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Abstract: This paper is concerned with sensor data transmission strategy. The main focus of

the paper is how to reduce the number of sensor data transmission while maintaining the dif-

ference between the estimated sensor value and the real sensor value. The proposed method

could be used in sensor networks and networked control systems, where number of transmis-

sion should be minimal. A linear predictor is used to predict sensor values and sensor data

are transmitted if the difference between the predicted sensor value and the real sensor value

exceeds the specified limit. An analytic upper bound of the mean rate of messages is pro-

vided. Through simulation, it is shown that the number of transmission could be significantly

reduced compared with the periodic sampling and the conventional send-on-delta method.
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1. Introduction

Periodic sampling of sensor data is used in many applications since it is easy to implement and there

are well-established system theory for periodically sampled signals [1].

However, there are applications, where periodic sampling is not desirable. In networked control sys-

tems [2, 3], several sensors are connected through a serial network. Sometimes only limited bandwidth

is allowed for sensor data transmission; for example, the network physical bandwidth may be limited

or most of a network traffic could be used by other control/monitoring traffic. In this case, periodic

sampling is not suitable since transmission rate of the period sampling is generally high.

Another example is a wireless sensor networks [4], where a sensor node is battery-powered and the
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battery power should be saved for longer operation time. As experimented in [5], wireless transmission

consumes significantly more power compared with internal computation. Thus to reduce the battery

consumption, a sampling method, which requires less transmission, is desirable.

As a transmission frequency reducing method, an event-driven sampling is a gaining popularity. In an

event-driven sampling, a sampling is taken if an event happens: for example, an event could be a sensor

value change exceeding the specified limit. This event-driven sampling has many names: magnitude-

driven sampling [6] a deadzone method [7], a send-on-delta method [8, 9] and Lebesque sampling [10].

Despite many names, the basic principle is the same. If we explain in the framework of a networked

monitoring system, a sensor data is transmitted when the difference between last transmitted value and

the current value is larger than the specified limit. When a signal change is relatively small, number

of sensor data transmission is significantly less than that of the periodic sampling method. This event-

driven sampling is used in many intelligent sensors and also a standard feature in Lon Network [11],

which is mainly used in the Building Automation.

In this paper, we propose a transmission algorithm for intelligent sensors, which further reduces the

number of transmission. In the algorithm, a sensor value is transmitted if difference between the current

value and the predicted value is larger than the specified limit. The predicted value is computed using

the past values. In fact, the send-on-delta method could be considered as a special case of the proposed

algorithm in the sense that the predicted value is just the last transmitted value. In the send-on-delta

method, the number of transmission is small when the signal does not change; that is when the first

derivative is almost constant.

In the proposed algorithm, the number of transmission is reduced when the higher order (2nd and 3rd)

derivative is almost constant. It is shown that the proposed algorithm reduces the number of transmission

compared with the conventional send-on-delta methods.

The paper is organized as follows. In Section 2, we propose a new algorithm which combines send-

on-delta concept with a linear predictor. In Section 3, we investigate the mean rate of messages for the

proposed algorithm. We provide an explicit upper bound for the mean rate of messages. In Section 4,

simulations are done for four signals so that we can compare the periodic sampling method, the send-

on-delta method, and the proposed method. Conclusion is given in Section 5.

2. Send-on-delta transmission with a linear predictor

The conventional send-on-delta method [8, 9] is illustrated in Fig. 1. The sensor value is transmitted

when the difference between the current valuex(t) and the last transmitted valuexlast(t) is larger than

specifiedδ. In this method, the error (x(t) − xlast(t)) in the monitoring station (where sensor data are

received) is always smaller thanδ assuming there is no delay and packet loss during transmission.

We propose a new algorithm (see Fig. 2), which combines the send-on-delta concept and a linear

predictor. After the sensor value transmission, a linear predictor computes the future sensor valuex̂

based on the past values. If the difference between the current value and the predicted value is larger

thanδ, the sensor value is transmitted. Note thatx̂ is computed both in the sensor node and monitoring

station. Also note that the error (x(t)− x̂(t)) in the monitoring station is always smaller thanδ, which is

the same estimation performance with the conventional send-on-delta method. However the number of
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sensor data transmission time

x(t)
δ

Figure 1. Conventional send-on-delta transmission

transmission is usually smaller than that of the conventional send-on-delta method.

sensor data transmission time

x(t)
δ

x̂(t)

x̂(t)

Figure 2. Send-on-delta transmission with a linear predictor

2.1. New send-on-delta algorithm with a linear predictor

The proposed algorithm is given in Fig. 3 and Fig. 4. In the sensor node, it is assumed that the sensor

node is sampled with the periodT . A discrete-time signalxk is defined byxk = x(kT ). Even if the

sensor value is sampled with the periodT , the actual transmission rate is notT since not all sampled

sensor data are transmitted.

In the sensor node,̂xk = f(x̂k−1, · · · , x̂k−M−1) indicates a linear predictor, whereM denotes the

memory length. IfM = 1, x̂k is computed based on̂xk−1 andx̂k−2. How to choose a linear predictor

f(·) is discussed later. Note that we usef(x̂k−1, · · · , x̂k−M−1) instead off(xk−1, · · · , xk−M−1). If we

usedf(xk−1, · · · , xk−M−1), we would have obtained more accuratex̂k; however in that case we have

to transmitxk to the monitoring station at everyT seconds. Thus we cannot reduce the number of

transmission.

If the difference between the current valuexk and the predicted valuêxk is larger thanδ, we transmit

xk, · · · , xk−M instead of just transmittingxk. Why we have to transmitxk, · · · , xk−M is discussed in

Section 4. In the conventional send-on-delta method, we only need to transmitxk. In this sense, the

transmission data size is larger than that of the conventional send-on-delta method. Despite this, we will

see later in Section 4 that the overall network overhead of the proposed method is significantly smaller

than the conventional send-on-delta method.
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In the monitoring station, when sensor values are not received, we predict the current sensor value

using a linear predictor̂xk = f(·). From the transmitter algorithm, it is guaranteed that the error between

xk andx̂k is smaller thanδ.

yes

no

x̂0 = · · · = x̂
−M+1 = 0

x̂k = f(x̂k−1, · · · , x̂k−M−1)

|xk − x̂k| > δ

transmit xk, · · · , xk−M

x̂k = xk, · · · , x̂k−M = xk−M

Figure 3. Transmitter Algorithm in Sensor Nodes (xk , x(kT ))

data received?
yes

no

x̂0 = · · · = x̂
−M+1 = 0

x̂k = f(x̂k−1, · · · , x̂k−M−1)

x̂k = xk, · · · , x̂k−M = xk−M

Figure 4. Receiver Algorithm in the Monitoring Station

2.2. Linear predictor

If a signal is a random process with a known distribution, we can obtain an optimal predictor [12]. In

this paper, we assume that we have no information about the signal which we measure.
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To derive a predictor equation, consider the Taylor expansion of a signal:

x(kT ) = x((k − 1)T ) + ẋ((k − 1)T )T + ẍ((k − 1)T )
T 2

2
+ · · · (1)

If we take two terms from the right hand sides of (1) and apply Euler approximation (ẋ(kT ) ≈
(x(kT )− x((k − 1)T ))/T ), we obtain the following:

x(kT ) ≈ x((k − 1)T ) + ẋ((k − 1)T )T

≈ x((k − 1)T ) + x((k−1)T )−x((k−2)T )
T

T

= 2x((k − 1)T )− x((k − 2)T ).

(2)

This is a first order predictor forxk = x(kT ); this corresponds toM = 1 in the algorithm of Fig. 3

and Fig. 4. Similarly, we can obtain a second order predictor forxk = x(kT ).

x(kT ) ≈ x((k − 1)T ) + ẋ((k − 1)T )T + ẍ((k − 1)T )T 2

2

≈ 2.5x((k − 1)T )− 2x((k − 2)T ) + 0.5x((k − 3)T ),
(3)

where we used the following approximation

ẍ((k − 1)T ) ≈ ẋ((k−1)T )−ẋ((k−2)T )
T

≈ x((k−1)T )−x((k−2)T )
T 2 − x((k−2)T )−x((k−3)T )

T 2 .

We could go further to obtain higher order predictors. However, as we will see in Section 4, the use of

higher of predictors does not reduce the number of transmission rate. Thus in this paper, we will mainly

use the first order predictor (2) as a linear predictorf(·).

3. Mean rate of messages analysis

In this paper, we compute the mean rate of messages (λ). The mean rate of messages is defined as

the mean number of transmission per a unit of time. We will show that the mean rate of messages (λ) is

dependent onδ and¯̈x, which is the time average of̈x(t).

To derive the mean rate of messages, we use the famous mean-value-theorem [13].

Theorem 1 (Mean-Value Theorem) Assume thatx has a derivative at each point of an open interval

(a, b), and assume also thatx is a continuous function at both endpointsa andb. Then there is a pointc

in (a, b) such that

ẋ(c) =
x(b)− x(a)

b− a
.

From Theorem 1, there existsαk (kT < αk < (k + 1)T ) satisfying

ẋ(αk) =
x((k + 1)T )− x(kT )

T
. (4)

An example is given in Fig. 5. It is possible thatαk is not unique; in that case, we can choose anyαk.
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kT (k + 1)T (k + 2)Tαk αk+1

x(t)

ẋ(αk) = (x((k + 1)T ) − x(kT ))/T

ẋ(αk+1) = (x((k + 2)T ) − x((k + 1)T ))/T

time

Figure 5. Mean-value-theorem andαk definition

Assume that the sensor data is transmitted atkT ; recall thatxk andxk−1 are transmitted for the first

order predictor. Thus it is satisfied thatx̂k = xk andx̂k−1 = xk−1.

First we investigateE{|xk+N − x̂k+N |} so that we can see how often|xk+N − x̂k+N | exceedsδ. From

the definition ofαk in (4), we have

x((k + 1)T ) = x(kT ) + T ẋ(αk). (5)

Inserting the following relationship into (5)

ẋ(αk) = ẋ(αk−1) +
∫ αk

αk−1
ẍ(r) dr

= x(kT )−x((k−1)T )
T

+
∫ αk

αk−1
ẍ(r) dr,

(6)

we obtain
x((k + 1)T ) = 2x(kT )− x((k − 1)T ) + T

∫ αk

αk−1
ẍ(r) dr

= 2x̂(kT )− x̂((k − 1)T ) + T
∫ αk

αk−1
ẍ(r) dr

= x̂((k + 1)T ) + T
∫ αk

αk−1
ẍ(r) dr.

(7)

In the above equation, we have used the fact thatx̂k = xk andx̂k−1 = xk−1. If we proceed to the next

time step, we obtain

x((k + 2)T ) = x((k + 1)T ) + T ẋ(αk+1)

= x((k + 1)T ) + T
(
ẋ(αk) +

∫ αk+1

αk
ẍ(r) dr

)

= 2x((k + 1)T )− x(kT ) + T
∫ αk+1

αk
ẍ(r) dr

= 2
(
x̂((k + 1)T ) + T

∫ αk

αk−1
ẍ(r) dr

)
− x̂(kT ) + T

∫ αk+1

αk
ẍ(r) dr.

= x̂((k + 2)T ) + 2T
∫ αk

αk−1
ẍ(r) dr + T

∫ αk+1

αk
ẍ(r) dr.

(8)

We used (7) in the fourth row derivation.

Continuing the process, we can obtain a general form as follows:

x((k + N)T ) = x̂((k + N)T ) + T

N∑
i=1

(
(N − i + 1)

∫ αk+i−1

αk+i−2

ẍ(r)dr

)
. (9)

Note that the time average ofαk − αk−1 is T , which can be verified from the following relationship:

limL→∞ 1
L

∑L
i=1 (αi − αi−1) = limL→∞ 1

L
((L− 1)T + (T − α0) + (αL − (L− 1)T ))

= T.
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Noting that

E{
∫ αk+i−1

αk+i−2

ẍ(r)dr} = T ¯̈x(t)

we have the average value of|x((k + N)T )− x̂((k + N)T )| as follows

E{|x((k+N)T )− x̂((k+N)T )|} =

∣∣∣∣∣T
2

N∑
i=1

(N − i + 1)¯̈x

∣∣∣∣∣ ≤ T 2 ¯|ẍ|
N∑

i=1

(N−i+1) = T 2 ¯|ẍ|
N∑

i=1

i (10)

where ¯|ẍ| is the time average of|ẍ(t)|.
Let Nmax be the maximum value satisfying (T is given)

T 2 ¯|ẍ|
Nmax∑
i=1

i < δ. (11)

Thenλ, the mean rate of messages, satisfies the following:

λ ≤ 1

NmaxT
. (12)

For three different algorithms (the periodic sampling, the conventional send-on-delta method, the

proposed method), mean rates of messages are compared in Table 1. For all three algorithms, the error in

the remote station is less thanδ; that is, the estimation performance is the same. Thus smallerλ implies

that the estimation performance can be achieved with less frequent transmission of sensor data.

Table 1. Mean rate of messages comparison for 3 different algorithms

algorithm λ

periodic sampling [8] λ = max ẋ(t)
δ

conventional send-on-delta method [8]¯̇x
δ
− 2ν ≤ λ ≤ ¯̇x

δ

proposed method λ ≤ 1
NmaxT

ν : average number of signal peaks (maxima and minima) in a time unit [8]

Nmax is given in (11).

We can see that in Table 1 thatλ of the proposed method depends on¯̈x while λ is dependentmax ẋ

(periodic sampling) anḋ̄x (send-on-delta method). For slowly varying signals, we have the following

relationships in general:
¯̈x ¿ ¯̇x ¿ max ẋ.

Thus we can expect that the proposed method has the smallest number of transmission. This expectation

is verified in the next section.

4. Simulation

To verify the proposed algorithm, we applied the proposed algorithm to four control signals, which

are typical control system responses. The signals are given in Table 2, where one is a step response of a
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Table 2. Four signals for the number of transmission test

type of signal signal

step response of the first-order system x1(t) = 1− e−t

step response of the second-order underdamped system x2(t) = 1− (1 + t)et

step response of the second-order underdamped systemx3(t) = 1 + T1

T2−T1
e−t/T1 + T2

T2−T1
e−t/T2

step response of the second-order undamped system x4(t) = 1− cos(ωnt)

(T1 = 1, T2 = 5/7, ωn = π/10)

first-order system and the others are step responses of second-order systems. These signals are used in

[8] and we used the same signals to compare effectiveness of three algorithms.

Mean rates of messages (λ) in the case ofδ = 0.02 are given in Table 3, whereλ is computed using

equations in Table 1. For the send-on-delta method and the proposed method, upper bounds ofλ are

used. Note that the estimation performance for three algorithms are the same in the sense that the worst

case error isδ. Thus smallλ means that we can achieve the same estimation performance with small

number of sensor data transmission.

Table 3. mean rate of messages (λ) comparison withδ = 0.02

signal periodic sampling send-on-delta methodproposed method (1st order)

λ upper bound ofλ upper bound ofλ

x1(t) 50.00 9.96 2.22

x2(t) 18.39 9.57 1.88

x3(t) 350.00 59.97 5.88

x4(t) 15.70 9.99 1.25

As can be seen in Table 3,λ of the send-on-delta method is significantly smaller than that of the

periodic sampling. Andλ of the proposed method is significantly smaller than that of the send-on-delta

method. Thus we could expect that the number of sensor data transmission is the smallest if we use the

proposed method.

Actual number of sensor transmission is given in Table 4 for the time interval[0, 5] seconds. We chose

the final time5 seconds since the settling times ofx1, x2, andx3 are all 5 second. For the oscillating

signalx4, 5 second corresponds to a quarter cycle.

As expected from Table 3, the proposed method has the smallest number of transmission. We used

both the first-order predictor and the second-order predictor. Interestingly, there is almost no reduction

of transmission number when we use the second-order predictor. Forx1, x2, andx4, the numbers of

transmission are the same. There is just one transmission reduction forx3. Thus we believe that the

first-order predictor is good enough for most signals.

To see how the send-on-delta method and the proposed method work,x1 plots are given in Fig. 6. The

left plot is the result of the send-on-delta method and the right plot is the result of the proposed method.
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Table 4. Number of sensor data transmission (0 ≤ t ≤ 5, δ = 0.02)

signal periodic sampling send-on-delta methodproposed method proposed method

(1st order) (2nd order)

x1(t) 250 44 11 11

x2(t) 919 46 9 9

x3(t) 1750 175 25 24

x4(t) 78 48 7 7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

time (sec)

x(
t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

time (sec)

x(
t)

Figure 6. x1(t) plot with the send-on-delta method (left) and the proposed method (right)

Note that in the proposed method, we have to transmitxk andxk−1, while only xk is transmitted in

the periodic sampling and the send-on-delta method. The impact of this increase on the overall network

transmission is small since a packet-based transmission is used in most networks. For example, in CAN

2.0A network [14], the packet overhead is at least 65 bits and in ZigBee [15], it is at least 120 bits.

CAN 2.0A Packet

ZigBee Data Packet

overhead : 65 bit

overhead : 120 bit

data

data

Figure 7. Packet Overhead for CAN 2.0A and ZigBee

Assumingxk is encoded in 8 bits, total numbers of transmitted bits can be computed as in Table 5.

Using the formulas in Table 5, we can compute the total number of transmitted bits, which is given in

Table 6. We can verify that the proposed method transmits much smaller number of bits despite the fact

that bothxk andxk−1 should be transmitted.

Finally we note that it is a bad idea transmitting onlyxk instead of transmittingxk andxk−1 in the

proposed algorithm. In most cases, a predictor output would be oscillating and thus the number of

transmission becomes very large. An example is given in Fig. 8. We can see the oscillation phenomenon

and the number of transmission is 250 while only 11 for the proposed method.
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Table 5. Total number of transmitted bits computation formula

send-on-delta methodproposed method

CAN 2.0A 65 + 8× # 65 + 2× 8× #

ZigBee 120 + 8× # 120 + 2× 8× #

# : number of sensor data transmission

Table 6. Total number of transmitted bits

CAN 2.0A ZigBee

signal send-on-delta proposed send-on-delta proposed

x1 417 241 472 296

x2 433 209 488 264

x3 1465 465 1520 520

x4 449 177 504 232

5. Conclusion

In this paper, we have proposed a new sensor data transmission algorithm, which reduces the number

of transmission. A linear predictor is used to predict the sensor value and the sensor data are transmitted

if the difference between the predicted sensor data value and the current sensor value exceeds specified

δ. With little increase in the computational burden in the sensor nodes, we can significantly reduce the

number of transmission. We believe the proposed algorithm is useful for sensor networks (for battery

power saving) and networked control systems (when a bandwidth for sensor data is limited).
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