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Abstract:



An exfoliated graphite-polystyrene composite electrode was evaluated as an alternative electrode in the oxidation and the determination of oxalic acid in 0.1 M Na2SO4 supporting electrolyte. Using CV, LSV, CA procedures, linear dependences I vs. C were obtained in the concentrations range of oxalic acid between 0.5 to 3 mM, with LOD =0.05 mM, and recovery degree of 98%, without need of surface renewing between successive runs. The accuracy of the methods was evaluated as excellent comparing the detection results with that obtained using conventional KMnO4 titration method. In addition, the apparent diffusion coefficient of oxalic acid D was found to be around 2.89 · 10-8 cm2·s-1 by CA and CV.
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1. Introduction


Oxalic acid naturally occurs in various organisms, including fungi, plants and animals. High levels of oxalic acid remove calcium from blood with severe disturbances in the activity of heart and neural system. It also known that oxalic acid may cause digestive tract irritation and kidney damage, and increasing demand for its determination in urine appeared [1-3]. Oxalic acid is a metabolite of the advanced oxidation of phenol and its derivates, and of other aromatic substrates of pesticides, herbicides, and fungicides, which are present in many industrial wastewaters. This compound is also known to be recalcitrant and resistant to further degradation [4-6]. Several methods for the determination of oxalic acid, for example, titration method [6], fluorimetric method [7], spectrophotometric [8], HPLC [9-13], chemiluminescence [14], HPLC-chemiluminescence [15], AAS [2], enzymatic method [16], electrochemical detection [17] were reported. Most of the methods require a preliminary separation of oxalic acid from its matrix, and exhibit lack of the sensitivity, efficiency or simplicity.



The electrochemistry of oxalic acid at some metal electrodes [6,18-19], Pd-modified GC [5], and BDD [17] has been studied.



Carbon electrodes are widely used in electroanalysis due to their low background current and wide potential window suitable for the investigation of an electrochemical oxidation process, chemical inertness, low-cost, and suitability for various sensing and detection application [20-37]. The use of a carbon-composite electrode, which consists of a carbon conductor phase mixed with an insulator phase, can be regarded as a randomly assembled carbon microelectrode array [23, 24, 33, 37]. The modifications of the carbon composite electrodes and applications to characterize various important electrochemical reactions were reported in the literature [28, 30-32]. Exfoliated graphite (EG) is a low dense, prepared by thermal exfoliation of intercalated natural graphite. Very few reports are available in the literature about its use for electroanalytical applications [31,32].



The electrochemical oxidation of oxalic acid at some electrode materials has been reported [5,6,17-19], but to the best of our knowledge there is no report on oxalic acid oxidation and determination using a graphite composite electrode.



The purpose of this work is to investigate the electrochemical oxidation and determination of oxalic acid on a 20% (w/w) exfoliated graphite-polystyrene composite electrode (EG-PS). This new composite electrode has been tested as an amperometric detector using cyclic voltammetry (CV), linear-scan voltammetry (LSV), chronoamperometry (CA). In addition, some characteristics of the electrochemical oxidation of oxalic acid were studied.




2. Results and Discussion


The prepared EG-PS electrode showed good mechanical strength and low electrical resistivity (3.2 Ω). Its main advantages versus simple graphite electrode are related to mechanical stability and rigidity, which allows the smoothing of the surface to obtain a fresh reproducible surface for new determination.



2.1. Surface characterization


SEM imaging has been used to provide qualitative information about structure, e.g., size and distribution of exfoliated graphite zones and some surface features of this composite electrode. Fig. 1 illustrates SEM image of the cross-section of EG-PS composite electrode and exhibits a closely spaced exfoliated graphite zones with random distribution and orientation due to the irregular shapes of exfoliated graphite particles in polystyrene matrix [27, 37].


Figure 1. SEM image of the cross-section of the EG-PS film.
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2.2. Voltammetric measurements


Cyclic voltammograms (CVs) obtained with the EG-PS electrode and various concentrations of oxalic acid in 0.1 M Na2SO4 are shown in Fig. 2.


Figure 2. Cyclic voltammograms (3 rd scan ) of the EG-PS electrode in 0.1 M Na2SO4 solution (curve 1) and in the presence of 0.5 mM (curve 2) and 1 mM oxalic acid (curve 3); potential scan rate 0.05 V·s-1.
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The anodic process occurring at EG-PS electrode in 0.1 M Na2SO4 is based on the oxidation due to functional groups consisting from hydrogen and oxygen. A first anodic current peak, noticed on the CVs around 0.6 V vs. SCE, with a corresponding cathodic one (not shown), owing to graphite electrode material. Some interaction is possible between functional groups of the graphite surface and oxalic acid, which precede the oxidation process at more positive potential [17]. The current corresponding to the wave obtained at more positive potential range, owing to the oxidation of oxalic acid, increased progressively with its concentration. On the following reverse scan from 1.25 to 0.4 V vs. SCE, no corresponding reduction peak is observed, revealing that the electrode process on the EG-PS is totally irreversible.



The cyclic voltammetry of EG-PS at various scan rates (0.01-0.1 V·s-1) in the presence of 1 mM oxalic acid was studied (Fig. 3). For the whole range of the scan rates studied, the peak shape that is sensitive to the scan rate shows irreversible characteristics and substantial hysteresys. Thus, under these circumstances, the random assembly behavior was exhibited. The anodic current wave at about 1.1 –1.2 V vs. SCE increased linearly with the square root of the scan rate (inset a of Fig. 3) suggesting that the reaction is mass-transfer controlled. Moreover, the starting potential of the wave shifted towards positive potential when increasing v indicating that the electrooxidation process of oxalic acid is irreversible (inset b of Fig. 3).


Figure 3. Cyclic voltammograms (3 rd scan) of 1 mM oxalic acid at EG-PS with different scan rates in 0.1 M Na2SO4; 1-0.01Vs-1; 2-0.02 Vs-1; 3-0.03Vs-1; 4-0.04Vs-1; 5-0.05 Vs-1; 6-0.1 Vs-1; 7-0.2 Vs-1; Inset a-The anodic peak current Ip vs. v1/2; Inset b- Dependence of the potential of current peak, Ep to the log (v).
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The anodic limiting current recorded at 1.15 V vs. SCE increases with increasing of oxalic acid in solution (Fig. 4). The inset of Fig. 4 shows that the anodic limiting current depends linearly on the oxalic acid concentration in the range 0.1-1.0 mM, with a correlation coefficient better that 0.999.


Figure 4. Cyclic voltammograms (3rd scan)of EG-PS in the presence of oxalic acid concentrations:1-0 mM; 2-0.1 mM; 3-0.2 mM; 4-0.3 mM; 5-0.4 mM; 6-0.5 mM; 7-0.6 mM; 8-0.7 mM; 9-0.8 mM; 10-0.9 mM; 11-1 mM; potential scan rate0.05 Vs-1; supporting electrolyte 0.1 M Na2SO4. Inset: the variations of anodic limiting currents vs. oxalic acid concentrations.
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In Fig. 5, linear scan voltammograms obtained under the same CV conditions are shown. The dependences of the current peaks vs. concentration, explored in the concentration range between 0.1 mM-1 mM, were linear, with the very good correlation coefficients, 0.998. The shapes of CVs at 0.6 V were conditioned by the previous successive scan in the extended potential range (cathodic branches at less positive potential are omitted in the above-presented figures).


Figure 5. Linear voltammograms of EG-PS in the presence of oxalic acid concentrations: 1-0 mM; 2-0.1 mM; 3-0.2 mM; 4-0.3 mM; 5-0.4 mM; 6-0.5 mM; 7-0.6 mM; 8-0.7 mM; 9-0.8 mM; 10-0.9 mM; 11-1 mM; potential scan rate0.05 Vs-1; supporting electrolyte 0.1 M Na2SO4. Inset: the variations of anodic limiting currents vs. oxalic acid concentrations.
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2.3. Chronoamperometric measurements


Chronoamperometry was employed as the detection method and for the investigation of the electrode process as well. Fig. 6 shows chronoamperometric measurements of oxalic acid with EG-PS. This figure presents the current-time profiles obtained by setting the working electrode at 1.1 V vs. SCE for various concentrations of oxalic acid. The useful net current signals recorded at 50 seconds are linearly dependent on oxalic acid concentration in the explored concentration range between 0.5 mM and 3 mM (Inset of Fig. 6).


Figure 6. Chronoamperograms obtained at EG-PS in the absence (1) and the presence of (2) 0.5 mM, (3) 1 mM, (4) 1.5 mM, (5) 2 mM, (6) 2.5 mM, (7) 3 mM; 0.1 M Na2SO4 supporting electrolyte; electrode potential 1.1 V vs. SCE; Inset: the calibration plots of current, read at 50 seconds, vs. oxalic concentration.
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The current corresponding to the electrochemical reaction (under mass transport control) of an electroactive material with a diffusion coefficient, is described by Cottrell's equation (Fig. 7) [38]:
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(1)




where D is diffusion coefficient (cm2s-1), C*-bulk concentration (mol·cm-3), n-number of electrons, F-Farady's constant, and A-electrode area. The plot of I vs. t-1/2 is linear (Fig.7) and from the slope the value of D can be obtained. According to the Cottrell equation, a diffusion coefficient of oxalic acid D was found to be 2.99 · 10-8 cm2·s-1. Also, this diffusion coefficient was determined based on the equation that characterizes an irreversible process investigated by cyclic voltammetry [39]:
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(2)




where α is the transfer coefficient, na is the number of electrons involved in the charge transfer step. Assuming α=0.5 and n=2, D was found to be 2.89 · 10-8 cm2·s-1. These very closed values of diffusion coefficient are smaller compared to the diffusion coefficient data reported by Casella on palladium-based modified glassy carbon electrode in acidic medium [5]. The diffusion coefficient must be regarded as an apparent value. This aspect could be correlated with a real electroactive surface area different from the geometric one in the exfoliated graphite composite systems.


Figure 7. Cottrell's plot for potential step chronoamperometry of EG-PS in 0.1 M Na2SO4 in the presence of 1 mM oxalic acid



[image: Sensors 07 00615f7]






The amperometric response of the EG-PS electrode obtained for successive and continuous addition of 0.5 mM oxalic acid to 0.1 M Na2SO4 solution (batch system analysis -BSA) at an applied potential of 1.1 V vs. SCE is shown in Fig. 8. The response of the electrode is linear in the concentration range of 0.5 mM to 2.5 mM (Inset of Fig. 8).


Figure 8. Amperometric response (BSA) of the EG-PS electrode for the successive and continuous addition of 0.5 mM oxalic acid. Applied potential: 1.1 V vs. SCE. Inset: calibration plots of useful signal vs. oxalic acid.
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At the potential value of 1.1 V vs. SCE, a linear relationship between the amperometric signal and oxalic acid concentration was obtained in the range 0.1 to1 mM using cyclic voltammetry and linear scan voltammetry and between 0.5 and 2.5 mM using chronoamperometry and batch system analysis (BSA). Under these experimental conditions, no cleaning or pretreatment of the electrode after each addition of oxalic acid was required. The analytical parameters are presented in Table 1. The lowest limit of detection (LOD) was evaluated based on S/N≥3. The reproducibility of the EG-PS electrode using the above-mentioned techniques was evaluated for five replicates measurements of oxalic acid detection. The relative standard deviations ( RSD ) gathered in table 1 shows the good reproducibility of the electrode.



Table 1. The analytical parameters of amperometric detection of oxalic acid at an EG-PS electrode using different techniques.







	
Technique used

	
Concentration range(mM)

	
Calibration plots*

	
Correlation coefficient (R2)

	
LOD (mM)

	
RSD (%)




	








	
CV

	
0.1-1

	
y=-3.07·10-8+2.22·10-5 x

	
0.9992

	
0.05

	
2.5




	
LSV

	
0.1-1

	
y=-5.69·10-8 +1.33·10-5 x

	
0.9962

	
0.08

	
2.7




	
CA

	
0.5-3

	
y=-6.13·10-8 +1.52·10-6 x

	
0.9992

	
0.5

	
3.1




	
BSA-CA

	
0.5-3

	
y=-4.52·10-8 +1.48·10-6 x

	
0.9984

	
0.8

	
3.5








*-y- ΔI amperometric useful signal obtained by subtraction of background current (A) and x-oxalic acid concentration (mM)








A recovery test was also performed by analyzing five parallel tap water samples, which contain 90 mg·dm-3 oxalic acid. This test was run in 0.1 M Na2SO4 as supporting electrolyte and a recovery of 98% was found with a RSD of 2.8 % using LSV. Finally, the results obtained by this method were compared with that obtained by means of a conventional KMnO4 titration method. Using a titration with 0.1 N KMnO4 solution to evaluate the precision of this method, it can be concluded that the results obtained by the two methods are very closely and the accuracy of the proposed voltammetric method is excellent.





3. Experimental Section


The composite electrode was obtained by film casting from polystyrene pellets by type PS N2000 dissolved in toluene and addition of exfoliated graphite powder (SGL Carbon) with constant stirring. The ratio between the components was chosen to reach 20 weight percent (w/w) content of exfoliated graphite. The film obtained was pressed to a thickness of 1 mm, at a temperature of 250 ° C for 30 minutes and cooled to the room temperature in the open air. After drying for 14 h at room temperature, the plate with a geometric surface area of 81 mm2 was put on a glass substrate and electrical contacts were made through silver contacts. The matrix PS N2000 is a commercial grade delivered by Shell. The prepared EG-PS electrode showed good mechanical strength and low electrical resistivity (3.2 Ω). Prior to use, this working electrode was gradually cleaned, first polished with abrasive paper and then on a felt-polishing pad by using 0.3 μm alumina powder (Metrohm, Switzerland) in distilled water for 5 minutes and rinsing with distilled water.



The electrochemical performances of this electrode were studied by cyclic voltammetry (CV), liniar-scan voltammetry (LSV), and chronoamperometry (CA). Subsequently, an electrochemical pretreatment by three repetitive cyclings between –0.5 V to 1.25 V vs. SCE in 0.1 M Na2SO4 supporting electrolyte was performed. All measurements were carried out using an Autolab potentiostat/galvanostat PGSTAT 302 (Eco Chemie, The Netherlands) controlled with GPES 4.9 software and a three-electrode cell, with a saturated calomel electrode as reference electrode, a platinum counter electrode and EG-PS working electrode.



A Scanning Electron Microscope (Philips CM30T) was used to observe the working electrode surface.



Oxalic acid and sodium sulphate were analytical grade from Merck, and freshly prepared with double-distilled water.




Conclusions


The EG-PS composite electrode with 20 % (w/w) exfoliated graphite contains the clusters of graphite gathered in random areas due to the random distribution and orientation of graphite particles in the polystyrene.



This electrode exhibited useful features for the oxidation and amperometric determination of oxalic acid with respect to its mechanical resistance, very low cost, simple preparation and easy renewal of the active electrode surface.



Using CA based on Cottrell's equation and equation that characterize irreversible process using cyclic voltammetry, the apparent diffusion coefficient of oxalic acid D was found to be around 2.89 · 10-8 cm2·s-1 and respective, 2.99 · 10-8 cm2·s-1. This value is apparent and smaller than reported in the literature [5]. The difference is due to the fact that in this study the geometric area was calculated, which differs from the electroactive one.



For the determination of oxalic acid using CV, LSV, CA procedures, linear plots of current vs. concentration were obtained in the concentration range of oxalic acid between 0.5 to 3 mM, with LOD =0.05 mM, without the need of a renewed surface between successive runs, and with a recovery degree of 98 %. The accuracy of the applied methods was excellent as compared to the detection results obtained using the conventional KMnO4 titration method.
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