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Abstract: An electronic tongue comprising different numbers of electrodes was able to 
classify test mixtures of key odorants characteristic of bioscrubbers of livestock buildings 
(n-butyrate, iso-valerate, phenolate, p-cresolate, skatole and ammonium). The classification 
of model solutions indicates that the electronic tongue has a promising potential as an on-
line sensor for characterization of odorants in livestock buildings. Back propagation 
artificial neural network was used for classification. The average classification rate was 
above 80% in all cases. A limited, but sufficient number of electrodes were selected by 
average classification rate and relative entropy. The sufficient number of electrodes 
decreased standard deviation and relative standard deviation compared to the full electrode 
array. 

Keywords: electronic tongue, odorants, classification, back propagation artificial neural 
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1. Introduction  

The odour emission from livestock buildings in intensive farming is causing many environmental 
and health problems [1]. Biological methods, which are environmentally friendly, are the preferred 
techniques for reducing emission of odours from livestock buildings. The bioscrubber is one of the 
biological methods and comprises an absorption column, in which the polluted air stream from the 
livestock building is washed by water droplets, and a bioreactor, which cleans and recycles the 
washing water coming from the absorption column [2]. 

Characterization of odorants, in absorption column or in bioreactor, is necessary in the optimization 
of the bioscrubber. It was recently observed that an electronic tongue (ET) has a high potential as an 
on-line sensor for odorants [3]. ET is an analytical instrument containing an array of electrodes, with 
partial specificity for different components in liquids in addition to an appropriate pattern recognition 
or multivariate calibration tool for identification and quantification of even complex liquid mixtures 
[4,5]. Recently, ET was used to classify different types of wine and water [6] and four molds and one 
yeast [7].  

Electronic noses (ENs) and ETs are based on the same concept. However, ENs are used for gas 
analysis and ETs are used for liquid analysis [8]. In bioscrubbers, odorants are absorbed by water 
droplets and then sent to bioreactors for removal. Due to this concept, ET was used for 
characterization of solutions containing odorants [3]. 

The pH is an important control variable in the bioscrubber for two reasons. pH affects the transfer 
of odorants from the gas to the liquid phase in the absorption column, and it also affects the microbes 
in the bioreactor. The optimum pH in the bioreactor is in the range of 4 to 8 [9]. However, most 
microbial growth occurs near neutral pH [10]. 

The objective of this communication is to use an ET to classify different test mixtures of key 
odorants (i.e. model solutions). Our investigation further supports the idea of using ET for other 
applications, i.e. to replace taste panels for characterization of hazardous solutions (e.g. pharmaceutical 
applications) [11]. In a previous communication [3] we described the calibration of ET. 

In livestock buildings, there are huge numbers of odorants [12]. A representative selection of these 
odorants, called key odorants, was used in this study. The key odorants were selected to represent a 
variety of chemical groups and were n-butyrate (n-butanoate), iso-valerate, phenolate, p-cresolate, 
skatole and ammonium. ET was used to classify four test mixtures of key odorants, i.e. two test 
mixtures of key odorants at two different acidities (i.e. pH 6 and 8). Moreover, ET was used to classify 
six different test mixtures of key odorants that were prepared to give the maximum representation of a 
variety of chemical groups at pH 6.  

2. Experimental 

2.1. Sensor array, i.e. the electronic tongue (ET) 

A custom made prototype ET was purchased from Analytical Systems, Ltd., St. Petersburg – 
Russia. It consists of 14 potentiometric electrodes. Eleven polymer (PVC) plasticized membrane 
electrodes (no. 1-11), two chalcogenide glass electrodes (no. 12-13) and one wire electrode (no. 14). 
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The electrodes were numbered in order to identify the individual electrodes that were sufficient for the 
classification. A pH glass electrode and a conventional Ag/AgCl reference electrode were included in 
the ET. Potentiometric measurements were performed using a high-input impedance multichannel 
voltmeter connected to a PC for data acquisition. 
 

2.2. Test mixtures of key odorants 

The concentrations of odorants in air samples from livestock buildings were investigated by many 
researchers. O’Neil and Philips [13] and Schiffman et al. [12] reviewed concentration intervals which 
are used as the main reference for the minimum and maximum concentrations of these odorants. 
Odorants are transferred to the liquid phase in the bioscrubber. The equivalent equilibrium 
concentrations of key odorants in water were calculated by using the dimensionless air-water partition 
coefficient (KAW) [14]. Stock solutions of different concentrations were prepared separately for each 
key odorant in the test mixtures. More details can be found in Abu-Khalaf and Iversen [3]. 
 

2.3. Experimental design 

Five groups of experiments were carried out separately. Data from the first four groups of 
experiments were also used for calibration of the ET [3]. The first test mixture of key odorants 
contained: n-butyrate, iso-valerate, phenolate, skatole and ammonium. In the second test mixture, 
ammonium was replaced with p-cresolate. Ammonium and p-cresol were chosen because of their 
importance as part of the odour problems in livestock buildings [15,16]. At pH 6, deionised water was 
solvent. At pH 8, a buffer of KH2PO4 (3.7 × 10-3 M) and Na2HPO4 (78 × 10-3 M) was solvent. Each 
group of experiments comprised 50 measurements in triplicates (i.e. three different measurement 
cycles for each mixture). The intervals of concentrations of each odorant were subdivided into seven 
intervals, to get as many combinations as possible in the test mixtures. The total number of 
measurements was 600. Details of test mixtures are shown in Table 1. 
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Table 1. Test mixtures of key odorants in four groups of experiments. 
Test mixtures of 

key odorants 

Odorants present 

in test mixture 

pH Interval of 

concentrations (M) 

Number of key  

odorants  in test mixtures 

Number of 

measurements 

Containing ammonium n-butyrate 6 10-7 - 10-3 5 150 (50 in triplicates) 

 iso-valerate  10-7 - 10-4   

 skatole  10-8 - 10-6   

 phenolate  10-7 - 10-5   

 ammonium  10-7 - 10-3   

Containing p-cresolate n-butyrate 6 10-7 - 10-3 5 150 (50 in triplicates) 

 iso-valerate  10-7 - 10-4   

 skatole  10-8 - 10-6   

 phenolate  10-7 - 10-5   

 p-cresolate  10-7 - 10-5   

Containing ammonium same as above 8 same as above 5 150 (50 in triplicates) 

Containing p-cresolate same as above 8 same as above 5 150 (50 in triplicates) 

 
In the fifth experiment, test mixtures of key odorants were prepared to give maximum 

representation of a variety chemical groups, i.e. volatile fatty acids (VFAs) mixed with phenols, VFAs 
mixed with skatole, VFAs mixed with ammonium, etc. The test mixtures were diluted in deionised 
water after which the acidity was adjusted to pH 6 with NaOH or HCl. After this adjustment, the pH 
remained constant throughout the experiment. Each combination of the test mixtures was subjected to 
15 measurements in triplicates, a total of 270 measurements (Table 2). The interval of concentrations 
was divided into five subsets, which were chosen from the seven intervals used in the previous four 
experiments. 

In each group of experiments the test mixtures were measured in random order. Microsoft office 
Excel 2000 (Microsoft Corporation, USA) software was used to randomize the concentrations levels 
(seven levels in the first four groups of experiments and five levels in the fifth) in each group of 
experiments, using a randomization and uniform distribution function [3]. 

The ET was submerged in the test mixture of key odorants in a 100 ml Teflon container with a 
magnetic stirrer. Five minutes were sufficient for electrodes to reach stable potential in all cases. 
Electrodes were washed with deionised water several times between measurements, until they reached 
a steady potential. It was suggested that washing of electrodes is one of the solutions to avoid drift 
problems of electrodes in ET [17]. 
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  Arbitrary name of test  

mixtures of key odorants 

Groups of key odorants 

 in test mixtures 

pH Key odorants

in test mixtures 

Interval of 

concentrations (M) 

Numbers of key odorants 

 in test mixtures 

Number of  

measurements 

A VFAs + phenols 6 n-butyric acid 10-6 - 5 × 10-4 4 45 (15 in triplicates) 

   iso-valeric acid 5 × 10-7 - 5 × 10-5   

     

     

       

    

     

       

    

    

       

     

     

       

    

       

     

    

 phenol 5 × 10-7 - 10-5

 p-cresol 5 × 10-7 - 10-5

B VFAs + skatole 6 n-butyric acid 10-6 - 5 × 10-4 3 45 (15 in triplicates) 

 iso-valeric acid  5 × 10-7 - 5 × 10-5

 skatole 3 × 10-8 - 5 × 10-7

C VFAs + ammonium 6 n-butyric acid 10-6 - 5 × 10-4 3 45 (15 in triplicates) 

 iso-valeric acid  5 × 10-7 - 5 × 10-5

 ammonium 10-6 - 5 × 10-4

D phenols + skatole 6 phenol 5 × 10-7 - 10-5 3 45 (15 in triplicates) 

 p-cresol 5 × 10-7 - 10-5

 skatole 3 × 10-8 - 5 × 10-7

E skatole + ammonium 6 skatole 3 × 10-8 - 5 × 10-7 2 45 (15 in triplicates) 

 ammonium 10-6 - 5 × 10-4

F phenols + ammonium 6 phenol 5 × 10-7 - 10-5 3 45 (15 in triplicates) 

 p-cresol 5 × 10-7 - 10-5

 ammonium 10-6 - 5 × 10-4

Table 2. Test mixtures of key odorants comprising a variety of chemical groups of selected key odorants at pH 6.  
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2.4. Back propagation artificial neural networks 

One of the most widely used artificial neural networks is back propagation artificial neural network 
(BPNN), which is also called feed forward network. It comprises many processing elements, i.e. 
nodes, which are arranged in layers: an input layer, an output layer, and one or more layers in between, 
called hidden layers. A schematic diagram of BPNN with one hidden layer is shown in Fig. 1. 

 

 
 
Figure 1. Schematic diagram of back propagation neural network architecture. 

 
A neural network software ‘Predict’ (v. 3.13, NeuralWare, Pittsburgh, USA), which uses BPNN and 

works in the framework of Microsoft Excel, was used in this study. The models in the program contain 
one hidden layer with different numbers of nodes, which results in a stable model [18]. Models have 
direct connections between input and output nodes. This enables the program to evaluate the need for a 
hidden layer. Moreover, models employ an adaptive gradient learning rule. A weight decay method is 
employed to reduce overfitting. In classification problems, the software employs hyperbolic tangent 
and softmax transfer functions in hidden and output layers, respectively. The use of the default 
parameters of ‘Predict’ software is recommended [19]. The default parameters and mathematical 
explanation of the functions are beyond the scope of this communication but they are described 
elsewhere [20]. 

In the present study, classification (supervised networks) of test mixtures of key odorants was 
carried out. The input (independent variable) was the electrode signals, and the correlated output 
(dependent variable) was the class of test mixture. 

The classification rate for each test mixture of key odorants and the average classification rate 
(ACR) were found. The average classification rate is the average of classification rates of all classes. 
The values of the classification rate and the ACR are shown directly in the software, and there is no 
need for any calculations. 

In each case of classification, the data were divided into train, test and validation sets. There is little 
agreement among researchers about the number of samples in training set for BPNN analysis. Basheer 
and Hajmeer [21] concluded that there are no mathematical rules for solving this problem. However, 
Daspagne and Massart [18] suggested that the number of samples in the training set should be at least 
twice the total number of weights in the BPNN topography. The latter recommendation was followed 
in this study.  
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Each measurement in triplicates was treated as one sample. This triplicate was used either in train, 
in test or in validation set. Data were centred and scaled before classification, so each variable 
contributes equally in the analysis [22].  

A higher ACR and a lower relative entropy are the most important factors for classification 
problems using ‘Predict’ software [23]. The relative entropy is an internal measurement in the 
‘Predict’ classification model. It measures the shared information between probability distributions. 
The higher this value is, the more similar the probability distributions are. 

All electrodes were examined for their individual contribution to classification of test mixtures of 
key odorants. The goal was to achieve the highest ACR and the lowest relative entropy with the 
minimum number of electrodes for further classification processes. Initially all electrodes (i.e. 14 
electrodes) were investigated for classification, and ACR and relative entropy were determined. By 
analysing the outputs of many combinations of a decreased number of electrodes, and after at least 20 
trials, it was observed that eight electrodes were sufficient for classifying all test mixtures of key 
odorants without influencing negatively ACR and relative entropy. The total number of electrodes in 
the ET was reduced without any loss of analytical information. This was done before in many 
applications of ET, e.g. Auger et al. [24] and Soderstrom et al. [7]. 

3. Results and discussion 

3.1. Classification of test mixtures of key odorants at pH 6 

The data of each test mixture of key odorants were split into train, test and validation sets. The 
number of different samples was 30, 10 and 10 (i.e. 90, 30 and 30 including triplicates), respectively 
for each test mixture of key odorants. The BPNN used 8, 4, 2 (i.e. 8 neurons in input layer, 4 neurons 
in hidden layer and 2 neurons in output layer). The eight neurons in input layer represented the number 
of electrodes, and the two neurons in the output layer represented the two classes of the test mixtures. 
Electrodes no. 1, 2, 5, 6, 7, 8, 9, 11 were sufficient. The classification rate for the validation set of the 
test mixtures of key odorants containing ammonium and test mixtures of key odorants containing p-
cresolate was 80% and 97%, respectively. The ACR was 88%. 
 

3.2. Classification of test mixtures of key odorants at pH 8 

The data of each test mixture of key odorants were split into train, test and validation sets. The 
number of different samples was 30, 10 and 10 (i.e. 90, 30 and 30 including triplicates), respectively 
for each test mixture of key odorants. The BPNN used 8, 0, 2 Electrodes no. 1, 2, 5, 6, 7, 8, 9, 11 were 
sufficient. The classification rate for the validation set of both test mixtures was 100%, and 
consequently the ACR was 100%. 
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3.3. Classification of test mixtures of key odorants containing ammonium at pH 6 and pH 8 

The data were split into train, test and validation sets as in the previous experiment. The BPNN 
used 8, 0, 2 nodes. Electrodes no. 1, 2, 5, 6, 7, 8, 9, 11 were sufficient. The classification rate for the 
validation set of both test mixtures was 100%, and consequently the ACR was 100%. 
 

3.4. Classification of test mixtures of key odorants containing p-cresol at pH 6 and pH 8 

The data were split into train, test and validation sets as in the previous experiment. The BPNN 
used 8, 0, 2 nodes. Electrodes no. 1, 2, 5, 6, 7, 8, 9, 11 were sufficient. The classification rate for the 
validation set of both test mixtures was 100%, and consequently the ACR was 100%. 

Table 3 shows the classification rates and ACR for the validation sets of the different test mixtures 
of key odorants. ET signals respond mainly to ions in the test mixtures [7]. The percentage of ionised 
n-butyric acid, iso-valeric acid, phenol, p-cresol, skatole and ammonium at pH 6 is: 94%, 94%, 0.01%, 
0.005%, 0% and 100%, respectively. The percentage of ionised n-butyric acid, iso-valeric acid, 
phenol, p-cresol, skatole and ammonium at pH 8 is: 100%, 100%, 1%, 0.5%, 0% and 95%, 
respectively. The results in Table 3 indicate that ET has a promising potential as a sensor for odorants. 
ET signals contained the fingerprints for each test mixtures of key odorants, which explains the 
successful classification. 
 

Table 3. Classification rates and average classification rate (ACR) for validation sets of test mixtures 
of key odorants. 

Test mixtures of key odorants  Containing ammonium Containing p-cresolate Containing ammonium Containing p-cresolate 

 pH 6 6 8 8 
Containing ammonium 6 80% 20%   

Containing p-cresolate  6 3% 97%   
ACR  88%   
Containing ammonium 8   100% 0% 

Containing p-cresolate 8   0% 100% 

ACR    100% 
Containing ammonium 6 100%  0%  

Containing ammonium 8 0%  100%  

ACR   100%   

Containing p-cresolate 6  100%  0% 

Containing p-cresolate 8  0%  100% 

ACR    100%  
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3.5. Classification of test mixtures of key odorants comprising maximum number of combinations of a 
variety of chemical groups at pH 6 

Standard deviation of triplicate measurements in the test mixtures of key odorants shown in Table 2 
was between 0 - 3.3 mV and 0.1 - 3.0 mV when electrodes no. 1 - 14 and no. 1, 2, 5, 6, 7, 8, 9, 11 were 
used, respectively. The RSD was between 0 - 2.3% and 0 - 1.2% when electrodes no. 1 - 14 and no. 1, 
2, 5, 6, 7, 8, 9, 11 were used, respectively.  

The total number of samples (comprising triplicates) was 90, which is equivalent to 270 
measurements, i.e. 6 test mixtures × 15 samples × 3 (triplicates). The data were split into train, test and 
validation sets. The number of different samples was 42, 18 and 30 (i.e. 126, 54 and 90 including 
triplicates), respectively. Train, test and validation samples within each class of test mixtures of key 
odorants were considered. The number of different samples was 7, 3 and 5 (i.e. 21, 9 and 15 including 
triplicates), respectively. BPNN used 8, 4, 6 nodes. Electrodes no. 1, 2, 5, 6, 7, 8, 9, 11 were sufficient. 
The classification rates are shown in Fig. 2. Two test mixtures of key odorants having classification 
rate of 100%, contained VFAs and phenols, or phenols and ammonium, i.e. A and F, respectively. The 
test mixtures of key odorants that contained VFAs and ammonium, i.e. C, had the lowest classification 
rate (67%). The ACR for all test mixtures of key odorants was 81%. Most of the test mixtures of key 
odorants were misclassified as test mixtures C. However the objective of BPNN classification was to 
get the highest classification rate with lowest entropy. In the case of misclassifications, the test 
mixtures of key odorants were misclassified to only one different test mixture of key odorants, e.g. C 
was misclassified as F, and D was misclassified as E. This indicates that the classification model 
enables us to predict the class of the test mixtures of key odorants with an acceptable inaccuracy, e.g. C 
is only classified as C or F, and D is only classified as D or E. 

When we tested numbers of electrodes that were less than the sufficient 8 electrodes used for 
classification, ACR decreased in comparison with the full array (14 electrodes), e.g. when electrodes 
no. 2, 5, 6, 7, 8, 9 were used, the ACR decreased from 81% to 70%.  

If pH changed when the test mixtures of key odorants were diluted in deionised water, adjustment of 
pH to 6 was carried out with NaOH or HCl. After adjustment, pH stayed constant throughout the 
measurement period. This is expected, since the VFAs in the test mixtures have buffer capacity. 
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Figure 2. Classification rates for validation sets of different test mixtures of key odorants f comprising 
a variety of chemical groups at pH 6. Average classification rate (ACR) was 81%. 
f A: VFAs + phenols 

  B: VFAs + skatole 

  C: VFAs + ammonium 

  D: phenols + skatole 

  E: skatole + ammonium 

  F: phenols + ammonium 

 
BPNN classification models were superior to linear classification methods, e.g. partial least square – 

discriminant analysis (PLS-DA) [11]. This was explained by the non-linear response of electrodes [25], 
which results from interferences between ions in the test mixtures [26]. However, PLS-DA showed a 
complete agreement with BPNN in some cases. PLS-DA was carried out for classification of the last 
three test mixtures of key odorants shown in Table 3. In these cases, the two test mixtures were easily 
separated in the PLS score plots, as shown in Fig. 3 to Fig. 5. Electrodes no. 1, 2, 5, 6, 7, 8, 9, 11 were 
sufficient. 
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Figure 3. PLS-1 score plot of all samples in test mixtures of key odorants containing ammonium (to 
right) and test mixtures of key odorants containing p-cresolate (to left) at pH 8. Full cross validation, 
PLS-DA was used and eight electrodes were sufficient. 
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Figure 4. PLS-1 score plot of all samples in test mixtures of key odorants containing ammonium at pH 
6 (to right) and at pH 8 (to left). Full cross validation, PLS-DA was used and eight electrodes were 
sufficient. 
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Figure 5. PLS-1 score plot of all samples in test mixtures of key odorants containing p-cresolate at pH 
6 (to right) and at pH 8 (to left). Full cross validation, PLS-DA was used and eight electrodes were 
sufficient. 

 
Eight electrodes were sufficient for classification of all test mixtures of key odorants. Models using 

these eight electrodes resulted in the highest ACR and lowest entropy in comparison to any other 
number of electrodes. Also, standard deviation and RSD of triplicate measurements, i.e. repeatability, 
improved when the number of electrodes was decreased (Table 4).  

It is noticed that the standard deviation of triplicate measurements in the mixture of key odorants in 
phosphate buffer at pH 8 was lower than the standard deviation of triplicate measurements in deionised 
water at pH 6, i.e. repeatability is higher. This is because the buffered mixture contains higher and 
stabilized concentrations of ions. Moreover, the standard deviation in the case of test mixtures of key 
odorants comprising maximum number of combinations of a variety of chemical groups at pH 6 is 
lower than the other two experiments that were carried out in deionised water (the two test mixtures of 
odorants containing ammonium or p-cresolate at pH 6 in Table 1). This is because the complexity of 
the test mixtures, i.e. the number of key odorants, was reduced in the test mixtures of key odorants in 
this experiment (Table 2). 

Comparing the standard deviation and RSD of the sufficient number of electrodes used for 
calibration [3] and classification (this communication), it is obvious that the sufficient number of 
electrodes in the ET improved the repeatability in comparison with the ET comprising 14 electrodes 
(Table 4). 
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Table 4. Standard deviation (StDev) and relative standard deviation (RSD) of triplicate measurements 
with different number of electrodes used for classification and calibration.  

pH Test mixture of key odorants Electrode no. StDev h (mV) RSD i (%) 

6 Containing ammonium 1 - 14 0 - 11 0 - 4.8 

  1, 2, 5, 6, 7, 8, 9, 11 0 - 6.6  0 - 3.4 

  2, 5, 6, 7, 8, 9 0 - 5.6  0 - 3.4* 

6 Containing p-cresolate 1 - 14 0 - 17.3 0 - 15.5 

  1, 2, 5, 6, 7, 8, 9, 11 0.1 - 6.8 0 - 3.5 

  1, 2, 4, 5, 8 0 - 6.8 0 - 3.5* 

8 Containing ammonium 1 - 14 0 - 2.6  0 - 8.4 

  1, 2, 5, 6, 7, 8, 9, 11 0 - 1.6 0 - 0.7 

  1, 2, 4, 5, 7, 8 0 - 1.6 0 - 0.7* 

  1, 5, 7, 8 0 - 1.6 0 - 0.7* 

8 Containing p-cresolate 1 - 14 0 - 2.1 high  j

  1 - 11, 14 0 - 2.1 0 - 0.9 

  1, 2, 5, 6, 7, 8, 9, 11 0 - 1.6 0 - 0.4 

  2, 5, 6, 7, 8, 9 0 - 1.6 0 - 0.4* 

6 Test mixtures of key odorants comprising a variety of 

chemical groups at pH 6 

1 - 14 0 - 3.3 0 - 2.3 

  1, 2, 5, 6, 7, 8, 9, 11 0.1 - 3.0 0 - 1.2 
h StDev: Standard deviation of triplicate measurements 
i RSD: Relative standard deviation of triplicate measurements 
j Potential readings and standard deviation were very small, which results in high value of RSD 

* Data from Abu-Khalaf and Iversen [3] 

 
Nine electrodes in total (no. 1, 2, 4, 5, 6, 7, 8, 9, 11) were sufficient for identification, quantification 

[3] and classification of all test mixtures of key odorants (this communication).  

4. Conclusion 

A calibrated ET, comprising 8 PVC plasticized cross-sensitive potentiometric electrodes, has 
successfully classified different test mixtures of key odorants. The ET was able to distinguish between 
two test mixtures of key odorants at the same pH with classification rates in the range of 88 - 100%. 
Classification between the same test mixtures of key odorants at different pH was even higher, 100%. 
Also, ET classified different test mixtures of key odorants comprising a variety of the chemical groups 
at pH 6. As expected the repeatability of electrodes was better in this case, where the complexity of the 
mixture was decreased.  

The results presented in this study are promising for any further application of ET in livestock 
buildings. The ability of ET to classify different test mixtures of key odorants with a high performance, 
makes ET an obvious candidate as an on-line sensor for characterization of odorants in livestock 
buildings. 
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