Sensors 2006, 6, 1-18

SENS0r'S

| SSN 1424-8220
© 2006 by MDPI
http://www.mdpi.org/sensors

Nonlinear Least-Squares Based Method for |dentifying and
Quantifying Single and Mixed Contaminantsin Air with an
Electronic Nose

Hanying Zhou*, MargieL. Homer, Abhijit V. Shevadeand Margaret A. Ryan

Jet Propulsion Laboratory, California InstituteT@chnology, 4800 Oak Grove Drive, Pasadena, CA
91109, U.S.A.

*Author to whom correspondence should be addregsadail: hanying.zhou@jpl.nasa.gov

Received: 9 September 2005 / Accepted: 9 December 2005 / Published: 12 December 2005

Abstract: The Jet Propulsion Laboratory has recently devel@wel built an electronic nose
(ENose) using a polymer-carbon composite sensiay.afhis ENose is designed to be used
for air quality monitoring in an enclosed spaced am designed to detect, identify and
guantify common contaminants at concentrations he parts-per-million range. Its
capabilities were demonstrated in an experimenam@bthe National Aeronautics and Space
Administration’s Space Shuttle Flight STS-95. Thaper describes a modified nonlinear
least-squares based algorithm developed to analgte taken by the ENose, and its
performance for the identification and quantifioatiof single gases and binary mixtures of
twelve target analytes in clean air. Results fraboratory-controlled events demonstrate the
effectiveness of the algorithm to identify and diifgra gas event if concentration exceeds
the ENose detection threshold. Results from thghtfliest demonstrate that the algorithm
correctly identifies and quantifies all registemgents (planned or unplanned, as singles or
mixtures) with no false positives and no inconsisies with the logged events and the
independent analysis of air samples.
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1. Introduction

The need for low-power, miniature sensor devices ¢an monitor air quality in an enclosed space
with multi-compound capability and minimum humarecgtion prompts the development of polymer-
based electronic nose (ENose) at NASA’s Jet Prapulsaboratory (JPL) and California Institute of
Technology [1-3]. The sensor array in the ENosegckwviwvas recently built at JPL and demonstrated
aboard NASA’s space shuttle flight STS-95, consists32 conductometric sensors made from
insulating polymer films loaded with carbon. In d@srrent design, it has the capability to detect 10
common contaminants which may be released intoettieculated breathing air of the space shuttle or
space station from a spill or a leak; target cotregions are based on the 1-hour Spacecraft Maximum
Allowable Concentrations (SMAC) set by NASA (seebltal) [4], and are in the parts-per-million
(ppm) range. In addition, the device can detechgés in humidity and a marker analyte described in
Section 4. The ENose was intended to fill the gefwben an alarm which sounds at the presence of
chemical compounds but with little or no ability tbstinguish among them, and an analytical
instrument which can distinguish all compounds @nésut with no real-time or continuous event
monitoring ability.

The specific analysis scenario considered for dieigelopment effort was one of leaks or spills of
specific compounds. It has been shown in analyssamples taken from space shuttle flights that, in
general, air is kept clean by the air revitalizatisystem and contaminants are present at levels
significantly lower than the SMACs [5]; this devibas been developed to detect target compounds
released suddenly into the environment. A leak gpilh of a solvent or other compound would be an
unusual event. Release of mixtures of more thanamtbree compounds would be still more unusual;
such an event would require simultaneous leakpitis $0 occur from separate sources. Thus, f& thi
phase of development, mixtures of more than twgetaanalytes were not considered.

As in other array-based sensor devices, the indalidensor films of the ENose are not specific to
any one analyte; it is in the use of an array &edent sensor films that gases or gas mixturesbean
uniquely identified by the pattern of measured oesg. The response pattern requires software
analysis to identify the compounds and concentnatioausing the response. The primary goal in
analysis software development was to identify eveoft single or mixed gases from the 10 target
compounds plus humidity changes and marker anafyteat least 80% accuracy (fewer than 20% false
positives and false negatives) in both identifmatand quantification, where accurate quantificai®
defined as being +/-50% of the known concentrati@orrect identification of the compound causing a
test event with quantification outside the +/-508fage is considered to be a false positive. Fatiire
detect an event is a false negative. The ratharaot quantification range was defined by the
Toxicology Branch at NASA-Johnson Space Center (NAISC) and reflects the fact that the SMACs
are defined in a similar way: the toxic level of sha@f the compounds is not known more accurately
than +/- 50%, so the SMACs have been set at therlewd [5].

Many data analysis methods are available for thip@se, including some well studied statistical
methods and their variations, such as Principal @orant Analysis, Discriminant Function, Multiple
Linear Regression, and Partial Least Squares [6tdHddition, there are more recent neural network
based approaches, particularly multilayer neursoks with back propagatidf, 12-16]. The choice
of an appropriate data analysis method for seneemophysics (odor detection/classification) is,
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however, often highly dependent on the nature ef dhta, the application scenarios, and analysis
objectives for the specified application. To dai@lymer-based sensor arrays have been used mwostly i
fairly restricted application scenarios. Air gugalhonitoring with the JPL ENose is a challengingkia
consisting of a large number of target analytes prartially controlled atmosphere. Target analgtey

be present as single gases or as mixtures of tfamses. In addition, the task requires quantificatib
detected analytes as well as the capability fanreuimplementation of autonomous quasi real time
analysis. There were twelve target compounds mphase, and there will be 20-30 in the next phase;
binary mixtures were studied in this work, and mies of up to 4 compounds will be studied in the
future. In addition to these requirements, we &®@d challenging conditions such as large vanatio
in some of the response patterns, analytes of ainmghemical structure and hence of similar
(correlated) signature patterns, and limited datailable for mixtures during the algorithm
development. Data sets of sensor array response taken in parallel with algorithm development
because of time constraints, but the data analgstwas to be prepared to deconvolute any potentia
mixtures for the flight experiment. A series of teadre routines was developed using MATLAB as a
programming tool. Several different approaches waasidered and investigated in the process.
Eventually a modified Levenberg-Marquardt nonlinleaist squares based method was developed and its
effectiveness demonstrated amid highly noisy amdimear responses from the ENose sensor array.

2. Development of data analysis approach

During the early stages of the analysis softwareeld@ment, three conceptually different
approaches to ENose data analysis were develogmatatiel: Discriminant Function Analysis (DFA),
Neural Networks with Back Propagation (NNBP), andliaear Algebra (LA)based approach [2].
Principal Component Analysis (PCA) was used iritjabut was later replaced by DFA (Fisher
Discriminant) because of its superior ability teaiminate similar signatures that contain sulilé,
possibly crucial, gas-discriminatory informatiorotB DFA and NNBP are among the popular methods
for array-based sensor data analysis. In genefdBMNis more suitable than DFA when the sensor
signatures of two gases are not separable by apigpe (e.g.one gas has a signature surrounding the
signature of another gas), while DFA is better lassifying data sets which may overlap. Both DFA
and NNBP were developed primarily for identifyinggle gases. The quantification was then obtained
by its overall resistance change strength usingalibrated data.

The main reason to develop a LA based approadiatsneither DFA nor NNBP were found to be
well suited for resolving signatures resulting frarcombination of more than one gas compound.
Very little training data were available on mixtsréuring much of the time the algorithm was under
development, and limited data were available latevertheless, the software was required to beyread
to deconvolute potential mixtures for the flighjpeximent. Consequently we chose to use a LA based
approach, which enables us to find the best soluimong many possible solutions by limiting the
non-zero elements in deposition and choosing tleenwoth the sparsest possible significant elements.

In a LA based method one tries to solve the egnatiA\x, where vectoly is an observation (a
response pattern), vectolis the cause for the observation (concentratidressgas or combinations of
gases), and matriA describes system characteristics (gas signatlsned from training data).
Since we have more sensors than target compoumdghamesponse pattern is often noise corrupted,
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both of which mean there may exist no exact sahytibe least-squares method is the most appropriate
way to solve the equation [17,18]. We obtainedlist solution in the least squares sense=asy,
where A* = Q,D*Q,' is the pseudoinverse by Singular Value Decommosi(iSVD) of A (i.e.,
A=Q,;DQ,"), Q; andQ; are orthogonal anB is diagonal D" is found fromD by inverting all nonzero
elements. We solve the equation under the consttatn out of N (N=10) components of are equal

to 0; we then examine each of these solutions|(&#& for n=5) and select the one with the fewest
nonzero and nonnegative elements, as in the expscénario of anomalous event detection we expect
fewer rather than more different compounds to appea

It should be noted that the LA based method reguimat the sensors follow linearity and additive
linearity (superposition) propertigse. the response to a mixture of compounds is a linearbination
of the response to the individual compounds; tha®perties were shown in previous studies on
similar sensor sets [19-21]. Compared to methaoalsube concentration-normalized sensor response to
identify unknown gas(es) first, by using PCA, faample, and then determine concentration(s) from
previously calibrated data by a second analysish @ Multiple Linear Regression (MLR), Partial
Least Squares (PLS), or Principal Component Reigre¢BCR) [7], the LA based method effectively
combines the two steps of identification and queatiion into one. This combination helps to
facilitate the automation of data analysis withloutnan intervention.

The idea of developing three parallel methods it thne can first use the LA method to
deconvolute an unknown response pattern as a lic@abination of target compounds; unknown
compounds were expressed as a combination of fmwpounds or fewer. If a single compound is
found, additional verification can be then carrimat by NNBP and DFA methods to improve the
identification success rate [2]. In the coursehaf work we found that, even for single gases, the L
method performed consistently best among the thebde DFA was consistently the worst. The
average success rates using DFA, NNBP, and LA mdstifor singles in the early stages of
development were 35%, 50% and 60%, respectivelg. gdor performances of DFA and NNBP are
due largely to poor repeatability of responseshefENose sensor array (noisy fingerprints, seer&igu
1), which, as with most polymer-based sensorsemsitve to temperature, humidity, pressure, air
flow, sensor saturation and aging. In our caseatlezage variations of actual fingerprints versuesrt
expected normalized ones may be as high as 75%edbtal expected response strength for selected
compounds. Even in the best cases the averagedimaria 23% - 33%. This large variation in the
database poses enormous difficulties for both DRA WNBP based approaches to correctly “learn”
(converge) and identify compounds. On the othedheaith a LA method we were able to findetter
or best solution instead of aexact solution that might not make sense because oenbi& opted to
discard the use of the two verification methodscdathie lack of the apparent benefits of the cross
validation and focused on the improvement of themhéthod instead.

On obtaining a larger data set, it was observetdrdsponses for some sensors were not linear for
the concentration ranges considered; early teatsstitowed linear responses were done at subshantial
higher concentrations than the SMACs. Though the-lImzarity appears to be of low order and
applies to a few single analytes (see Figure @y tinust be treated properly in order to reach the
identification and quantification goals. Linearipat of the response patterns with the LA based
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approach resulted in no significant improvement.t#i$ point, we decided to develop a Levenberg-

Marquardt nonlinear Ieast squares method (LM I\[BﬁS)a natural step following the LA method.
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Figure 1. Signatures generated by the ENose sensor. Averagations are as large as 75% for
methane and Freon and ~50% for indole and benassr in good cases (e.g., ammonia, propanol,
and ethanol), we see an average variation of 25-30% vertical axis is the normalized resistance
change calculated @R/Ry; where R is sensor resistance immediately before the staah event. The
horizontal axis is the sensor sequence number. $ew the least-squares fitted signature; dots show
the actual signatures generated by the ENose semsty. Notice the similarity of signatures for
ethanol and methanol.
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NLS has been studied previously for analysis iomceatrations with an electrode sensor array [14].
Kermaniet al. [22] found that NN with a Levenberg-Marquardt leaghalgorithm showed satisfactory
solutions for odor recognition. A comparison betwesonlinear regression and NN models for
pollution prevention focused on ground level ozémrecasting was reported by Cobouwatral. [23].
They found that non-linear regression models peréal marginally better than the NN models in the
hindcast mode (using observed meteorological datanput). Similar investigations reported by
Shafferet al. compared the performance of neural network antisstal based pattern recognition
algorithms. In general, NN, and particularly NNBfjsed techniques were found to be slow and
difficult to train, especially for noisy or highsdiension sensor daf24].
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Figure 2. Low order non-linearity is observed in responsesaoie sensors. The lines passing through
the stars are the least-squares fitted respons$ds, thve actual data points are shown by openesrcl

The LM-NLS method demonstrated rapid operation dpaed low memory requirements in
addition to relative ease of training. Currenthytakes 1-5 minutes to analyze each event on a non-
dedicated Pentium Il PC with MATLAB 5.3. That isigk enough to be used for “quasi real time” air
monitoring. The computation time can be furtherumstl when optimized for real time code. The
convergence problem can be improved by using melsparting points as well as a modified update
strategy (see Section 3, below) and is also relaxedhe fact that the quantification accuracy
requirement in our case is rather tolerant.
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3. Description of modified NL S algorithm

LM-NLS is similar to LA in that it tries to find #hbest-fit parameter vectar(concentrations) from
an observation vectoy (a response)which is related tox through a known linear or nonlinear
function, y=f(A,x), whereA describes system characteristics. A second orolgn@mial fit passing
through the originy=A1x + A-x?, is used to model the low-order nonlinearitiesnibin our caseA;
and A, are 12x32 matrices characterizing the 32 sensesgponse to the twelve targeted compounds
(ten analytes plus humidity change and a medicpéwdiscussed below), which can be obtained from
calibration data. Although, strictly speaking, tingadratic equation above can be solved analytically
we chose to use iterative optimization proceduregtl the solution. This approach enables usrtd fi
a better (or best) solution instead of aexact one which might not make sense, and also allows fo
addition of potential better or other nonlinear migdthat we might be able to establish during the
course of this project.

Our modified LM-NLS algorithm, which is based on existing third party MATLAB cod¢25],
has the following implementation steps:

1. Begin with a starting point af,; compute weighted residual vect®swt* (y-f(A,Xo))

2. Compute Jacobian matriedR/dx, curvature matrixC =J'J, J,=JC*? and its diagonaD by
SVD: J,=UDV', and gradient vect@=J, R.

3. Updatex with changedx=V(D*+ &) ?g)C™? and compute new residual vecRr

4. Repeat for various values ot follows and update with a smaller sum-of-square (SOS) of
residualR and go to step 2 or stop at convergence:

(a) Set a series value of [102, 10%, 1, 16, 1.

(b) On the first iteration, search through theesenfeto find x that results in the smallest residual.
For subsequent iterations, multipdyby the (previously found) bestvalue that produces minimum
SOS in the last iteration and search through them.

5. Repeat Steps 1 through 4 for various startingtpmf vectorx,: (starting points for this work
are defined below)

(a) xo= [series-of-singles series-of-binary-mixtures... series-of-mixtures-of-all],

and update using the following scheme favoring a smaller nemtrf significant elementsi(#):

(b) if (smaller-SOS & same-or-less-sig#) or ( within-5% larger-sos & less-sig#) or

(much(5%)-smaller-sos & sig# <4)

Through the course of the sensor development adirtg program, several modifications have
been made to the original code (steps 1 through dptimize ENose data analysis.

Sets of starting points of vectarwere used instead of a single starting point aftarex. The
purpose of using sets of starting points is to é@mnverging to a local residual minimum, which is
common in many iterative optimization algorithmsldras been found for about ~15-20% cases in our
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analysis with the original code. Ideally thesei@hisets of vectok, should be chosen randomly and
cover each element’s parameter space (detectigeyamiformly. Alternatively, one can also choose
the most likely combination of vectox, (of one element, of two elements,..., and of @irents). The
total number of initial sets is determined by theexd desired and the complexity of the local mimmu
problem. In our case, about 200 initial sets (~15#kere N=12 is the number of target compounds)
were found to be a compromise between good conneegeroperties and reasonable computing time.
They include single gases at 5 different concentmatfrom low to high in the concentration range fo
each analyte (total 5x12=60), two different comboras of binary mixtures of concentration low-high
and high-low (total 12x11=132), and mixtures of | analytes at 5 different concentrations from low
to high (total 5). Combinations of ternary mixtumesre not included in the current implementation bu
will be included in future versions of the algorith

We modify the updating strategy (implemented inpSBeonly) to favor a result with the sparest
possible significant elements within certain ambiguanges of the residual, instead of always
updatingx for a smaller residual. Hemegnificant elements refer to those elements whose values are
equal to or greater than 1 ppm, except for indelgch is set at 0.001ppm.

Signature patterns for a given gas compound gesteray the ENose sensor array have been
observed to have large variations (see Fig.1). §thadard updating strategy tends to minimize the
residual with linear combinations of a number of$egmwhen the residual is simply the variation in
recorded response pattern itself and should beegihdhe modified strategy favors a smaller number
of gas combinations within a certain ambiguity ruod the residual, 5% in difference between the new
and the best-so-far residuals. In doing so it &elps to minimize the possible linear dependency
problem (see below), since most “high correlaticases are found to be a linear combination of a
large number of gases (4 or up), which is an “ésmution does not make sense.

In addition to the above modifications to the aitjon, we also weighted the sensor response
pattern to maximize the difference between sinsignatures. Though the best efforts were made in
selecting the set of polymers for the targeted ammps, final selection of the sensor set had to be
made before full training sets were available tecean optimum set. As a result, in some cases,
similar or linearly dependent signature patternsewabserved for different target compounds,
ethanol and methanol, benzene and toluene, as simokigure 1. The signature of benzene was also
found in a previous experimental study to be adimr@mbination of the signature of toluene plus the
signatures of other analytes in small concentrafit®]. Regression analysis also confirmed the linear
dependency among these signature patterastt{e signature for one analyte can be expressed as a
linear combination of signatures from other analytélost other high correlation cases (correlation
confidence > 0.85) are found to be a linear contlmnaof four or more analytes. To reduce this
similarity and linear dependency, the sensor raistance responses were modified by a set of weight
in the data analysis procedure.

4. Experimental

The data analysis algorithm described above wasloe®d to work with the JPL ENose sensor
array, which was designed to be capable of moniotthe shuttle cabin environment for the presence
of ten analytes at or below the 1-hour SMAC leva@iwo additional analytes, water and a marker
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compound, were added to the list of target analgtes the course of the program. Target analytes
were selected by reviewing results of analysedefconstituents of air collected in the space Ehutt
after several flights [5] and selecting those thatl been found with relatively high concentrations,
although the concentrations of no analytes appezhtheir SMACs. Additional compounds, such as
ammonia, were selected because there had beenotelemports from shuttle crew members that an
odor had been present at some time during a flightshown in Table 1 [1-3], a total of ten potehtia
contaminants were selected as target compounds.ENwse was also designed to be capable of
detecting changes in humidity. After the flight exipnent was defined, one target analyte was aduded t
the list; a medical wipe saturated with 70% 2-prapavas used to provide a daily event or marker to
verify device operation during the flight. The exaomposition of the wipe is not known.

The sensors in the ENose are thin films made fromroercially available insulating polymers
loaded with carbon black as a conductive mediunmade a polymer-carbon composite. A baseline
resistance of each film is established; as thetitaests in the air change, the films swell or caat in
response to the new composition of the air, andebistance changes. Sensing films were deposited
on ceramic substrates which had eight Au-Pd elgetsets. Four 25x10 nfnsensor substrates were
used, with each sensing film covering a 2x1 fretectrode set. 16 different polymers were used to
make sensing film; each polymer was used to magen2ors for a total of 32 sensors. The polymers
were selected by statistical analysis of respon$dkese films to a subset of the target compounds
used [1-3].

Table 1. Analytes, concentrations and success rates fotifgieg and quantifying single gases.

Analyte 1 hour SMAC (ppm) Concentration Range Success Rate
Tested (ppm) (%)
Ammonia 30 10-50 100
Benzene 10 10 - 150 88
Ethanol 2000 10 -130 87
Freon 113 50 50 — 525 80
Formaldehyde 0.4 50 - 510 100
Indole 1 .006 — 0.06 80
Methane 5300 3000 — 7000 75
Methanol 30 10 — 300 65
Propanol 400 75—180 80
Toluene 16 30 - 60 50
% Relative Humidity -- 5 — 65(%) 100
Medical Wipe -- 500-4000 100

Because the resistance in most of the polymer-cadoonposite films is sensitive to changes in
temperature, heaters were included on the backhe®fceramic substrates to provide a constant
temperature at the sensors. This constant tempeyra28, 32 or 36°C, depending on ambient
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temperature, assisted vapor desorption and iscgrifi to prevent hydrogen bonding of compounds
sorbed in the polymer film.

For developing training sets and for testing, wedua gas delivery system built in our laboratory to
deliver clean, humidified air with or without SMA(vel analytes to the sensors. A detailed
description of the gas delivery system can be faelsdwhere [26]. The gas handling system is run on
house air that is cleaned and dehumidified witlerfd. The flow of air is controlled by a seriesmdss
flow controllers, valves, and check valves. The defivered to the sensors can be humidified by
bubbling a fraction of the air through water anérnthremixing with dry air. To add a measured
concentration of analyte (liquid or solid at rocemiperature) to clean air, a fraction of dry ajpassed
through liquid analyte, or over the solid, then etdxwith the humidified air stream. Analyte
concentrations are calculated from the saturat@drvaressure of the analyte, the temperature of the
air above the analyte, and the total pressureenbtibbler. For analytes which are gaseous at room
temperaturee.g. methane, pure gas from a cylinder is connectedttireo a mass flow controller and
then mixed with clean humidified air. Calibrationfsthe system are done using a total carbon amalyze
(Rosemont Analytical 400A) and checked in the JPialgtical Chemistry Laboratory using Gas
Chromatography-Mass Spectrometry (GC-MS). The g#isaty system is computer controlled using a
LabVIEW program.

For normal operation, air is pulled from the sunmdugs into the sensor chamber at 0.25 L/min
using a Thomas model X-400 miniature diaphragm puiife air is directed either through an
activated charcoal filter which is put in line toopide clean air baseline data, or though a dummy
Teflon bead filter which is put in line to providepressure drop similar to that in the charcowrfilA
solenoid valve is programmed to open the path ¢octiarcoal filter and provide clean air flow for a
programmable period at programmable intervals;rotise, the air is directed through the Teflon bead
filter. Air then enters the glass enclosed sensadithamber where resistance is measured. Typically
the charcoal filter was used for 15 minutes evebyidurs.

Data acquisition and device control are accomptishging a PIC 16C74A microcontroller and a
Hewlett Packard HP 200 LX palm top computer whigtpiogrammed to operate the device, control
the heaters and record sensor resistance. Typcalatized resistance change (dg/Rr 10-50 ppm
of contaminant is on the order of 2X’L(200 ppm resistance change), and may be as ssnbX14".

A preprocessing program extracts the resistangonsg pattern from raw resistance data for each
detected event. Events were selected from the udaite a peak searching program. Digital filtering
was used for noise removal (high frequency) ancelvees drift accommodation (slowly-varying in
nature) before calculating the resistance changedoh sensor in the array. Both relative resigtanc
change, R/R and fractional resistance change, (B4R, were tested, and the latter was adopted as it
maximizes the difference between the signaturekfigrent gas compounds.

5. Resultsand Discussion
5.1 Response analysis for single component

Before the ENose sensor was tested in flight (dmborit underwent ground testing and training
(lab-controlled gas events in clean air) comprisedver 250 events. These events include primarily
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single gas deliveries as well as some binary mégiuFor single gas events, the overall successsrate
of the analysis algorithm is ~ 85%, where succestefined as correctly identifying target compounds
and quantifying them to +/- 50% of the known corcation. The success rates of identifying and
quantifying single gases are listed in Table Inglaith the concentration range tested (1-hr SMABS)
can be seen from Table I, in some casesammonia, ethanol, indole, and propanal, it is guesio
identify and quantify substantially below 30% ofetlone-hour SMAC; however, in a few cases
guantification was successful only as low as 100% e one-hour SMAC. In one case, formaldehyde,
it was not possible to identify and quantify reliabelow some two orders of magnitude above the
one-hour SMAC.

For most gases, the success rate is higher fdnigfer end concentration range than for the lower
end. For example, the success rate for methai®@%sif the concentration range is 30ppm and above,
for benzene it is 100% for the concentration ra@ppm and above, and for Freon it is 95% for the
concentration range 65 ppm and above; the ovenatiess rate is decreased by poor success at the
lower end of the tested concentration range. Timgssts that as long as the concentration excheds t
corresponding threshold, the algorithm can reliatdgntify and quantify a gas event. Among the 15%
of cases that were classified as failed, aboutttwrdls (10% overall) are simply no detection of an
event at low concentration, where poor repeatghgditnore evident. At these low concentration lsyel
although there are still measurable resistancegdsaim some of the sensors, the overall response
patterns are so variable that the residual for-gawcase would often be smaller than that for ¢ven
smallest concentration of any gas or gases. Inrotloeds, the response may be measurable but not
large enough to be identified by either visual exn or by the algorithm. For the remaining feals,
the majority is due to incorrect identification ¢buas identification of toluene as benzene, owmng t
similarities in their fingerprints, see Figure h¥iead of incorrect quantification. This indicatieat the
two-in-one (identification and quantification at a@) NLS approach is largely adequate for
quantification purpose; separation into two stepkimprove little in terms of quantification acagy,
though it may help to improve identification in easnvolving similar fingerprints.

5.2 Response analysis for mixtures

Seventy-five binary mixtures were tested under grsgram. Deconvolution of response patterns
for mixtures using the modified LM-NLS method doed need additional mixture training data, as it
relies on the superposition property of the semesponse to mixtures. Previous studies on organic
solvents similar to the target compounds have shtwanresponses from a polymer-based sensor array
to binary mixtures are linear combinations of tlmgke gas responses[16-18]. Similar assumptions
have also been made by other researchers [9, 11].

To test how well superposition holds, we compaledresponse patterns of the ENose sensor array
to binary mixtures with calculations of combinatoof the responses to corresponding single gases.
Figure 3 shows sample results from the mixturespiEsted. It can be seen that superposition holds
well or reasonably well for the following gas comdiiions: {ammonia + benzene}, {ammonia +
ethanol}, {benzene + methanol}, {methanol + tolugn@thanol + formaldehyde}, and {propanol +
benzene}. Data obtained on a two other combinata@nsompounds, {benzene + formaldehyde} and
{methanol + propanol}, did not validate additivityell in these events, but there is no clear patbérn
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linear or nonlinear cross-interference in thoseneselhe large variation in single component respon
is also a major reason that some mixture evenisneil clearly follow additive trends. The response
from the ENose sensor array follows the supermwsifproperty for the tested binary mixtures
moderately well, with a 60% rate of success, asvaho Table Il. Nonetheless, potential violation of
the superposition property might occur between aamgs of similar but nonlinear response patterns.
While only a few sensors among a large number nf@eelements in the array exhibit nonlinear
responses, and then only for a few analytes, wtginls to reduce the overall impact of non-linearity
on the system, it is important to extend and védidae superposition assumption to other binary as
well as to ternary and quaternary mixtures, forohmore tests are needed.

Table 2. Success rates of identifying and quantifying bathlgtes in binary mixtures of gases.

Analytel Concentration Analyte2 Concentration Success Rate
range (ppm) range (ppm) (%)
ammonia 20-50 ethanol 100 100
ammonia 10-20 benzene 20-60 65
benzene 50-150 methanol 50 100
benzene 30-100 propanol 75-100 60
benzene 10-30 formaldehyde 85—-250 20
ethanol 40-130 medical wipe 60-185 90
methanol 25 propanol 80-185 25
methanol 50-75 toluene 30-60 40

For the data pool that we have, the modified LM-Ndl§orithm is shown to be able to deconvolute
response patterns of binary mixtures with modesatzess overall, about 60%, as shown in Table II.
Although we have success rates approaching 100%dimre mixture pairs, we have difficulties in
identification of some other pairs. The low succest®s for those pairs, especially for the pairs
{benzene + formaldehyde} and {methanol + propanatg linked directly to the low concentration
ranges of one of the components, for which detgaen the single gases is difficult (30% for singl
benzene between 10-20ppm, 20% for single methagtelden 10-30ppm). For the pair {methanol +
toluene}, the failure is due to the misidentificatiof the component toluene as benzene, just as in
single cases of toluene, due to similarity in fiqyets of toluene and benzene. Overall the moderat
success rate of mixture identification is causecharily by the poor repeatability of the sensolgrat
low concentrations for some analytes, with no appadominant effect of one of the components or
cross-interference between two components observed.

It is expected that with a more sensitive groupafmer-carbon composite sensors and with better
repeatability of sensor response, it will be pdssib detect lower concentrations of single gasets a
thus to better deconvolute mixtures of two or meoenpounds. These two goals, greater sensitivity
and improved repeatability, have been the focuseoasor development efforts in work subsequent to
that described here.
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Figure 3. Linear additive of responses roughly holds for thigture pairs of gas compounds tested.
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second component: upper, lighter portion of the bar. Stars représearctual response patterns to the
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5.3 STS95 Flight Data Analysis

The ENose flight experiment was designed to proemi@inuous air monitoring during the STS 95
space shuttle flight (Oct.29 through Nov.7, 1998)e ENose was tested on STS-95 to confirm that
sensor response and device operation are microgragensitive, and that the ENose would would be
able to discriminate between responses causedrigt tanalytes and odors associated with normal
operation in the crew cabin. Although the ultimgtal of the program calls for real-time data analys
it was determined for the current phase of the yamogthat post-flight analysis would be preferalole t
running the risk of false positive data analysisréal time. The ENose sensor array response was
recorded continuously for six days during the fligind data analysis was done post-flight. For the
purpose of verification of the device operationrothee six day experimental period a daily propanol-
and-water medical wipe event was added as a dadigken In addition, a daily air sample was
collected using a Grab Sample Container (GSC)dtar] independent GC-MS analysis at the NASA-
JSC facilities.

The test the data analysis software faced wastaridgas events that were registered by the ENose
sensor array, to identify and to quantify to +/-5@¥%y targeted compounds in each gas event, and to
classify non-targeted compounds as “unknown”. Thents recorded were compared with shuttle
logged events, planned experimental events, shuiti@dity and pressure logs and with independent,
post-flight, GC-MS analysis of the air samples tallaring the experiment.

The automated peak searching feature of the dalgsés software found 45 gas events in the data
recorded by the ENose during the 6-day experim&he 45 events were confirmed by visual
inspection of the data; no other events were fdyndisual inspection. Among those recorded events,
6 were identified by the data analysis softwaréhasplanned daily markers, plus humidity changes in
some cases. The concentrations of these marketseweme quantified in the 500-1000 ppm range,
which is the range found for similar tests don¢him laboratory. These identifications were confidme
by comparison of crew log times with the time of #vent in the data files. In addition to the marke
events, software analysis identified all other éses humidity changes. Most of those changes ean b
correlated with cabin humidity changes recordedheyindependent humidity measurements provided
to JPL by NASA-JSC [3]. Quantification by the ENasw®tware corresponds to the relative humidity
recorded by the cabin monitor. A few events wesmniidied as humidity changes but did not correlate
with cabin humidity logs. These events are likalybe caused by local humidity changes; that is,
changes in humidity near the ENose device whiclewet sufficient to cause a measurable change in
cabin humidity. The independent humidity monitorswacated in the stairway between the middeck
and the flight deck, and so would not record anynidity changes localized around the ENose.
Software analysis of the flight data did not idgnaainy other target compounds, as single gases or
mixtures. Independent GC-MS analysis of the caliéatiaily air samples confirmed that no target
compounds were found in those samples in concengbabove the ENose training threshold. Also,
there were no compounds that the ENose would hatlieated as unidentified events present in the air
samples. Fingerprints generated from flight data @srresponding to of each type of event found in
the flight data, humidity change, daily marker, atally marker plus humidity change, are shown in
Figure 4.
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Figure 4. (a) A typical fingerprint of humidity change evedentified from the flight data, which
corresponds well with the normalized pattern reedréh ground testing (see fig.1). (b) A typical
fingerprint of daily marker (wipe) event identifieid the flight data, also similar to its ground
counterpart. (c) Fingerprint of one event idendifees wipe plus humidity change from the flight data
The pattern can be seen to be close to the comdmnaitthe fingerprints from training sets.

While it turned out to be an uneventful flight exipgent and so did not challenge the data analysis
routines significantly, the flight did serve therpase of blind testing the software’s ability temndify
and quantify all registered events correctly, idahg planned events (daily markers, as single gases
as or mixtures) and unplanned events (humidity,aasingle gas) which can be correlated to
independent measures of cabin events, with no fadsgives. No inconsistencies were found between
the data analysis results and the logged eventsyei@ there inconsistencies between the ENose data
analysis and the independent GC-MS analysis. Thityadf the data analysis algorithm to identifydan
guantify the dairly marker events confirms that gemsor response and operation of the ENose is
microgravity insensitive.

6. Conclusion

A modified nonlinear least-squares based algorithas developed as part of the JPL ENose
program to identify and quantify single gases anitumes of common air contaminants. The
development of the NLS based method followed ody eaiccess with a linear algebra based method
and later understanding of its limitation in noelm cases. It enables us to find a better (or best)
solution instead of an exact one from noisy semesponse patterns. For lab-controlled testing, the
algorithm achieved a success rate of about 85%imgite gases in air and a moderate 60% success rate
for mixtures of two compounds. The data set is attarized by large variations in response patterns,
nonlinear responses in the concentration rangesidened, and similar fingerprints for a few
compounds. The algorithm can reliably identify apdhntify a gas event as long as the concentration
exceeds the ENose sensor array detection thredbotthg a six day flight experiment, the algorithm
was able to identify and quantify all the changedumidity and the presence of the daily marker
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detected and registered by the ENose sensor arheylack of events in the flight experiment was
evidence of the cleanliness of shuttle air, buapi®inting for this test. Future testing will bedsed
on extensive ground testing, including blind tegtf the software analysis in a relevant environimen
Future development of the JPL ENose requires tladysis software to include more capabilities,
including real or quasi- real time analysis, andcfional group classification of unknown gas
compounds. Future work will also include improvemsem the core LM-NLS algorithm itself. For
example, the current algorithm uses all 32 sensesgionses as input. Though each sensor’s response
was weighted in the analysis in order to maximtze differences between similar signature patterns
observed for different gas compounds, weights vdetermined empirically for this sensor set and
were therefore not necessarily optimal. In theritthe selection of the sensor set to be usedhamnd
corresponding weights will be optimized by maximgidistances between gas signatures, defined as
AS,, = ﬁ;N [dR,, (i) - dR, (i)] , wheredRx(i) is theith sensor’s normalized resistance change forthe

gas and the summation is oWwesensors used.

Improvement of the NLS algorithm analysis speealss desirable, not only for the purpose of real-
time analysis, but also to accommodate the expatatgdt compound list and polymer set expected
for the future generation of the ENose. Since the Nilgorithm is heavy with matrix operations,
which largely determines the entire data analypmsed, increased size of the system characteristic
matrix will slow analysis speed exponentially. Qmay to increase speed is to reduce the size of the
matrix dynamically by incorporating sensors’ chéeastic response information, such as known
negative or no responses of particular sensor(€ettain gas compound(s). Besides increasing the
speed, such information might also be used for @amgs that are not trained for and therefore cannot
be identified by the software, but might be clasdiby their functional group.
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