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Abstract: This paper is concerned with improving performance of a state estimation 
problem over a network in which a send-on-delta (SOD) transmission method is used. The 
SOD method requires that a sensor node transmit data to the estimator node only if its 
measurement value changes more than a given specified δ value. This method has been 
explored and applied by researchers because of its efficiency in the network bandwidth 
improvement. However, when this method is used, it is not ensured that the estimator node 
receives data from the sensor nodes regularly at every estimation period. Therefore, we 
propose a method to reduce estimation error in case of no sensor data reception. When the 
estimator node does not receive data from the sensor node, the sensor value is known to be 
in a ( ),i iδ δ− +  interval from the last transmitted sensor value. This implicit information has 
been used to improve estimation performance in previous studies. The main contribution of 
this paper is to propose an algorithm, where the sensor value interval is reduced to 
( )/2, /2i iδ δ− +  in certain situations. Thus, the proposed algorithm improves the overall 
estimation performance without any changes in the send-on-delta algorithms of the sensor 
nodes. Through numerical simulations, we demonstrate the feasibility and the usefulness of 
the proposed method. 
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1. Introduction 

Recently, interest in the study of networked control system (NCS) and sensor networks has 
increased widely due to its low cost, high flexibility, simple installation and maintenance [1]. In such 
systems, a center station has the task of receiving, processing and sending data to the slave nodes such 
as sensor nodes, actuator nodes, etc. over a serial network. It is easy to add or remove slave nodes in 
the network without changing the system structure much. Aside from the advantages as mentioned 
above, however, there are several problems affecting to the system such as bandwidth, network-
induced delay, packet loss rate. 

One of the most interesting problems is how to reduce network bandwidth when there are many 
nodes on the network. This can be achieved by reducing either data packet size or data packet 
transmission rate. In [2], an adjustable deadband was defined on each node to reduce network traffic. 
The node does not broadcast a new message if its signal is within the deadband. In [3], estimators were 
used at each sensor node instead. When the estimated value deviates from the actual output by more 
than a prespecified tolerance, the actual sensor data are transmitted. To overcome the limited network 
bandwidth, transmission data size reduction using a special encoder-decoder was considered in [4]. 
Another method for reduction of data transmission rate called send-on-delta (SOD) transmission was 
explored in [5-8]. This method requires that a sensor node transmit data to the estimator node only if 
its measurement value changes more than a given specified δ value. By adjusting the δ value at each 
sensor node, data transmission rate is reduced so that the network bandwidth is increased and can be 
used for other traffic. 

The purpose of this paper is to extend our work on the modified Kalman filter employing a SOD 
transmission method [5], where the states are periodically estimated by the estimator node regardless 
of whether the sensor nodes transmit data or not. A challenging issue is how the estimator node 
determines the measurement value at a sensor node if it does not send data. If this problem is well 
solved, the estimation performance will be significantly improved. In this paper, we examine and 
evaluate the measurement output value as well as measurement noise arising when a sensor node does 
not transmit data. Then, a computed output with the new measurement value and new noise covariance 
is compensated to the system in order to reduce estimation error. Through simulations, we show that 
the proposed method gives better estimation performance than that of [5]. 

2. Sensor Output Evaluation 

Consider a networked control system illustrated as in Figure 1, where the linear continuous-time 
system is described as: 

( ) ( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t w t

y t Cx t v t

= + +

= +
  (1) 

where nx R∈  is the state of the plant, u  is the deterministic input signal, py R∈  is the measurement 
output which is sent to the estimator node by the sensor nodes. ( )w t  is the process noise with 
covariance Q , and ( )v t  is the measurement noise with covariance R . ( )w t  and ( )v t  are uncorrelated, 
zero mean white Gaussian random processes. 
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The following assumptions are made on the data transmission over network: 

1. Measurement outputs ( )1iy i p≤ ≤  are sampled at period T, but their data are only 
transmitted to the estimator node when the difference between the current value and the 
previously transmitted one is greater than iδ . 

2. For simplicity in problem formulation, any transmission delay from the sensor nodes to the 
estimator node is ignored. 

 
Figure 1. Configuration of a networked control system 
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The estimator node estimates the states of the plant regularly at period T, regardless of whether or 
not any sensor data arrive. If the i -th sensor data do not arrive, the estimator node knows that the 
current value of i -th sensor output has not changed more than the range ( )δ δ− +,i i , compared with the 
last arriving one. This implicit information is used to estimate the current states in case i -th sensor 
data do not arrive. 

Let the last received value of i -th sensor output be ,last iy  at time ,last it . If there is no sensor data 
received for > ,last it t , the estimator node considers that the measurement value of the i -th sensor 
output ( )iy t  is still equal to ,last iy  but the measurement noise is increased from ( )iv t  to 

= + Δ, ,( ) ( ) ( , )n i i i last iv t v t t t , where Δ ,( , )i last it t  is defined [5]: 

, ,( , ) ( )i last i last i it t y y tΔ = − , δΔ ≤,( , )i last i it t   (2) 

In [5], it was assumed that Δ ,( , )i last it t  had a uniform distribution with zero mean and a variance 
δ2 / 3i . However, this assumption is incorrect in some cases where that measurement noise ( , )i iR  is 
smaller than δ2

i , where ( , )i iR  is the ( , )i i -th element of R . To illustrate this, assume that there is no 
measurement noise (i.e., 0R = ). Then ,0 ( , )i last i it t δ≤ Δ <  if ( )Cx t is increasing and 

,( , ) 0i i last it tδ− < Δ ≤  if ( )Cx t  is decreasing. In this case, a reasonable assumption is that the mean of 
Δ ,( , )i last it t  is /2iδ  if ( )Cx t  is increasing and /2iδ−  if ( )Cx t  is decreasing. This trend is preserved as 
long as the measurement covariance 2R δ . When the measurement covariance is large, then  
Δ ,( , )i last it t  in [5] is more likely affected by the zero-mean measurement noise ( )v t ; thus zero mean 
assumption is a more valid assumption.  

To demonstrate this argument, consider an example of the output response of an 2nd order system 
with step input shown in Figure 2. The top graph is the output signal without noise ( )Cx t  and the 
measurement output ( )y t . In this example, ( )y t  is sampled by the send-on-delta scheme with 

0.1δ = .  The new measurement noise ( )nv t  is shown in the middle and bottom graphs for two cases: 
2R δ>  and 2R δ , respectively. Obviously, the waveform of ( )nv t  is rather different in two cases: 
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It is a uniform distribution with zero mean in the first case, but with non zero mean in the second case. 
For example, ( )nv t  has a positive mean value in time range (0,10 )s  but a negative mean value in 
(10,20 )s . 

Therefore, the assumption in [5] is only correct in the case 2R δ> . Furthermore, in realistic 
systems, measurement noise is normally small, while δ  is set to a greater value to reduce data 
transmission rate. For some types of digital sensor such as encoders, measurement noise is even equal 
to zero. This means that the second case (non-zero mean case) happens more usually than the first case 
in the real applications. We propose an estimation algorithm which exploits this non-zero mean case in 
order to improve the estimation performance.  

Now we compute the mean value and variance of , ( )n iv t . Notice that the new measurement noise 
, ( )n iv t  only exists when the estimator node does not receive data from the i -th sensor node at instant 
t . Otherwise, measurement noise is still ( )iv t . 

+  If 2
( , )i i iR δ> : 

 
{ }

{ }
,

2
, ( , )

( ) 0

( ) /3

n i

n i i i i

E v t

Var v t R δ

=

= +
  (3) 

+  If 2
( , )i i iR δ≤ : 

 
{ } ( )

{ }
,

2
, ( , )

( ) /2  /2

( ) /12

n i i i

n i i i i

E v t or

Var v t R

δ δ

δ

= −

= +
  (4) 

We see that variance of , ( )n iv t  in the second case (4) is smaller than in (3) which was used in [5].  

Figure 2. Effect of R  and δ  on measurement noise ( )nv t . 
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3. State estimation with the SOD transmission method 

In this section, we propose a method to adaptively use (3) or (4) in the modified Kalman filter for 
the state estimation problem. The main issue here is when we should use (4) instead of (3)? And if (4) 
is used, how then to determine when the mean value of , ( )n iv t  is positive or negative? 

 Firstly, we compute the mean value of , ( )n iv t  when (4) is used. Let two latest consecutive i -th 
sensor output values received at the estimator node be 1, ,,  last i last iy y−  at time 1, ,,  last i last it t− , respectively. 
Derivative of iy  at time ,last it  is approximately calculated as follows: 

, 1, , 1,
,

, 1,

ˆ ˆ ˆ ˆ
( ) last i last i last i last i
i last i

last i last i i

y y y y
y t

t t kT
− −

−

− −′ ≈ =
−

  (5) 

where ,l̂ast iy  is the estimated value of ( )iy t  at instant ,last it , and ik is number of sampling times. We use 
,l̂ast iy  instead of ,last iy  to reduce measurement noise effects.  If  the i -th sensor node does not send data 

at instant ,last it t> , it is more likely that the output value ( )iy t  will satisfy: 

   1, ,ˆ ˆ ( )last i last i iy y y t− < <  

  or 
   , 1,ˆ ˆ( )i last i last iy t y y −< <  

Therefore, mean value of the new measurement noise , ( )n iv t  is computed: 

{ } ( ), ,( ) ( ) * /2n i i last i iE v t sign y t δ′    (6) 

Once { }, ( )n iE v t  is obtained in (6), to satisfy zero mean noise condition in the Kalman filter, we 
just add this value to the measurement value ,last iy . 

Now we investigate the system response to determine when (3) or (4) is chosen to the filter. The 
basic principle is that if it is certain that ( )iy t  is increasing or decreasing, we should use (4). And if it 
is not certain, we should use (3). This decision is made based on the absolute value of ( )iy t′  as follows: 

( ),(3),  if  

(4),  otherwise          

i last i iy t
Selector

ε′⎧ ≤⎪⎪= ⎨⎪⎪⎩
  (7) 

where 0iε >  is a sufficiently small threshold. If ( ),i last iy t′  is small, it is difficult to draw a 
meaningful conclusion about whether ( )iy t  is increasing or decreasing, so in that case, we use (3). 
Otherwise, we could be fairly certain about whether ( )iy t  is increasing or decreasing; in that case, we 
use (4).  Some remarks about the parameter iε  are warranted. If iε = ∞ , (3) is always used in the 
filter as in [5]. Therefore, in case 2

( , )i i iR δ> , the proposed filter will become to the filter in [5] if 
setting iε = ∞ . It is very flexible to switch the filter to [5] or to the the proposed filter so that 
estimation performance is improved in both case 2R δ>  and 2R δ . 

A modified Kalman filter for state estimation at step k , where there is a change in the measurement 
update part of the discrete Kalman filter algorithm, is given as in the Fig.3 when both (3) and (4) are 
used in case 2R δ . Basic principle of  Kalman filters could be found in [10,11]. In Fig.3, we use the 
discretized plant model is sampled at period T :  

  
0

,  
T

AT Ar
d dA e B e Bdr= = ∫ ,  
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dQ  is the process noise covariance of the discretized plant: 

0

,
T

Ar A r
dQ e Qe dr′= ∫  

lasty  is the vector of  p  last received sensor values: 

,1 ,2 ,...last last last last py y y y ′⎡ ⎤= ⎢ ⎥⎣ ⎦ , 

and m  is the vector of  p  mean values: 

   1 2 ... pm m m m ′⎡ ⎤= ⎢ ⎥⎣ ⎦ . 

 

Figure 3. Structure of the modified Kalman filter loop 
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In the modified filter above, vector m  presents mean value of ( )nv t  for all p  measurement outputs. 
In case the filter uses (4) for estimation, m  becomes non-zero. In order to satisfy zero mean noise 
condition, we add m to lasty  and consider ( )lasty m+  as the measurement values.  

The iε  thresholds determine when the filter uses (4) instead of (3). The smaller iε  is, the more the 
filter relies on (4). In practical systems, iε  thresholds could be determined by monitoring derivative of 
the sensor output ( )iy t′ . 

It is difficult to derive an explicit expression of performance improvement. However, we could say 
that the error covariance kP  becomes smaller when (4) is used more often. This is because smaller R  
value in the Kalman filter results in smaller kP  value. We note that (4) is more often used if ( )y t  is 

either monotonically increasing or decreasing.  

4. Simulation 

To verify the proposed filter, we consider an example of the step response of a second-order system 
where the output is sampled by the SOD method: 

  

4 4

00 1
( ) ( ) ( ) ( )

/1/ /

( ) 1 0 ( ) ( )

10 ,  10 ,  10

x t x t u t w t
M aa b a

y t x t v t

Q R T ms− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤= +⎢ ⎥⎣ ⎦

= = =

 

 
The system parameters are given in 3 following cases for performance evaluation: 

 1. 30,  a 10,  b 10M = = =  :  overdamped system 
 2. 30,  a 5,  b 1M = = =      :  underdamped system 
 3. 30,  a 5,  b 0M = = =     :  undamped system 

The simulation process is implemented for 50 seconds, and 0.001ε =  for all cases. In each case, 
we use 3 filters for performance comparison: the filter using (3) only, the filter using (4) only, and the 
proposed filter. Estimation error is evaluated by the criterion: 

( )
1/2

2
1 1

1

1
ˆ

N

k

e x x
N =

⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎟⎜⎝ ⎠∑   (8) 

where 1x  is the reference state, 5000N = .  
Estimation errors for different δ  values in 3 cases, where the condition 2R δ  is satisfied, are 

given in Table 1, 2, and 3. We see that estimation performance of the proposed filter is the best and 
significantly improved in comparison with the filter using (3). For example, in the case of 0.2δ = , 
estimation error of the proposed filter is reduced 36.75%  compared to the filter using (3) in case 1, 
reduced 0.88%  in case 2, and reduced 7.49%  in case 3. 

The results also show that the filter using (4) is better than the filter using (3) in case 1, but worse in 
case 2 and case 3. In theory, the filter using (4) must be always better than the filter using (3). This 
happens because there exists a delay between the sensor output signal ( )y t′  and the computed value 

( )lasty t′  in (5). Therefore, if ( )y t′  changes sign while condition ( ) ( )lasty t y t δ− <  still holds, the 
estimator keeps using  the old value ( )lasty t′  whose sign is incorrect compared with ( )y t′ . This makes 
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(6) incorrect, and leads to increase of estimation error. As we see in the Fig.5 and Fig.6, the estimation 
error of the filter using (4) becomes large at time ( )y t′  changes the sign. 

The proposed filter overcomes this situation by applying the algorithm (7) in which the filter uses 
(3) at time ( )y t′  changes sign and uses (4) at other time. The solid line on the proposed filter graphs in 
Fig.4, Fig.5, and Fig.6 presents the sign of Selector (7). That is, 0Selector >  denotes that the filter 
uses (4) and 0Selector <  denotes that the filter uses (3). 
 

Table 1.  Estimation error with different δ  values in case 1. 

 0.05δ =  0.1δ = 0.15δ = 0.2δ =  
n  454 268 185 141 

Filter using (3) 2.5643e-004 3.2061e-004 4.6965e-004 5.6528e-004 
Filter using (4) 1.9581e-004 2.0124e-004 3.0587e-004 3.5756e-004 
Proposed filter 1.9581e-004 2.0123e-004 3.0588e-004 3.5755e-004 
n : number of sensor data transmissions 

 

Table 2.  Estimation error with different δ  values in case 2. 

 0.05δ =  0.1δ = 0.15δ = 0.2δ =  
n  1168 657 484 370 

Filter using (3) 0.9644e-004 2.7051e-004 4.1805e-004 5.5656e-004 
Filter using (4) 1.7065e-004 2.9365e-004 4.6972e-004 5.5783e-004 
Proposed filter 0.9468e-004 2.6787e-004 4.1551e-004 5.5166e-004 

 

 

Table 3.  Estimation error with different δ  values in case 3. 

 0.05δ =  0.1δ = 0.15δ = 0.2δ =  
n  4055 3091 1939 1700 

Filter using (3) 4.1432e-005 5.1109e-005 4.1805e-005 6.5436e-005 
Filter using (4) 4.4961e-005 6.6618e-005 4.6972e-005 8.2118e-005 
Proposed filter 3.9019e-005 4.6125e-005 4.1751e-005 6.0537e-005 
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Figure 4.  Estimation error of 3 filters ( 0.2δ = ) in case 1. The solid line on the proposed filter graphs 

presents the sign of Selector in (7). 

 
 

Figure 5.  Estimation error of 3 filters ( 0.2δ = ) in case 2. 
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Figure 6.  Estimation error of 3 filters ( 0.2δ = ) in case 3. 

 

5. Conclusion 

In this paper, the state estimation problem with SOD transmission method over the network has 
been considered. The main objective of this paper is how to reduce the estimation performance 
degradation when the SOD transmission method is used. With given δ  value and measurement noise 
R , a suitable new noise is computed and compensated to the estimator so that estimation error is as 
small as possible.  Accordingly, not only sensor data transmission rate can be significantly reduced, 
but also estimation performance degradation is relatively small. Through the simulations, it is shown 
that estimation performance of the proposed method is better than that of [5], where the total number 
of sensor data transmissions is identical. 
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