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Abstract: A rapid progress in intelligent sensing technology creates new interest in a
development of analysis and design of non-conventional sampling schemes. The
investigation of the event-based sampling according to the integral criterion is presented in
this paper. The investigated sampling scheme is an extension of the pure linear send-on-
delta/level-crossing algorithm utilized for reporting the state of objects monitored by
intelligent sensors. The motivation of using the event-based integral sampling is outlined.
The related works in adaptive sampling are summarized. The analytical closed-form
formulas for the evaluation of the mean rate of event-based traffic, and the asymptotic
integral sampling effectiveness, are derived. The simulation results verifying the analytical
formulas are reported. The effectiveness of the integral sampling is compared with the
related linear send-on-delta/level-crossing scheme. The calculation of the asymptotic
effectiveness for common signals, which model the state evolution of dynamic systems in
time, is exemplified.
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1. Introduction

Intelligent sensors are sophisticated sensing devices possessing advanced functionality in terms of
information processing, reliability, data fusion and integration. The intelligent sensor is essentially an
event-based system intended to detect specified events of interest in a sensor field. Therefore,
information from intelligent sensors is usually representative of a large class of system observations
which are categorized as irregular observations [1]. Even if sensor reports are transmitted periodically,
they may not appear to be periodic at the destination due to time-varying delivery delays or
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transmission errors handling in various network protocols. Moreover, in general the state of the objects
being monitored evolves irregularly in time. To avoid a loss of valuable information between sampling
instants, the sampling frequency in periodic reporting has to be set on a basis of predicting the worst-
case signal changeability. However, setting a sampling rate by taking into account the worst-case
conditions in a state variation is more or less wasteful since numerous useless samples are taken.
Actually, many signals in sensory applications (e.g. temperature sensors, speech signals,
electrocardiograms, etc.) show bursty statistical properties, i.e. these signals are constant for most of
the time and may vary significantly only during short time intervals.

The irregular observations are defined to be message-based observations with possibly infrequent
and non-periodic measurements, where the message indicates the source and the destination(s), the
timestamp of a sample, the range of possible measurement values, and the protocol service
specification (e.g. message service type, optional authentication, or network traffic prediction) [1]. For
example, LonWorks/EIA-709 technology, that is widely used for the interconnection of intelligent
sensor/actuator devices, provides programming objects called the Standard Network Variable Types
(SNVT) specifying, by the convention, various common physical magnitudes (voltage, temperature,
etc.), their range, unit, and resolution [2].

A special class of irregular observations is constituted by the event-based sampling schemes. This
class is characterized by the functional relationship between the sampling instants and signal behavior.
Thus, the event-based sampling is signal-dependent whereas the irregular sampling encompasses also
signal-independent schemes. In the event-based sampling, the signal is sampled when the significant
event occurs (i.e. a significant change of its state is noted) [13].

The most natural signal-dependent sampling strategy is the send-on-delta algorithm [3-6], known
also as the level-crossing sampling [7,8] or deadbands concept [9]. Send-on-delta reporting is used,
among others, by intelligent sensor nodes in LonWorks networked control systems [10]. According to
the send-on-delta strategy, the sensor node does not broadcast a new message if the input signal
remains within a certain interval of confidence. The hardware designs of level-crossing samplers
equipped with the low-power asynchronous analog-to-digital converters are discussed in [7,8]. Such
converters are not controlled by any global clock, but are enslaved by the analog input signal.
Furthermore, the time intervals between consecutive amplitude-related events are quantized instead of
the signal amplitude [8]. The asynchronous analog-to-digital converters establish a new research area
especially attractive for wireless sensor technology.

Although the methods of analysis and design for periodically sampled systems is mature, the event-
based systems theory is, as Aström and Bernhardsson pointed out, "still in its infancy" [6] with
relatively few works studying several aspects of event-based functionality, see e.g. [5,6,9-13].

Generalizing the send-on-delta/level-crossing concept, the event-based strategy allows one to
sample in a domain of various signal measures. The special classes are what is known as conventional
uniform sampling in a time domain (periodic sampling) and uniform sampling in a value domain
(level-crossing sampling/send-on-delta). However, by the appropriate definition of triggers (i.e. events
that trigger sampling), the concept of the event-based sampling might be extended to advanced signal
parameters [14]. From the practical point of view, the most important signal measures are such that
have a significant physical interpretation (e.g. the integral, energy, etc). Using these measures for the
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trigger definition, the integral sampling, and the sampling in the energy domain respectively, might be
constituted.

The paper discusses an event-driven strategy, where the input signal is sampled according to the
integral criterion. A use of the integral criterion for triggering sampling operations has been known in
control system technology since the early 60s at least [16]. Nowadays, the rapid progress in intelligent
sensing technology creates new interest in a development of analysis and design of non-conventional
sampling schemes. The main motivation to use the integral sampling is that the performance of the
monitoring or control system is usually defined as the integral of the absolute value of the error (IAE)
[9]. The sampling according to the integral criterion may be treated as an extension of the linear send-
on-delta strategy, and called the integral send-on-delta concept.

It is intuitively comprehensible that a use of the signal-dependent sampling instead of conventional
periodic updates reduces the mean rate of messages generated by a sensor node since sampling occurs
when “it is required”. For example, a use of the adaptive sampling scheme approximating the integral
criterion, and proposed by Dorf et al. in the early 60s, yields from 20% to 50% of the savings in the
number of samples over a long period of time [16]. However, no explicit formula has been derived to
evaluate how much effective it is in a general case. To the author’s knowledge, the precise evaluation
of the integral event-based sampling effectiveness has not been addressed in the scientific literature
until now. The present paper shows that the asymptotic effectiveness might be easily estimated for a
given sampled signal using the closed-form analytical formula.

The paper contribution consists of:
- the analytical approximation of mean rate of the event-based sampling according to the integral

criterion,
- the formulation and the analytical proof of the theorem that evaluates the asymptotic effectiveness

of the integral sampling,
- the observation that the asymptotic effectiveness is a measure embedded in the sampled signal that

does not depend on the sampling resolution,
- the simulative validation of the analytical results,
- the applications of the derived formula for common signals in dynamic systems (i.e. derivation of

explicit formulas and numerical solutions for the typical transient responses),
- the comparison of the effectiveness of the integral sampling to the effectiveness of the send-on-

delta/level-crossing sampling.
This study is essentially based on the unpublished author’s work [14]. Some preliminary results for

the integral sampling have been presented in [15].

2. Event-based sampling according to the integral criterion

By the definition, a signal )(tx  is sampled according to the uniform integral criterion if the integral
of the absolute error (IAE) (i.e. the integral of the absolute difference between the current signal value

)(tx , and the value included in the most recent sample )( 1−itx ), accumulated over the ith sampling
interval ),( 1 ii tt − , reaches a certain constant threshold 0>µ  (Fig. 1):
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where ni ,...,2,1=  is the index of samples taken during the analyzed time interval ],[ ba .
We assume also that the zero-order hold is used to keep the value of the most recent sample

between sampling instants.

Figure 1. Principle of the event-based sampling according to the uniform integral criterion.

2.1. Motivation of use of the integral sampling

There are a few reasons to use the event-based integral criterion in monitoring and control systems.
First of all, integral sampling as the event-based scheme is efficient for sampling burst signals. The

integral criterion shows some inherent advantages. In particular, the integral sampling is beneficial to
applications where a critical problem of sampling process is the accuracy of approximation of a
continuous-time signal by a sequence of discrete-time samples. The integrated absolute sampling error
is a more useful measure of the signal tracking quality than a pure linear error that constitutes the
level-crossing scheme. It is because the former is a non-decreasing function of time (see (1)) unlike the
latter. As a result, the positive and the negative errors do not compensate each other in the integral
absolute sampling scheme.

By the definition, the level-crossing sampling is triggered if a temporary deviation of a signal
appears. Instead, in the integral sampling, a summation of the absolute temporal sampling errors is
taken into account. Let us consider, as an example, a control system where the controlled variable
reaches its equilibrium state and becomes nearly constant (Fig. 2). In the level-crossing scheme,
sampling sometimes may not be triggered during a long time since the signal changes are not large
enough to activate the next sampling operation (Fig. 2a). If the integral criterion is used instead, the
integrated error accumulated in time triggers next sampling operations, and the signal tracking
becomes more accurate (Fig. 2b). Moreover, as it was mentioned, the performance of the monitoring
and control system is usually defined as the integral of the absolute value of the error (IAE) [9], which
directly corresponds to the definition of the integral sampling criterion.
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Figure 2. The steady-state sampling error in the level-crossing scheme (a), the example of the event-
based sampling according to the integral criterion (b). The sampled signal is the same in both
plots (a) and (b), only the time scales are different.

Finally, the event-based integral criterion is useful in case of indirect measurements, in particular if
the measurements in the domain of the absolute primitive function are carried out (e.g. if the electric
charge is measured by the sampling of the current intensity signal or if the covered distance is
estimated on the basis of tracking the velocity). In order to detect the uniform changes of the indirect
variable (the charge, or the position), the measured signal (the current intensity, or the velocity,
respectively) has to be sampled in the absolute primitive function domain. The example of signal
sampling using the event-based integral criterion with the zero-order hold is presented in Fig. 2b.

2.2. Trigger detection

A detection of triggers (i.e. events that cause the sampling operation) in the integral sampling can
be accomplished using pure analog circuitry. An alternative solution is the use of the compound



Sensors 2007, 7        21

architecture for data acquisition where the continuous-time signal is first periodically oversampled.
Next, on the top of the time-triggered acquisition, the event-triggered communication and processing
activities are implemented, i.e. a detection of a trigger over a set of periodic samples is provided (Fig.
3) [17,18]. In other words, the periodic oversampling is followed by the low resolution difference
quantificator. Such a compound approach, where the asynchronous events are presynchronized by
background periodic sampling, is called the "upward" event-driven architecture [17,18].

Figure 3. The principle of the integral send-on-delta algorithm based on the "upward" event-driven
architecture. The messages are broadcasted when the IAE reaches a prespecified threshold.

3. Related works

The motivation of the development of effective sampling schemes is expressed by a fundamental
question concerning the conversion of the physical reality into a set of discrete-time values: How the
sampling points are to be selected in such a way that the discrete approximation of a continuous-time
signal is as accurate as possible on the one hand, and the number of samples is minimized on the
other?

3.1. Adaptive sampling

The idea of varying the sampling period and adjusting it to the current signal behavior has been
investigated since the late 50s [4,16,19-25]. Various non-conventional sampling schemes have been
proposed, among others, the adaptive sampling, which is a class of signal-dependent techniques
closely related to the event-based schemes [16,19-25].

The adaptive sampling schemes are based on the real-time adjustment of the temporary sampling
period to the predicted signal changes. The sampling period is allowed to vary from interval to interval
in order to reduce the number of samples without degradation of the system response. The signal
tracking performance in the adaptive sampling depends on the quality of the state estimation, i.e. the
prediction of the signal behavior in the near future based on the knowledge of the signal in the past.
The prediction takes advantage of a signal approximation by the truncated Taylor series over the
sampling interval at the instant when the most recent sample has been taken. The maximum sampling
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period Tmax is bounded arbitrary and dictated by several factors such as communication bandwidth,
reliability [13], stability of the closed-loop control system [16], or the performance of particular
applications. The essential difference between the adaptive sampling and the event-based one is that
the former is based on the time-triggered strategy where the sampling instants are controlled by the
timer, and the latter belongs to the event-triggered systems where the sampling operations are
determined only by signal amplitude variations rather than by the progression of time.

A model of the adaptive sampling system is depicted in Fig. 4. Most of the adaptive sampling
algorithms have been derived heuristically [16,19,20]. In particular, Dorf et al. proposed the constant
integral-difference sampling law [16] which corresponds to the integral criterion analyzed in the
present paper, and Mitchell et al. introduced the constant absolute-difference criterion that is the
(adaptive sampling) equivalent of the pure (event-based) level-crossing/send-on-delta algorithm [19].
The aim of the adaptive sampling system design is to derive an explicit expression for the sampling
interval length basing on the assumed criterion.

The integral criterion proposed by Dorf et al. is the closest to the scope of the present study
although the former belongs to adaptive sampling schemes, and the latter is the event-based one. The
explicit expression for the evaluation of varying sampling interval iT  according to Dorf’s integral-
difference adaptive sampling law is )(' 1−= ii txCT , where const=C  depending on the assumed
sampling resolution, and )(' 1−itx  is the absolute value of the signal time derivative at the instant 1−it

when the most recent sample has been triggered [16]. Thus, the implementation of the adaptive
sampling laws requires the real-time evaluation of the absolute signal derivative )(' tx . Since the
implementation of a sampling law definded by the above formula for iT  was too compex in the early

60s, Dorf et al. proposed the linear approximation of this formula. Additionally, both the lower and the
upper bounds on the sampling interval iT  are introduced to the sampling law arbitrary. The authors

provided some numerical results showing that this approximated criterion yields from 20% to 50% of
the savings in the number of samples over a long period of time comparing to the conventional
periodic sampling [16]. However, no explicit formula has been derived to evaluate how much effective
it is in a general case.

Next, Hsia has noticed that both Dorf’s and Mitchel’s heuristic adaptive sampling criteria might be
derived from the same integral-difference criterion of different thresholds, and proposed a unified
approach to a design of adaptive sampling laws [21]. In subsequent works the propositions of
generalized criteria for adaptive sampling have been introduced [22,25]. These criteria combine a
sampling resolution with a sample cost modelled by the proposed cost functions.

However, as follows from our experience, the adaptive sampling scheme has the significant
disadvantage, which we call the "local extremum trap”. Namely, the estimated current sampling
interval is theoretically infinite, although practically bounded to its maximum value Tmax, if the most
recent sample is taken when the signal reached its local minimum or maximum (Fig. 5a). It is because
the signal first time-derivative crosses zero at that moment and the predicted signal change is very low
or even zero. As a result, the adaptive sampling is prone to the temporary instability of the signal
tracking error (see Fig. 5a). On the other hand, the event-based integral sampling is in general not
subject to similar problem since the (integral) sampling error is the same by the definition in every
sampling interval (Fig. 5b).
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Figure 4. Model of the adaptive sampling system.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
TT Adaptive Sampling

Time [sec]

U
ni

t r
es

po
ns

e

(a) the adaptive sampling according to the integral criterion
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 (b) the event-based integral sampling

Figure 5. Comparison of the adaptive integral sampling (a), and the event-based integral one (b).
The "local extremum trap" is illustrated in the adaptive sampling scheme (a). Note that the
event-based scheme is immune to the such instability of the sampling error (b). Both sampling
schemes are based on the constant integral-difference criterion with the same resolution. The
sampled signal is the unit response of the second-order closed-loop system, the maximum
sampling period in the adaptive sampling equals ]s[2.0max =T ; the zero-order hold is used.
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Although the adaptive sampling has not been commonly applied in practice, there are selected
application areas where it has been successfully utilized (see the overview of adaptive sampling
applications in [24]). Furthermore, the adaptive sampling in control systems is nowadays still an active
research topic, e.g. see [23].

3.2. Event-based sampling versus pulse frequency modulation (PFM)

There are some existing systems based on the same philosophy as the event-based sampled-data
systems. In particular, the pulse frequency modulation (PFM) belongs to the class of level-crossing
sampling systems, and the integral pulse frequency modulation (IPFM) corresponds to the event-based
sampling according to the integral criterion [24,26]. The operation of the IPFM is summarized as
follows. First, the input signal is integrated. Next, when the signal on the integrator output reaches the
fixed reference value, a pulse is generated, the integrator is reset, and the cycle starts again. Thus, the
signal on the IPFM modulator output consists of a series of pulses. The IPFM is widely utilized in
biomedical applications for the estimation of the cardiac event series and the heart rate variability
(HRV) [27].

4. Analysis of the event-based integral sampling

In this section, a derivation of the analytical formulas for the uniform event-based sampling
according to the integral criterion is presented.

4.1 Sampled signal definition

We assume that a sampled signal is any time-varying quantity. Our discussion is restricted to a class
of signals that are samplable (i.e. the signals of bounded variation) such that the sampling error can be
controlled by tuning the sampling interval.

The definition of a function of bounded variation was introduced by C. Jordan in 1881 [28]. We
adopt it for signals as follows.

Definition 1. A signal )(tx  defined over a time interval ],[ ba  is said to be of bounded variation if
the following sum is bounded:

∞<−∑
=

−

k

j
jj txtx

1
1 )()( (2)

for every partition of the interval ],[ ba  into subintervals ),( 1 jj tt − , where kj ,...,2,1= ; and at =0 ,

btk = . The measure denoted by )(xV b
a  and defined as:

∑
=

−−=
k

j
jj

def
b

a txtxxV
1

1 )()(sup)( (2a)

is said to be a total variation of a signal )(tx  on the interval ],[ ba .

A signal of bounded variation is not necessarily continuous, but is differentiable almost everywhere.
Moreover, )(tx  can have discontinuities of the finite-jump type at most [29,30]. If )(tx  is continuous,
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the total variation )(xV b
a  might be interpreted as the vertical component (ordinate) of the arc-length of

the )(tx  graph, or alternatively, as the sum of all consecutive peak-to-valley differences.
All the signals which appear in the physical reality or are generated in the laboratory can be

approximated by a class of signals of bounded variations.
In the context of linear time-invariant (LTI) system with a transfer function H(s), the total variation

of the step response s(t) is the peak gain of a system (defined as the largest ratio of the ∞L  norm of the
output to the ∞L  norm of the intput) [31,32]:

)(0_
sVH

gnpk
∞= (2b)

This observation appears firstly in [31]. On the other hand, it can be shown that the peak gain of a
transfer function is equal to the 1L  norm of its impulse response [32]:

1
0

_
)( hdtthH

gnpk
== ∫

∞

(2c)

Therefore, on a basis of (2b) and (2c), the total variation of LTI system step response might be
interpreted as the integrated absolute area ( 1L  norm) of the corresponding impulse response h(t) [33]:

10 )( hsV =∞ (2d)

4.2. Integral sampling resolution

The next definition specifies a metric that describes the sampling accuracy characterized by the
integral absolute error (IAE) (see Fig. 1). We will use it in the subsequent sections for the comparison
of sampling schemes.

Definition 2. If the integral absolute sampling error (IAE) is used for the evaluation of the sampling
accuracy, the resolution ν  of the sampling scheme over a time interval ],[ ba  is defined as the inverse
of the maximum δ  of the set of numbers iδ , i.e.:

δν 1
def

= (3)

where },...,1;max{ nii

def
== δδ , and dttxtx

i

i

t

t
ii ∫

−

−−=
1

)()( 1δ  is IAE accumulated over the ith sampling

interval ],[),( 1 batt ii ⊂− .

As follows from Definition 2, we assume that the sampling resolution is defined just by the worst-
case (maximum) integral absolute sampling error (IAEmax), i.e. }max{ iδδ = . In the uniform event-

based sampling according to the integral criterion, IAE is the same in every sampling interval (i.e.
µδδ ==i , see (1)), thus the sampling resolution equals µν 1= . On the other hand, in the periodic

sampling, IAE varies among the sampling periods and reaches its maximum IAEmax only during the
fastest changes of the sampled signal.
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4.3. Mean and maximum sampling rate

Let )(tx  be a signal of bounded variation over the time interval ],[ ba .

Theorem 1. The mean sampling rate m in the integral event-based sampling scheme for a sampling
resolution µν 1=  is approximated by the following formula:

)('
2
1 txm
µ

≅ (4)

where )(' tx  is the mean of the square root of the signal derivative absolute value defined as

follows:

ab

dttx
tx

b

a

−
=
∫ )('

)(' (5)

The approximation (4) is more accurate if the sampling resolution ν  is high.

Proof: By letting the signal )(tx  be approximated by a truncated Taylor series, if the threshold µ  is
small enough:

))((')()( 111 −−− −+≅ iii tttxtxtx  for itt ≥        (6)

we have:
))((')()( 111 −−− −≅− iii tttxtxtx  for ii ttt ≤≤−1       (7)

where )(' 1−itx  is the signal time-derivative at the instant 1−it .

Taking into account (7), the criterion (1) can be approximately written as:
21

0
11 )(

2
)('

)(')()(
1

1

i
i

t

i

tt

t
i t

tx
tdttxdttxtx

iii

i

∆=≅−= −
∆

−

∆+

− ∫∫
−

−

µ      (8)

where 1−−=∆ iii ttt  is the length of the ith sampling interval.
Consequently, it∆ derived from (8):

)('
2

1
1

−
− =−=∆

i
iii tx

ttt µ . (9)

Then, by the definition the mean length t∆  of the sampling interval calculated for a number of n
sampling intervals:

∑
=

∆=∆
n

i
i

def
t

n
t

1

1
. (10)

The mean sampling rate m (i.e. the average number of samples in a time unit) is given as follows:

∑
=

∆
=

∆
= n

i
i

def

t

n
t

m

1

1
. (11)

For simplicity but without loss of generality, assume that at =0 , btn = .
If we also assume that during each sampling interval niti ,...,1, =∆ , the signal derivative does not

change significantly, (i.e. const)(' ≅tx , ),( 1 ii ttt −∈ ), then:
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On the basis of (9) we can write:
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Setting (13) to (12) we have:
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If we divide both sides of (11) and (14) we obtain the formula for the mean sampling rate:
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If the lengths of the sampling intervals niti ,...,1, =∆  are small enough, the sum of integrals on the
right side of (15) can be approximated by the single integral taken over the whole time interval

],[],[ 0 batt n ≡ :
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dttx
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≅

∫ )('

2
1
µ

(16)

Thus, the proof has been completed.

Summing up, the mean sampling rate in the uniform event-driven integral sampling is expressed by
two factors:

- the mean of the square root of the signal derivative absolute value )(' tx , which is a measure
of the sampled signal )(tx ,

- the resolution µν 1=  of the integral event-based sampling.
On a basis of (12) we can also find the maximum sampling rate, which occurs during the fastest

signal changes:

maxmax )('
2
1 txm
µ

= ,       (17)

or respectively, the minimum intersample spacing:

max

min
)('

2

tx
t

µ
=∆ ,        (18)
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where max)(' tx  is the maximum of the absolute value of the first signal derivative with respect to the
time during an interval ],[ ba . The relationship (18) can be also derived directly from (9).

Thus, the maximum sampling rate is bounded implicitly by the threshold µ and the gradient

max)(' tx  of the signal derivative absolute value (i.e. the maximum slope of the sampled signal).

4.4. Integral sampling effectiveness

In order to estimate how effective the integral sampling is in terms of the sampling rate, we
compare it with the conventional periodic observations assuming that both schemes have the same
sampling resolution.

Definition 3. The effectiveness q  of the event-based sampling according to the integral criterion (1)
in a certain time interval ],[ ba  is defined as the ratio of the sampling frequency in the periodic scheme

Tm  and the mean rate of samples m  in the corresponding event-based scheme:

m
mq T

def
=  (19)

assuming that the sampling resolution is the same in both sampling schemes (i.e. µδ = ).

As follows from Definition 3, the effectiveness expresses the “goodness” of the event-based
sampling scheme with respect to the conventional periodic sampling and is defined intuitively
following [3] as the reduction of the mean sampling rate if the integral event-based sampling is used
instead of the conventional periodic one. By the definition: 1≥q . Furthermore, the asymptotic
effectiveness ∞q  is defined as the effectiveness for the infinite sampling resolution ∞→ν .

Theorem 2. The asymptotic effectiveness ∞q  of the uniform integral event-based sampling with
respect to the periodic sampling for the same sampling resolution of both schemes µδ =  defined
according to the integral absolute error is given by the following formula:

)('

)('
lim max

tx

tx
qq ==

∞→∞ ν
(20)

where q is the effectiveness of the uniform integral event-based sampling given by the formula (19).

Proof. First, we evaluate the sampling frequency in the periodic scheme for the assumed sampling
resolution δν 1= . The sampling period T in the uniform scheme is adjusted to the fastest change of a
signal during the time interval ],[ ba . Assume that the most rapid change of a signal appears within the
ith sampling period, i.e. within the time interval ],)1[( iTTi − . Following the expression (8), where the
approximation of the signal x(t) by two terms of Taylor series is applied, we can write:

2max

0
max

)1( 2
)('

)(')])1(()([ T
tx

tdttxdtTixtx
TiT

Ti

=≅−−= ∫∫
−

δ (21)

and consequently
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max)('
2
tx

T δ
= (22)

Next, the sampling frequency in the periodic scheme:

max)('
2
11 tx

T
m

def

T
δ

==  (23)

Note that the sampling frequency Tm  is equal to the maximum sampling rate maxm  in the

corresponded integral sampling scheme (compare Eq. (17) and (23)) if the sampling resolution is the
same in both sampling schemes (i.e.: maxmmT =  if µδ = ).

Setting the formulas (15) and (23) to the formula (19), and provided that µδ = , we obtain:
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Since the sampled signal )(tx  is approximated by the first two terms of the Taylor series (see (6)),
the formula (24) gives only an approximation of the real sampling effectiveness. This approximation is
more accurate if the number of samples, n, used for a comparison of sampling schemes is high.

In particular, if the sampling resolution is infinite ( 0→µ ), then ∞→n , and the sum in the
numerator of the formula (24) approaches the integral as follows:
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Finally:
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Thus, the proof has been completed.
Note that the integral sampling effectiveness is independent of the sampling resolution, and

constitutes the built-in feature of the sampled signal. Note also that the analytical formulas for the
mean sampling rate (Eq. (4)), and the asymptotic effectiveness (Eq. (20)) do not take into account the
heartbeat sampling.

4.5. Comparing integral sampling effectiveness to send-on-delta effectiveness

An interesting issue is a comparison of two event-based sampling schemes, i.e. the sampling
according to the integral criterion and the send-on-delta effectiveness that is derived in [3] for a given
sampled signal.

Let )(tx  be a continuous-time signal of bounded variation in the time interval ],[ ba  (the
assumption about the continuity of a sampled signal is made due to the problems with the description
of level-crossing sampling of signals containing discontinuities).
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Theorem 3. Asymptotic integral sampling effectiveness ∞q  is not greater than the minimum send-
on-delta/level-crossing sampling effectiveness minp   for a given sampled signal:

minpq ≤∞ (27)

Proof. Since 
)('

)('
max

min tx

tx
p =  (see [3]), and ∞q  is defined by (20), the proof is obvious.

Moreover, the inequality (27) is reduced to the equality ( minpq =∞ ) only for a pure linear signal.
For the rest of continuous-time signals, the inequality (27) is strong, i.e. minpq <∞ .

The fact that the integral sampling effectiveness is lower than the related effectiveness for the send-
on-delta/level-crossing scheme is a price of more accurate signal tracking in the former case (see
comments in Section 2.1).

5. Simulation results

In order to verify the derived analytical formula (4) and (20) for the mean sampling rate and the
event-based integral sampling asymptotic effectiveness, we have run the simulations using
Matlab/Simulink environment.

5.1. Test signal

The tested signal )(tx  is a step-response of the second-order underdamped closed-loop system, with
the open-loop transfer function ( ) 210010)( sssF += , and given in the time domain as:

tetetx tt 35cos35sin
3
31)( 55 −− −+= (28)

The test signal is presented in Figures 2(a,b) and 5(a,b), in particular.
It should be pointed out that this signal has been used by several authors for investigating both the

adaptive sampling algorithms [16,19,20], and the send-on-delta/level-crossing sampling scheme [3].
The simulation has been run for the time interval (0;1.2[sec]), when the transient component of the
response dies out and the signal becomes nearly constant at the end of the selected time interval. The
zero-order hold is assumed.

5.2. Simulation versus analytical results for mean sampling rate

The simulation results of the mean sampling rate are listed in Table 1 and presented in Fig. 6. For
comparison, we have also calculated the same measure on the basis of the derived analytical formula

(4). The mean of the square root of the signal derivative absolute value )(' tx  calculated numerically

for the time interval (0;1.2[sec]) according to (4) equals:
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The analysis of both simulation results and their analytical approximation presented in Table 1
shows that the approximation accuracy of the analytical formula equals roughly 10% for a small
sampling resolution and amounts to a fraction of percent for a high sampling resolution (the simulation
and the numerical integration error are of about 1%).

Table 1. Comparison of simulation results and analytical approximation for the mean sampling rate.

 Integral absolute
error
(IAE)

Simulation
results

Analytical
approximation

0,048 2.5 2.78
1,22E-02 5 5.52
4,40E-03 8.33 9.2
5,00E-04 26.5 27.28
8,00E-05 67.5 68.2
5,00E-06 272.5 272.8
1,00E-07 1925 1929

Mean sampling rate

Sampling resolution
1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

M
ea

n 
sa

m
pl

in
g 

ra
te

1e+0

1e+1

1e+2

1e+3

1e+4

Simulation results Analytical approximation

Figure 6. Simulation results versus analytical approximation of the
mean sampling rate according to the integral criterion.

5.3. Simulation and analytical results for the integral sampling effectiveness

Simulation results of the sampling effectiveness are listed in Table 2 and presented in Fig. 7. The
analysis of Fig. 7 shows that the graph of sampling effectiveness approaches the horizontal asymptote
for a high sampling resolution. The sampling effectiveness estimated by the simulation for high
sampling resolution (for 7101 =µ ) equals 3.671.

For comparison, the asymptotic sampling effectiveness for the tested signal according to (20):
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 (29)

Thus, the simulation result for a high but finite sampling resolution is very close to and consistent
with the asymptotic analytical result (29). The analytical approximation of sampling effectiveness
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calculated above is presented in Fig. 7 as the horizontal line. For comparison, the effectiveness of the
linear send-on-delta for the test signal equals 7.02 [3].

Table 2. Simulation results of the integral sampling effectiveness for the signal tested.

Integral
absolute error

(IAE)

Number of samples
in event-based

sampling

Number of
samples in

periodic sampling

Event-based sampling
effectiveness

0.048 3 12 4.000
5E-4 32 120 3.750

2.46E-4 46 171 3.717
8E-5 81 300 3.700
1E-5 231 851 3.684
5E-6 327 1200 3.675

9.7E-7 742 2727 3.675
1E-7 2310 8480 3.671

Integral sampling effectiveness vs. sampling resolution

Sampling resolution
1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

E
ffe

ct
iv

en
es

s

3,0

3,2

3,4

3,6

3,8

4,0

4,2

4,4

Effectiveness (simulation) Asymptotic effectiveness (analytical)

Figure 7. Simulation results versus analytical approximation for the integral sampling asymptotic
effectiveness. The approximation is accurate for small integral absolute error (IAE).

6. Application of the analytical formula

On the basis of the formula (20), we have derived analytic solutions of the event-based integral
sampling asymptotic effectiveness for particular time responses of the first and second-order dynamic
systems modelling environment temporal evolution in many sensory applications.

The following signals are considered:
- step responses of the first-order system, of the differentiation, and of the integration circuits,
- critically damped step responses of the second-order and the nth-order systems,
- second-order overdamped step response,
- undamped step response (harmonic signal).
The results are shown in Table 3. The corresponding results of the send-on-delta effectiveness are

reported in [3]. As follows from Table 3, the integral sampling asymptotic effectiveness calculated for
the time interval ],0[ b  is a function of η  (or 1η  and 2η  for the system with different time constants),
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which is the length of the considered time interval (b ) normalized to the appropriate time constants
( Tb=η , 11 Tb=η , 22 Tb=η ). Note that the effectiveness for the pure harmonic signal amounts to
1.31 (for a comparison, the effectiveness of the linear send-on-delta for the harmonic wave equals
1.57).

Table 3. The event-based integral sampling asymptotic effectiveness for some time responses of the
first and the second-order dynamic systems calculated for the time interval ],0[ b , where

Tb=η , 11 Tb=η , 22 Tb=η .

Signal Step response Asymptotic effectiveness
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Table 4 shows the integral sampling effectiveness calculated for selected time intervals ],0[ b . The
time interval selection (except for the undamped system step response) is based on the assumption that
b  represents the settling time of a system, i.e. the time required for the step response to stay within a
specified percentage of its final value. The percentage is shown in the first column, e.g. for the second-
order critically damped system, Tb 5=  is set, because 0959.0)5( xTx = . For the second-order
overdamped system, 5721 =TT is assumed since 021 97.0)75( xTTx == .

Table 4. The event-based integral sampling asymptotic effectiveness for selected time intervals ],0[ b .

Signal Integral sampling effectiveness
for selected time intervals
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The presented results show that the integral sampling effectiveness ranges between 1.31 and 1.93
for signals selected in Table 4 except the effectiveness for the pure linear signal which equals 1.
Comparison of the asymptotic integral sampling effectiveness and the minimum send-on-delta
effectiveness listed in [3] shows that the former is not greater than the latter for a particular sampled
signal as expressed by Theorem 3.
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7. Heartbeat sampling

The inherent feature of the event-driven sampling is that the sampling interval can theoretically go
to infinity if changes of the monitored signal are fewer than the specified threshold. This feature is
opposite to the reliability requirements because it makes it difficult to detect a possible sensor failure.
Therefore the event-driven observation strategy is usually equipped with the timeout mechanism.

Namely, if during a specified time interval maxt∆  the signal x(t) does not change enough in order to
trigger the next sample using the integral criterion, the observation is provided according to the time-
triggered scheme, which is called heartbeat sampling. In terms of the node reliability, the heartbeat
update determines the maximum latency of error detection [13]. Recommendations for heartbeat
update in LonWorks networked control systems are specified in [10].

The heartbeat observation especially occurs during the time when the setpoint is reached and the
control system stays in the equilibrium state. Thus, if the signal x(t) does not change enough for a long
time, the sampling rate is constant and amounts to:

max
min

1
t

m
∆

=         (30)

The selection of the heartbeat observation period maxt∆  is a trade-off between the dependability
requirements, stability of the closed-loop system and the available bandwidth or the application
performance.

Summing up, the current sampling rate in the event-driven integral sampling for a given signal is
included within the range:
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Conclusions

The paper presents an analytical method for the estimation of the communication bandwidth and the
sampling effectiveness for the event-based integral sampling.

The derived closed-form formulas enable one to allocate the communication bandwidth for a given
resolution. The knowledge about the expected bandwidth demands and possible savings allows one to
predict a priori its potential usefulness for particular applications. A great challenge for further
research is to establish the real-time scheduling and communication for the event-based sampling in
order to support the use of irregular observations in time-critical industrial control applications.
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