Licensee MDPI, Basel, Switzerland. (CC BY 4.0).

2.5.1. Optoelectrical Biosensors

Optical bead-based biosensors utilize various optical principles to detect and quantify
the binding events between the target biomarker and the bead-bound capture molecule [112].
Some of the commonly used optical techniques in bead-based biosensors include fluores-
cence, SPR, and Raman spectroscopy.

Fluorescent bead-based biosensors utilize fluorescent labels on the beads to enable
sensitive and quantitative detection. The beads are excited with a light source, and the
emitted fluorescence signal is measured using a fluorescence microscope or a flow cy-
tometer. The strength of the fluorescence signal is correlated with the amount of target
biomarker bound to the beads, allowing for quantification [87]. The dual-capturing anti-
bodies against HER2 and CA125 are incorporated into a single three-dimensional porous
calcium alginate bead for differentiating HER2 and CA125 in serum samples from breast
cancer patients [113]. Utilizing a composite of Ag2S QDs and CA125 aptamer-combined
5-fluorouracil, the probe is used to achieve near-infrared photoluminescence turn-on de-
tection of the CA125 antigen [114]. An antibody–single-strand DNA (ssDNA) aptamer
sandwich-type fluorescence immunosensor is developed based on aptamer-functionalized
carbon dots and CA125 antibody-attached PAMAM–dendrimers/AuNPs. The fluorescence
resonance energy transfer (FRET) signals between carbon dots and AuNPs is related to
CA125 concentrations [115]. Similarly, the FRET signals between DNA-conjugated CdTe
QDs and fluorescent labeled 7-amino-4-methylcoumarin-3-acetic acid (AMCA) can reflect
the glycans of Mucin 1 on cancer cell surface [116]. The biotin-labeled Muc1 aptamer can
link the streptavidin-modified magnetic microparticles, and then it is used to measure
the fluorescence of the CdZnTeS QDs in serum samples through specifically capturing
Muc1 antigen [117]. Fluorescent bead-based biosensors offer high sensitivity, multiplexing
capabilities, and compatibility with different fluorescent dyes, making them widely used in
cancer-biomarker detection.

SPR bead-based biosensors measure the variance in refractive index on the bead sur-
face upon biomolecular binding [118]. When the target biomarker binds to the capture
molecule on the beads, it induces a change in the local refractive index and a shift of SPR
angle. This shift is then measured and correlated with the concentration of the target
biomarker [119]. For instance, CA125 in serum is anchored onto a gold rod electrode. The
percentage of 11-mercaptoundecanoic acid coverage on the electrode surface is measured
using SPR to reflect the CA125 concentration [120]. In cancer-positive samples, the im-
munoreaction between the gold-nanorod-modified CA125 antibody and CA125 antigen
occurs in an aqueous solution. Meanwhile, CA125 antigen quantity is reflected by the level
of gold-nanorod aggregation, which actually originates from CA 125 antibody-antigen
interactions using SPR [121]. A novel localized SPR biosensor is also developed for recog-
nizing the HE4 biomarker from ovarian cancer patients, by which the anti-HE4 antibody is
used as a probe and assembled on the surface of nanochip to distinctly recognize the HE4
antigen [122]. SPR bead-based biosensors offer real-time monitoring and label-free and
high sensitivity detection, making them suitable for the detection of cancer biomarkers.
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Raman spectroscopy bead-based biosensors utilize the Raman scattering phenomenon
to detect the target biomarker. The beads are functionalized with the captured molecules.
When the target biomarker then binds to the beads, it induces changes in the Raman
scattering signal. By analyzing the Raman spectra, the presence and concentration of the
target biomarker can be determined [123]. The surface enhanced Raman scattering (SERS)
is used for detection of the breast cancer biomarker MUC1, and the MUC1 specific aptamer
is fabricated on core–shell (Au@Fe3O4) NPs to capture MUC1 molecules on the surface
of tumor cells [124]. Furthermore, a PCR-SERS is developed to detect the mutations of
V600E at B-Raf oncogene gene and E542K at phosphatidylinositol 3-kinase catalytic subunit
alpha (PIK3CA) gene, which are closely associated with right-sided colon cancer [125].
Additionally, an improved SERS with fabricating Raman reporters to silver NP films
(AgNFs), so the DNA probes for a MicroRNA 223 (miR-223) and an α-Fetoprotein (AFP)
antibody can be covalently bound to Raman reporter domains for the detection of miR-
223 and AFP, which are specific biomarkers of liver cancer [126]. For human bladder
cancer samples diagnosis, the SERS NPs endoscope system is designed to trace CD47 and
Carbonic Anhydrase 9 in tumor tissues via ex vivo imaging [108]. A dual-SERS biosensor
with Fe3O4@Ag-DNA-Au@Ag@DTNB (SERS tag) conjugates is suitable for microRNA-10b
(miR-10b) detection in exosome and plasma samples, in which miR-10b is recognized using
DNA probes and the SERS tag is released to trigger intensity quenching [127]. Raman
spectroscopy-based bead-based biosensors offer high specificity, multiplexing capabilities,
and compatibility with different Raman-active labels, enabling the sensitive and selective
detection of cancer biomarkers [128]. See Table 4.

Table 4. Optical bead-based biosensors for cancer biomarkers diagnosis.

Sensing
Mechanism Target Biomarker Detection Elements Signal Elements Detection Limit Reference

Fluorescence

HER2 HER2 Ab FITC 0.004 ng/mL
[113]CA125 CA125 Ab Cy5 0.005 U/mL

CA125 CA125 aptamer Near-infrared
photoluminescence 0.07 ng/mL [114]

CA125 CA125 aptamer &
CA125 Ab

Fluorescence resonance
energy transfer 400 cells/mL [115]

MUC1 DNA probe & MUC1 Ab CdTe QDs &
Fluorescence-AMCA - [116]

MUC1 biotin-labeled aptamer Fluorescence of
CdZnTeS QDs 0.13 ng/mL [117]

SPR
CA125 CA125 Ab 11-mercaptoundecanoic

acid 0.1 U/mL [120]

CA125 CA125 Ab Gold nanorod 0.4 U/mL [121]
HE4 HE4 Ab Nanochip 4 pM [122]

Raman
spectroscopy

MUC1 MUC1 aptamer 4-mercaptopyridine - [124]
BRAF & PIK3CA Gene probes Fluorescence label 10−11 M [125]

miR-223 DNA probes Raman reporters 10−17 M [126]
AFP AFP Ab 10−12 M

CD47 & CA9 CD47 Ab & CA9 Ab Raman dyes - [108]
miR-10b DNA probes DTNB 10−18 M [127]

2.5.2. Electrochemical

Electrochemical bead-based biosensors rely on the measurement of electrical signals
resulting from the redox reactions associated with the binding events on the bead surface.
These biosensors are sensitive, rapid, and compatible with portable and miniaturized
devices [27]. Electrochemical deposition techniques are used for the controlled and precise
fabrication of bead-based biosensors. These techniques involve the electrodeposition of
materials onto the bead surface, allowing for the formation of functional layers with desired
properties [129]. For example, metal or metal-oxide layers can be deposited to improve
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biosensors’ conductivity, stability, and sensitivity [130]. An electrochemical nano-biosensor-
immobilized aptamer chain is fabricated on a glassy carbon electrode’s surface to detect
the cancer biomarker miRNA-128 [131]. Electrochemical deposition techniques enable
the fabrication of uniform and well-defined coatings on the bead surface, facilitating the
efficient and reliable detection of cancer biomarkers.

Electrochemical bead-based biosensors are extensively exploited in breast cancer de-
tection. The dye-labeled DNA probe is used to fabricate the electrode, and CA15-3 ranging
within 0.01–1 U/mL is the target for detection [10]. Breast cancer type 1 susceptibility
protein (BRCA1) protects DNA replication forks and facilitates DNA double-strand break
repair. BRCA1 is usually taken as the target biomarker for detecting breast cancer [132,133].
EGFR plays a crucial role in cell growth, division, and survival [134]. In cancer cells, the acti-
vated EGFR signaling pathway promotes uncontrolled cell growth, invasion, and resistance
to cell death, contributing to tumor formation and progression [135]. EGFR is anchored
onto the cell surface and is also a target biomarker for breast cancer diagnosis [136]. In ad-
dition, the DNA biosensors utilizing AuNP-modified graphene oxide have been developed
for the early diagnosis for breast cancer [137].

Some lung cancer detections are also dependent on electrochemical bead-based biosen-
sors. The DNA probe is a popular method for lung cancer detection, for example, the ssDNA
modified probe for CYFRA21-1 gene [11], ssDNA λ-exon-modified probe for EGFR [13],
and primer probe for human maternally expressed gene 3 [12] have been successfully
developed for lung cancer detection. The antibody-antigen interaction is used to construct
a sandwich-type immunoassay for lung cancer detection [138]. A sandwich-type electro-
chemical immunoassay is fabricated with three-dimensional graphene and glutaraldehyde
onto the carbon electrode. This method is specific for detecting lung cancer biomarker
CYFRA21-1 [139].

Electrochemical bead-based biosensors are also used for prostate cancer diagnosis.
Moon et al. exploited PSA as the target biomarker, and the PSA antibody is directly
incorporated into a three-dimensional Au nanowire array with electropolymerized poly-
pyrrole [19]. miR-21 has become a new reliable biomarker candidate for cancer detection.
Dendritic gold nanostructures functionalized with thiolate acceptor probes are grafted onto
single-walled carbon nanotubes on the surface of fluorine-doped tin oxide. Then, cadmium
ion-labeled miR-21 target is taken as the signal-amplification substance to specifically
recognize miR-21 [140].

For ovarian cancer diagnosis, electrochemical bead-based biosensors are also devel-
oped to detect CA125, which is a cancer antigen and known as the top biomarker [141]. An
electropolymerized polyaniline layer is applied onto a graphene screen-printed electrode.
To enhance its functionality for ovarian cancer diagnosis, the sensor surface is further cross-
linked with anti-CA125 antibodies [25]. Similarly, The Mucin-16 antibody is immobilized
at the bio-interface of graphene QD ink (GQD) to sensitively recognize low-concentration
CA-125 biomarker in human plasma samples [142]. Moreover, the CA125 antibodies are
directly immobilized onto Au-Ag NPs to form the immunosensor for a linear response of
cancer antigen CA125 [143].

Some universal targets are also developed as biomarkers for cancers diagnosis. The
novel iron nitride NPs are subjected to nitridation, and the nanocomposite-modified screen-
printed carbon electrode can perfectly sense 4-nitroquinoline N-oxide (4-NQO), which
is a vital biomarkers for cancers [144]. The protein p53 is a common tumor-suppressor
gene and plays an inevitable role in proliferation and apoptosis, so it is widely taken as
a cancer biomarker. CdS nanocrystals are immobilized on the carbon electrode to form
a sandwich-type immunocomplex with AuNPs, which is used to detect p53 in cancer
cells [145]. To establish an exceptionally functional surface, core–shell nanofibers [146],
multi-walled carbon nanotubes [109] and AuNPs [147] are used to modify a glassy carbon
electrode. On this modified electrode, a tumor marker MUC1-binding aptamer is fabricated,
allowing for specific detection and analysis. The MUC1 concentration can be measured
using electrochemical impedance spectroscopy according to the resistance change of the
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electrode surface [148]. In addition, similar cancer biomarkers, including (CEA) [149], sex-
determining region Y-box 2 (SOX2) [150], multidrug resistance (MDR) [151], and oxidative
stress biomarker 8-hydroxydeoxyguanosine (8-OhdG) [152] play a remarkable role in the
progression of various cancers, and they are already developed as the targets for cancers
diagnosis. A GQD composite is formed by fabricating GQDs to an enzyme-free electrochem-
ical immunosensor towards CEA [149]. The anti-SOX2 antibody is conjugated to indium tin
oxide-based electrode for biosensing the interaction with SOX2 antigen [150]. A modified
electrode incorporating AuNPs and toluidine blue-graphene oxide is used as a platform
for a label-free electrochemical DNA biosensor. This biosensor is designed to accurately
detect and quantify the MDR1 gene [151]. The antibodies against 8-OhdG are fabricated
to the surface of a silicon nanowire-based biosensor for early cancer diagnosis [152]. All
electrochemical biosensors above are listed in Table 5.

Table 5. Electrochemical biosensors for detecting cancer biomarkers.

Cancer Type Electrode Target Biomarker Detection Limit Linear Range Reference

Breast cancer

Dye labeled DNA probe CA15-3 0.0039 U/mL 0.01–1 U/mL [10]

Oligonucleotides modified
probe BRCA1 1.72 fM 50.0 fM–1.0 nM [132]

Ferrocenecored poly
(amidoamine) dendrimers BRCA1 0.38 nM 1.3–20 nM [133]

Apt-EGFR-Ab/MB EGFR 50 pg/mL 1–40 ng/mL [136]

HER2 probe &
CD24c DNA modified probe HER2 0.16 nM 0.37–10 nM [137]

Lung cancer

ssDNA modified probe CYFRA21-1 1.0 × 10−14 M 10 fM–100 nM [11]

ssDNA modified probe EGFR 120 nM 0.1 µM–3 µM [13]

Primer probes MEG3 0.25 fM 1 fM–100 pM [12]

GCE/G2Fc/Ab IgG 2.0 ng/mL 5.0–50 ng/mL [138]

graphene, chitosan and
glutaraldehyde CYFRA21-1 43 pg/mL 0.1 to 150 ng/mL [139]

Prostate cancer
polypyrrole/Au/Ab PSA 0.3 fg/mL 10 fg/mL–10 ng/mL [19]

FTO/SWCNTs/Au/probe miR-21 0.01 fM L−1 0.01 fM–1 µM [140]

Ovarian cancer

Polyaniline CA125 0.923 ng/µL 0.92 pg/µL–15.20 ng/µL [25]

Ag NPs-GQDs Mucin-16 0.01 U/mL 0.01–400 U/mL [142]

Au-Ag nanoparticles CA125 5.9 IU/mL 1–150 IU/mL [143]

Universal

Fe2N@rGOS/probe 4-NQO 9.24 nM 0.05–574.2 µM [144]

p53-Ab2-tGO-AuNPs p53 4 fg/mL 20–1000 fg/mL [145]

glassy carbon MUC1 2.7 nM 5–115 nM [148]

Ab1/rGO-AuNPs/GCE CEA 5.3 pg/mL 50–650 pg/mL [149]

ITO-PET/EDC-NHS/Ab SOX2 7 fg/mL 25 fg/mL–2 pg/mL [150]

Au NPs/TB–GO/probe MDR1 2.95 × 10−12 M 0.01–1.0 nM [151]

SOI/SiNW/PhNO2/Ab 8-OHdG 1 ng/mL 1–40 ng/mL [152]

BRCA1: Breast cancer type 1 susceptibility protein; EGFR: Epidermal growth factor receptor; HER2: Human
epidermal growth factor receptor 2; ssDNA: single strand DNA; CYFRA21-1: Cytokeratin 19 fragment 21-1;
PSA: Prostate-specific antigen; miR-21: micro RNA 21; FTO: Fluorine-doped tin oxide; SWCNTs: single-
wall carbon nanotubes; CA125: Cancer Antigen 125; 4-NQO: 4-nitroquinoline 1-oxide; MUC1: Mucin 1;
NPs: Nanoparticles; CEA: Carcinoembryonic Antigen; SOX2: SRY-Box transcription factor 2; MDR1: Multidrug
Resistance 1; SOI: silicon-on-insulator; 8-OHdG: 8-hydroxydeoxyguanosine.
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2.5.3. Magnetic Biosensors

Magnetic bead-based biosensors utilize the magnetic properties of beads for the
detection of target biomarkers. These biosensors offer advantages such as rapid and
efficient target capture, easy separation, and compatibility with miniaturized devices.
Magnetic bead-based biosensors are widely used in cancer-biomarker diagnosis [153].

Giant magnetoresistance (GMR) bead-based biosensors utilize the changes in resis-
tance resulting from the binding events between the target biomarker and the bead-bound
capture molecule. The beads are functionalized with capture molecules, and when the
target biomarker binds, it induces changes in the magnetic field around the GMR sensor,
leading to changes in resistance [154]. The resistance change is then measured and cor-
related with the concentration of the target biomarker. For example, three lung cancer
biomarkers including CEA, CYFRA21-1, and NSE are monitored using bead-based chips
within the polydimethylsiloxane (PDMS) chamber, which consists of a sandwich structure
of magnetic beads and the QD probes [73]. An innovative Suspension Magnetic-Bead-
based Assay (SUMBA) is created for identifying the potential cancer biomarker known as
aberrant glycans (AGA). This method is optimized through energy dispersive X-ray spec-
troscopy and SPR analyses [155]. Magnetic bead-based electrochemical and colorimetric
methods can also reportedly detect the sugar units on cancer cell surface, which can be
recognized by aptamer modified magnetic beads, then sequestrated ferroceneboronic acid
or 4-mercaptophenylboronic acid to decrease the electrochemical signal [156]. These GMR
bead-based biosensors offer high sensitivity, multiplexing capabilities, and compatibility
with portable devices.

Moreover, a photoelectrochemical immunoassay based on magnetic beads has been
reported to specifically detect CEA. The hollow cadmium sulfide serves as photoactive
matrix on immunomagnetic separation. This method demonstrates remarkable preci-
sion, strong resistance to interference ability, and acceptable accuracy by combining with
magnetic immunoassay [18]. Similarly, using magnetic bead-based DNA nano-sensors, a
novel fluorescent CRISPR/Cas12a system is developed for miR-155 detection. This system
utilizes carboxyl-functionalized poly 9,9-bis 3′-N, N-dimethylamino-2,7-fluorene-2,7-(9,9-
dioctylfluorene) NPs (c-PFN NPs) as the fluorescence donor and Au-PDA-Au NPs as the
fluorescent acceptor. The amino-labeled single-strand S2 is captured using c-PFN NPs to
form S2-PFN. The miRNA155 can trigger CRISPR/Cas12a to cleave S3 in the quenching
probe. The fluorescence signal increases because digested S3-Au-PDA-Au cannot hybridize
with S2-PFN [157].

2.5.4. Mechanical

These beads, often at the nanoscale or microscale, serve as a platform for the im-
mobilization of biological molecules such as antibodies, aptamers, or DNA probes. The
mechanical properties of these beads can affect the overall performance and sensitivity of
the biosensor. Key considerations include diffusion, shear force, and precipitation.

(a) Diffusion

Diffusion is the movement of molecules from an area of higher concentration to one of
lower concentration. In bead-based biosensors, diffusion is essential for the transport of
target molecules to the bead surface for binding. Efficient diffusion ensures a rapid and
uniform distribution of analytes, optimizing the chances of successful biomolecular interac-
tions on the bead surface. A microfluidic platform is developed to combine magnetic-based
single bead trapping with acoustic micro-mixing for simultaneous detection of multiple
cancer biomarkers, in which the acoustic microstreaming induced rapid-flow patterns,
systematically testing different driving frequencies to optimize the mixing effect and mini-
mize diffusion length scales. This platform shows the potential for rapid POC diagnostics
with a 20 min detection time and impressive sensitivity compared with established cutoff
values [158]. Upon introducing the target to the electrochemical DNA-based biosensor plat-
form, diffusion alterations in the lung cancer biomarker ENOX2 induce a conformational
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shift in the aptamers. Then, the distance between the redox reporter and the gold electrode
is measured to determine the ENOX2 quantity [111]. Thus, beads with controlled porosity
enhance mass transfer, improving the overall sensitivity of the biosensor.

(b) Shear Forces

Shear forces affect the binding kinetics and stability of biomolecular interactions on
the bead surface. Understanding shear forces is essential for optimizing the conditions
that balance the efficient binding and potential dissociation of biomolecules. In microflu-
idic systems, controlling shear forces is critical to preventing non-specific binding and
maintaining the specificity of the biosensor. Vaidyanathan et al. introduces a device incor-
porating planar and three-dimensional microtip electrodes for the capture and detection
of protein biomarkers through fluorescence [159]. The tunable nanoshearing mechanism
significantly enhances the specificity and sensitivity for multiple protein biomarkers in
the serum, offering a promising avenue for early cancer detection. Li et al. studied breast
cancer biomarkers and discovered the application of antibody-conjugated microbeads in a
microfluidic chip [50]. Increased flow rates and shear stress are found to improve reaction
times and sensitivity, marking a significant step forward in liquid biopsy technology. The
introduction of microbeads disrupts the liquid sample’s laminar flow, leading to increased
mass-transfer efficiency. This modification significantly boosts the antibody’s attachment
onto the specific proteins, resulting in an amplified fluorescence signal. Consequently, the
detection’s sensitivity and efficiency are markedly improved. Through careful optimiza-
tion of the experimental parameters, they achieve a remarkably low LOD of 0.1 ng/mL
in CEA and CA15-3 detection. Green et al. established a cancer-cell sorting system by
using magnetic NPs (MNPs) labeled with EpCAM. It uses a combination of shear stress
and immuno-affinity capture to isolate phenotypically unique CTCs based on EpCAM
expression levels [160]. Thus, proper shear forces contribute to consistent and reproducible
biosensor performance.

(c) Precipitation

LAMP is a nucleic acid amplification technique that enables the rapid and efficient
amplification of specific DNA sequences under isothermal conditions. After the LAMP
amplification step, the amplified DNA can be captured onto the beads, either directly
through hybridization with complementary probes or indirectly through precipitation
methods. Then, it is subjected to precipitation techniques for further enrichment and
detection on the surface of functionalized beads. In an innovative work by KR Sreejith et al.,
LAMP is creatively utilized within a core–shell bead framework to identify the heightened
expression of tyrosine kinase AXL, an important marker for various cancer types [161].
Utilizing a thermal cycler alongside a fluorescent observation setup for the core–shell
bead-centered LAMP process, they discovered that samples with an initial presence of
1 × 103 copies are notably amplified within 20 min in the core–shell beads, reaching peak
fluorescence at the 60 min mark. The core–shell beads’ spherical configuration may offer
an uncomplicated approach to concentrating and discerning light, thereby possibly further
streamlining the optical system’s design. Q. Lin et al. further highlighted LAMP’s adapt-
ability for cancer-biomarker detection [162]. They introduced a dual-modality approach
that integrates LAMP with magnetic bead isolation. This dual-modality method involves
magnetic beads modified with an anti-methyl cytosine antibody for the rapid enrichment
of methylated DNA, specifically targeting the Septin9 gene in colorectal cancer. The process
detects methylated DNA within 30 min. The method successfully identifies methylated
DNA from HCT 116 cells ranging within 2–0.02 ng/µL, with an LOD at 0.02 ± 0.002 ng/µL
(RSD: 9.75%). Progress in LAMP technology has demonstrated its efficacy in improving
cancer biomarker identification by using bead-based biosensors. This suggests effective
paths for swift and precise diagnostic methods.
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3. Challenges and Future Perspectives

Bead-based biosensors have made significant advancements in cancer-biomarker
detection, but some challenges still need to be addressed for their widespread adoption
and further development. This Section discusses the key challenges to provide insights
into the future perspectives of bead-based biosensors.

3.1. Standardization and Validation

The standardization and validation of bead-based biosensors are crucial to ensuring
their reliability, reproducibility, and comparability across different platforms and laborato-
ries [163]. The harmonization of assay protocols, reference materials, and quality-control
measures is essential to establish consistent performance and facilitate the translation of
bead-based biosensors into clinical practice. Collaborative efforts among researchers, clini-
cians, and regulatory bodies are needed to establish standardized guidelines and validation
frameworks for bead-based biosensors in cancer-biomarker detection [164].

3.2. Biomarker Selection

The selection of appropriate biomarkers is crucial to the development of bead-based
biosensors. Identifying biomarkers that are specific, sensitive, and clinically relevant is
essential for accurate cancer diagnosis, prognosis, and treatment monitoring. Furthermore,
the discovery and validation of novel biomarkers that can provide comprehensive infor-
mation about the disease state or therapeutic response are required. Collaborative efforts
between researchers and clinicians are needed to identify and validate biomarkers that can
effectively guide clinical decision making [165].

3.3. Integration with Complementary Technologies

The integration of bead-based biosensors with complementary technologies such
as microfluidics, nanotechnology, and data analysis algorithms holds great promise for
improving their performance and functionality [166]. Future research should focus on
developing integrated systems that enable the sample processing, multiplexed analysis,
and real-time monitoring of cancer biomarkers. Integration with emerging technologies
such as artificial intelligence and machine learning can enhance analytical capabilities and
enable predictive modeling for personalized cancer care [167].

3.4. Translation into Clinical Practice

The translation of bead-based biosensors from the research laboratory to clinical
practice is a significant challenge. It requires overcoming regulatory hurdles, demonstrating
clinical utility and cost effectiveness, and addressing logistical considerations [168]. Close
collaboration among researchers, clinicians, regulatory agencies, and industry partners is
essential to facilitate the clinical validation, regulatory approval, and commercialization of
bead-based biosensors. Clinical studies and large-scale trials are necessary to establish the
clinical performance, patient outcomes, and economic value of these biosensors [169].

3.5. Accessibility and Affordability

Ensuring the accessibility and affordability of bead-based biosensors is crucial for their
global impact, especially in resource-limited settings. Cost-effective fabrication techniques,
scalable manufacturing processes, and affordable readout systems are needed to make these
biosensors accessible to wide-ranging healthcare settings [16]. Additionally, healthcare
professionals should be trained in the use and interpretation of bead-based biosensors to
maximize their impact in diverse healthcare settings.

Bead-based biosensors hold great potential for cancer-biomarker detection. However,
several challenges need to be addressed for their successful integration into clinical prac-
tice. Standardization, biomarker selection, integration with complementary technologies,
translation into clinical settings, and accessibility are key areas that require attention [170].
Overcoming these challenges can pave the way for the widespread adoption of bead-based
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biosensors and their integration into routine cancer diagnostics, ultimately improving
patient outcomes and personalized cancer care.

4. Conclusions

We review bead-based biosensors designed to identify different biomarkers crucial
to advancing cancer diagnostics. This study investigates the multifaceted functions of
different materials used in bead-based biosensors and their respective impacts on the
overall performance of the biosensor system. Furthermore, we conduct a comprehensive
analysis of the signal-amplification strategies used in these biosensors, aiming to eluci-
date their mechanisms and evaluate their effectiveness in enhancing detection sensitivity
and accuracy.

The primary objective of multianalyte biosensors in cancer diagnostics is to enable
the sensitive, specific, and cost-effective detection of biomarkers for clinical applications.
Liquid biopsy offers an attractive approach to identifying various biomarkers, including
circulating tumor cells, cfDNA, and extracellular vesicles. However, the current state
of these biosensors primarily involves hypothesis testing or validation in the laboratory
phase, with limited practical application as a cancer diagnostic tool. Challenges related to
assay requirements and technical variability in pre-analytical steps hinder their seamless
transition into clinical practice. Many biosensors still rely on multiple manual steps for
sensing various analytes; some even omit the essential sample preparation process.

Despite these obstacles, the detection of multiple cancer biomarkers holds tremendous
potential for enhancing clinical diagnostics, especially in early cancer biomarker identifica-
tion, personalized therapy, and therapy monitoring. Accordingly, future research should
prioritize three key areas: (i) identifying specific combinations of biomarkers capable
of determining the origin, status, and progression of cancer, (ii) developing sample-to-
answer biosensors that enable the simultaneous detection of diverse cancer biomarkers,
and (iii) translating this information into a clinically relevant format.

One promising avenue for advancing multianalyte biosensors is the integration of
bead-based technology. Bead-based biosensors offer the unique advantages of enhanced
sensitivity and specificity in simultaneously detecting multiple analytes. Optical, electro-
chemical, and magnetic bead-based biosensors each have unique advantages in sensitivity,
multiplexing capabilities, and compatibility with different readout systems. The choice
of the appropriate bead-based biosensor depends on specific application requirements,
such as desired sensitivity, multiplexing capability, and availability of instrumentation. By
leveraging this technology, researchers can potentially address the challenges associated
with manual steps and sample preparation, paving the way for more streamlined and
efficient biosensor applications in cancer diagnostics. Bridging the gap between theoretical
advancements and practical implementation is crucial so that these innovative biosensors
into can be routinely used in clinical settings.

Numerous studies have emphasized the efficacy of detecting multiple analytes, par-
ticularly in the context of cancer. A significant example is the concurrent identification of
cancer protein biomarkers alongside circulating tumor DNA/RNA or exosomes, which
demonstrates substantial advantages in cancer screening and early detection. This ap-
proach is valuable for ensuring accurate diagnosis, predicting patient prognosis, assessing
therapy response, and monitoring cancer progression. The comprehensive insights gained
through multianalyte detection can empower healthcare professionals to make targeted
and well-informed decisions regarding therapy.

Despite the promising outcomes for bead-based biosensors, the majority of these
biosensors notably remain in the research or integration phase. Currently, no product for
routine clinical use is commercially available. This absence underscores the need for the
further development and translation of these innovative technologies from the research
setting to practical applications in clinical diagnostics.

Regardless of existing challenges in standardization, biomarker selection, and clinical
translation, continued research and development in this field holds great promise. With
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further advancements and collaborations, bead-based biosensors have the potential to
revolutionize cancer diagnostics, enabling early detection and personalized treatment.
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155. Blšákova, A.; Květoň, F.; Lorencová, L.; Blixt, O.; Vikartovská, A.; Kasak, P.; Tkac, J. Amplified suspension magnetic bead-based
assay for sensitive detection of anti-glycan antibodies as potential cancer biomarkers. Anal. Chim. Acta 2022, 1195, 339444.
[CrossRef] [PubMed]

156. Xia, N.; Wu, D.; Yu, H.; Sun, W.; Yi, X.; Liu, L. Magnetic bead-based electrochemical and colorimetric assays of circulating tumor
cells with boronic acid derivatives as the recognition elements and signal probes. Talanta 2021, 221, 121640. [CrossRef] [PubMed]

157. Wei, J.; Zhang, Y.; Liu, S.; Zhao, J.; Yuan, R.; Chen, S. CRISPR/Cas12a System Coupling Polyfluorene Nanoreporter Enriched by
Magnetic Bead-based High-efficiency DNA Nanocarrier for Fluorescence Analysis. Sens. Actuators B Chem. 2023, 393, 134207.
[CrossRef]

158. Zhu, S.; Tan, W.; Li, W.; Zhou, R.; Wu, X.; Chen, X.; Li, W.; Shang, C.; Chen, Y. Low expression of VSIG4 is associated with poor
prognosis in hepatocellular carcinoma patients with hepatitis B infection. Cancer Manag. Res. 2018, 10, 3697. [CrossRef] [PubMed]

159. Vaidyanathan, R.; Van Leeuwen, L.M.; Rauf, S.; Shiddiky, M.J.; Trau, M. A multiplexed device based on tunable nanoshearing for
specific detection of multiple protein biomarkers in serum. Sci. Rep. 2015, 5, 9756. [CrossRef] [PubMed]

160. Green, B.J.; Kermanshah, L.; Labib, M.; Ahmed, S.U.; Silva, P.N.; Mahmoudian, L.; Chang, I.-H.; Mohamadi, R.M.; Rocheleau, J.V.;
Kelley, S.O. Isolation of phenotypically distinct cancer cells using nanoparticle-mediated sorting. ACS Appl. Mater. Interfaces 2017,
9, 20435–20443. [CrossRef] [PubMed]

161. Sreejith, K.R.; Umer, M.; Singha, P.; Nguyen, N.-K.; Kasetsirikul, S.; Ooi, C.H.; Shiddiky, M.J.; Nguyen, N.-T. Loop-mediated
isothermal amplification in a core-shell bead assay for the detection of tyrosine kinase AXL overexpression. Micromachines 2021,
12, 905. [CrossRef] [PubMed]

162. Lin, Q.; Fang, X.; Chen, H.; Weng, W.; Liu, B.; Kong, J. Dual-modality loop-mediated isothermal amplification for pretreatment-free
detection of Septin9 methylated DNA in colorectal cancer. Microchim. Acta 2021, 188, 307. [CrossRef] [PubMed]
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