Sensor2007, 7, 1001-1027

SENS0r'S

ISSN 1424-8220
© 2007 by MDPI
www.mdpi.org/sensors
Full Paper

Distributed Peer-to-Peer Target Tracking in Wireles Sensor
Networks
Xue Wang *, Sheng Wang, Dao-Wei Bi* and Jun-Jie Ma®

State Key Laboratory of Precision Measurement Teldgy and Instrument, Tsinghua University,
Beijing 100084, P. R. China; E-mailavang_sheng00@mails.tsinghua.edu.cn;
*bdw02@mails.tsinghua.edu.chmjj@mails.tsinghua.edu.cn

* Author to whom correspondence should be addre$sSedail: wangxue@mail.tsinghua.edu.cn

Received: 6 June 2007 / Accepted: 25 June 200Bblidhed: 25 June 2007

Abstract: Target tracking is usually a challenging applicatior wireless sensor networks
(WSNs) because it is always computation-intensia r@quires real-time processing. This
paper proposes a practical target tracking systased on the auto regressive moving
average (ARMA) model in a distributed peer-to-p@e2P) signal processing framework.
In the proposed framework, wireless sensor nodeasapeers that perform target detection,
feature extraction, classification and tracking,evdas target localization requires the
collaboration between wireless sensor nodes forampg the accuracy and robustness.
For carrying out target tracking under the consteaimposed by the limited capabilities of
the wireless sensor nodes, some practically feasilglorithms, such as the ARMA model
and the 2-D integer lifting wavelet transform, adopted in single wireless sensor nodes
due to their outstanding performance and light astamponal burden. Furthermore, a
progressive multi-view localization algorithm isoposed in distributed P2P signal
processing framework considering the tradeoff betwehe accuracy and energy
consumption. Finally, a real world target trackimgperiment is illustrated. Results from
experimental implementations have demonstratedttieaproposed target tracking system
based on a distributed P2P signal processing framkevan make efficient use of scarce
energy and communication resources and achievettaegking successfully.

Keywords: Wireless sensor networks, target tracking, distetusignal processing, peer-
to-peer, ARMA model.
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1. Introduction

Wireless sensor networks (WSNs) are being envisi@amel developed for a variety of applications
involving monitoring and manipulation of the phyaiavorld in a tetherless fashion Typically, each
individual sensor node can sense in multiple madalibut has limited signal processing and
communication capabilities. Because of its spat@lerage and multiplicity in sensing aspect and
modality, WSN ideally suited for visual target tkagy by conquering the disadvantages of traditional
single-view tracking, such as: a limited observatwindow, ambient noise, interference, processing
limitations at the sensor in terms of power and wgnand sensor reliability issues [1]. However,
visual target tracking via a WSN is also especiallyery challenging, multi-faceted problem in which
many challenges must be overcome. In particular,dstical problems must be addressed in this field
efficient single sensor node algorithms with lowngutational cost, and distributed signal processing
with collaboration between wireless sensor nodes.

Recently, several research groups have tackledusgspects of target tracking in WSNs [2-5]. In
this paper, we focus our research efforts on th@ementation of a visual multi-view target tracking
system in WSNs with a spotlight on distributed pepeer (P2P) signal processing and the specific
algorithms which can be successfully adopted uniter constraints imposed by the limited
communication and computational abilities of thesse nodes as well as their finite battery life.

In contrast to centralized signal processing, idbsted signal processing can reduce latency,
wireless bandwidth and energy consumption, as wasll improve the robustness of network
connections. Because information quality and eneampsumption are both important for WSNs, how
the information is gathered and signal processs@arried out, querying and routing tasks in a
distributed manner with consideration of the trdfleetween sensing accuracy and energy efficiency
are among the most important issues addressedtiibdied signal processing. Several methods have
been proposed to implement distributed signal @siog with collaboration between sensor nodes.
Zhao [6] presented an information-driven approackensor collaboration iad hocsensor networks
which considered the information utility of eachnser node and developed several approximate
measures of the information utility. Qi [7] propdsa mobile agent-based distributed sensor networks
(MADSNSs) which adopted mobile agents to increméytedrry out data fusion. Xu [8] introduced a
distributed computing framework, called MADSN, tarty out collaborative signal processing in
sensor networks using mobile agents. In the previaork, information quality is measured by
analyzing the predicted contribution of their sagsactions and energy consumption which is nearly
proportional to bandwidth appropriation is estindateom the network structure. For implementing
target tracking in WSNSs, in this paper, distributeignal processing is combined with a P2P
architecture. P2P is another kind of novel architecwhich has the advantages of robustness and
dynamic. Thus architecture can increase the pedoce and prolong the lifetime of WSNs because it
can reduce the congestion and energy consumption.

Furthermore, a target tracking system for strictiystrained WSNs is designed, which consists of
several specific signal processing algorithms #ogeét detection, classification and tracking. Ie th
proposed system, background subtraction based t@egection, 2-D integer lifting wavelet transform
(ILWT) based feature extraction, support vector nirae (SVM) based target classification and auto
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regressive moving average (ARMA) model based targeking are carried out in each sensor node,
while multi-view localization algorithm is implemtsd with the collaboration between wireless sensor
nodes in a distributed P2P signal processing fraonew

The structure of this paper is as follows. Sectiomtroduces the distributed peer-to-peer signal
processing framework. Section Il presents theetatgacking system which consists of specific in-
node and collaborative signal processing algoritforstarget tracking in distributed P2P signal
processing framework and discusses the feasilmfitthe proposed system. Section IV analyzes the
performance, energy consumption and execution titbe proposed target tracking system. Finally,
conclusions are given in section VI.

2. The Basis of Distributed Peer-to-Peer Signal Poessing Framework
2.1. Preliminaries

In WSNs, the centralized client/server is one efitiost popular signal processing frameworks. As
shown in Figure 1(a), in this framework, the uniquecessing center sends out the commands to
relative sensor nodes to acquire the informatibenta selected wireless sensor node transmits raw
signal to the processing center, where furtheradigmocessing is performed. Although it is widely
used, client/server is not appropriate for sigmatpssing in WSNs, because it consumes many scarce
resources, such as battery power and network baltitwor transmitting the raw signal, and it also
needs some super sensor nodes acting as processirgs, which require much higher energy, storage
and computing capabilities [6].

Recently, distributed signal processing becameh&nohotspot of signal processing in WSNs,
which is always carried out in the WSNs with clusteDistributed signal processing is always
implemented in a client/server framework, wherdriigted local signal processing at a cluster head
replaces the centralized signal processing in tloegssing center to decrease the workload of the
latter, reducing the amount of data transmissiod balancing the signal processing tasks among
wireless sensor nodes. The distributed client/sesigmal processing framework is illustrated inuFeg
1(b). However, the topology of WSNs determines,tivatdistributed client/server signal processing
frameworks, the closer a sensor node is to theegedag center, the more energy the sensor node will
consume because it has to be an intermediate seoderto route the packets from other sensor nodes.
This results in sensor nodes closer to the comguiemter dying much more rapidly than other sensor
nodes.

The structure of MADSN s illustrated in Figure 1(©bviously, distributed mobile agent signal
processing is also built on hierarchical structwigich needs a processing center and causes an
imbalance between transmission and energy consomturthermore, distributed mobile agent signal
processing is significantly limited by the sizetloé mobile agent. In some specific complex appboat
the overhead energy consumption for transmittindpitacagent will largely increase the total energy
consumption in signal processing, which can naff@rded in strictly constrained WSNs
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Figure 1. Different signal processing frameworks in WSNs:d@)tralized client/server
framework; (b) distributed client/server framewof&} distributed
mobile agent framework and (d) distributed P2P &eark.
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2.2. The Structure of Distributed P2P Signal Preoeg Framework

P2P networking has recently emerged as a new frankefeor building networked applications.
P2P differs from client/server in several cruciadys. Perhaps most importantly, a peer is both a
producer and a consumer of the implemented sewldte the clients only generate workload and
workload is processed by servers in client/sen2P computing is a collective computing
environment where a peer is not only able to adtadls a “client” and a “server”, but also can iaigr
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with other peers in more complex ways to accomghghtask at hand [9]. With distributed P2P signal
processing seen as a prolongation of P2P computingbjectives are as follows: collaboration, loca
autonomy, high performance via parallelism, reseinreterogeneity management and minimum impact
on local computation. The distributed P2P signakpssing framework is responsible for finding the
appropriate resources, executing required proceasdgeturning results [9].

In distributed P2P signal processing frameworkeless sensor nodes act peers which perform the
data acquiring, processing and transmitting in W.aNimited energy resources makes it important to
develop progressive signal processing to providgemental accuracy. However, different from
MADSN, some sensor nodes dynamically and autonolydecome leader sensor nodes for result
collecting, analyzing and storing according to #pecific tracking scenario in the distributed P2P
signal processing framework. During the procedursignal processing, each wireless sensor node
periodically carries out local signal pre-procegsand acquires the local results. At the same time,
signal processing is started from a leader sensde and is progressively performed from one sensor
node to another in a progressive distributed dataoh mechanism. That is, each sensor node
integrates its result with previous results to pt&dly increase accuracy. After that, the sensmen
transmits the partially fused results to other eenwdes one after another. Once the predefined
criterion is met, such as desired accuracy beihgeaed, the last sensor node terminates migration a
returns the result. The scenario of distributed BigRal processing framework is shown in Figure).1(d
If the communication latency is low, the progresssignal processing can be almost considered as a
synchronous procedure, so it can be realized withoy time stamp information.

The distributed P2P signal processing framework i@narkably increase the performance of
WSNs, because the distributed P2P signal procedsamgework carries out the signal processing
procedure incrementally between the selected semsites according to the specific requirement and
resources, and it can greatly reduce the energgucoption and network congestion because of the
sequential data transmission. Furthermore, theifowrtity of the wireless sensor nodes can improve
the robustness of the whole network and the wisesemsor nodes may be active or go off-line in a
very dynamic fashion. Compared to distributed digmacessing, distributed P2P signal processirag is
completely information driven framework for signatocessing in WSNs; it can dynamically and
autonomously carry out signal processing with progpet of wireless sensor nodes without a set
processing center. Distributed P2P signal procgssian ideal framework to complete complex multi-
threads tasks. One of the core challenges in IngllBi2P systems is how to achieve high performance
signal processing efficiently [10]. For distribut®@P signal processing framework, a basic strategy
should be used to select leader sensor node asorseades with practically feasible metrics and
organize the schedules of sensor nodes for implengeithe signal processing with the lowest
congestion and consumption in WSNSs.

In practice, many wireless sensor nodes are randaployed in the sensing area. When a
phenomenon of interest occurs, some wireless saast@s will detect it and announce their leadership
among nearby sensor nodes. However, the problesimafitaneous announcement between different
sensor nodes may increase the number of leadeorsensles and result in unnecessary energy
consumption. When a wireless sensor node deteetsptienomenon of interest, it will wait a
randomized back-off time delay before announcing keadership. Once a wireless sensor node
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receives a leadership announcement from a neartsps@ode before its own announcement, it will
stop announcing and act as a normal wireless sewsler. If the leadership announcement from nearby
sensor node is received after its announcementyitieéess sensor node will compare the timestamps
of two announcements and return the result to dece sensor node. The wireless sensor node which
makes the earliest announcement is determined tbeb&eader sensor node. As the phenomenon of
interest moves or environmental conditions varg,ldadership may change hands among sensor nodes.

Besides leader sensor node selection, the keyrobsehallenge for distributed P2P signal
processing is the routing problem in progressigaali processing. Because of the intrinsic propertie
of distributed P2P signal processing, the routihthe accessed wireless sensor nodes has a sagific
impact on the performance and energy consumptiaigofl processing. The objective of routing is to
find a path to satisfy the desired signal procegaitcuracy while minimizing the energy consumption.
A routing algorithm based on the considerationrargy consumption, path loss, and signal energy is
introduced in [11]. But the proposed algorithm jdstuses on energy consumption without the
consideration of the information utilities of wiesls sensor nodes. For balancing the energy
consumption and information utility, as presented@], the sensor selection can be considered as an
optimization problem with the following objectivarfction:

M (Si ) =-a WCost( S) + (1_ a) WUtility( S) (1)

where S is the candidate wireless sensor nagle, is the energy consumption metrig,,. is the

ility
information utility metric,a is the relative weight. Depending on applicatiansl assumptionsj.,,

and @, have various forms.

2.2.1 Energy Consumption Metric

Practically, the energy consumption metgg, contains three basic types: sensing engrgy
signal processing energg, and communication enerdy.
The sensing energy, is determined by the sensing powgrand sensing timg,:

d. = pt, 2)
The signal processing energy is shown with the following equations [12]:

to+t,

g, =], " py(t)ct 3)

wheret, is the time taken for signal processing av},c(t) Is the instantaneous power of the processor.

However, the overhead energy caused by fusion chrtawer than the energy caused by local pre-

processing, so each wireless sensor node almostiigc@s processing energy at same level. Because of
this, the signal processing energy can be ignored in sensor selection. For the saason, the

sensing energy, can be ignored too.
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For communication energg, , given minimum communication powgy, along a standard distance
l,, instantaneous communication power is in direapprtion to the square of communication distance
|. between the source sensor node and destinatisorseode [11]

_l (4nyp

= 4
12 GG A? )

Pe

whereG,, G, are transmitting gain and receiving gain respetfivi is the wavelength ang@ is the

system loss factor. So the communication energy is

_ (4P B 1,

. GGA2 |2

()

Obviously, the first term in Eg. (5) is a constavibreover, in the incremental data fusion procedure
the amount of transmitted data is almost constanthe communication time can be also considered

2

I . . . .
as a constant. S?% can be used as a dimensionless metric of comntioncanergyg. .
0

Furthermore, for ensuring the sensing performaricé/8Ns, energy should be consumed evenly
among all sensor nodes. Entropy theory is adopteel to measure the randomness of reserved energy
in each sensor node. The entropy of reserved emgesg/follow.

H(s'(9)=-2 (B (3)log { &()) ©®)

where E;, (t) is the estimated amount of energy reservekthnrsensor node when selectinly sensor
node for progressive signal processing at instarfthe bigger the entropy is, the more evenly the

reserved energy is, Sﬂm is used to scale the impact of energy consumpfitve. combined

resource consumption metric is as follow.

(1)

(S () )

Beos(S (1) =

wherel! is the communication distance between currentosersde andth sensor node.

2.2.2 Information Utility Metric

Information utility is another important metric foneasuring the contribution of selected sensor
nodes. In practice, the contribution of sensor sar be ideally predicted by analyzing the thémakt
model of the specific application and the charasties of sensor nodes. This metric can be called
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Dreaiceq- BESIAES the predicted contribution, the informmatutility is always impacted by some other

factors in the environment, such as obstacles ars&nHowever, it is difficult to measure their iagb
in practice. A more practical alternative is toirstte the confidence degrée, ... f the wireless

sensor node, which can be measured by the contmbuof the wireless sensor node in previous
instants.
In conclusion, the information utility metric fumah can be defined as follows:

iy (Si (t)) = ¢Predicted( S ( b)@janfidence( S( )) (8)

And then the objective function of routing in distrted P2P signal processing is:

M (Si ( t)) = (1_ a)wPredicted( S ( D)w Confidenci S( )) —al (9)

I2H (S'(1))

Target tracking is one of the essential capalslitie WSNs. Because distributed P2P signal
processing framework has advantages in dynamiajstolenergy efficiency and data transmission,
target tracking in a distributed P2P signal procgsfamework can improve tracking performance by
purposefully selecting proper set of wireless semsales for progressive signal processing and data
fusion. Moreover, a distributed framework decreasi@s energy consumption and reduces the
execution time of signal processing, and the P2Ritacture can improve the robustness and reduce
the congestion and energy consumption in WSNs.dBesignal processing framework, in some ways,
specific signal processing algorithms also haveiBgant impact on the performance of target tragki
which will be discussed in the following section.

3. Specific In-Node and Collaborative Signal Procesng Algorithms for Target Tracking

In this section, a combined tracking system is psaol and analyzed with the consideration of
tradeoff between the accuracy and energy consumptrhich consists of several feasible algorithms
for target detection, classification, tracking dochlization.

3.1. Target Detection, Classification and Tracking/Vireless Sensor Nodes

Target detection, classification and tracking dmee important steps in target tracking. Because
the data processing ability of wireless sensor agtvis extremely limited, the algorithms for target
detection, classification and tracking should lghtiveight with low computational complexity. The
details are discussed below.
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3.1.1 Target Detection Based on Background Subtnact

Background subtraction is demonstrated as a low-csple, but efficient method for target
detection. It is successfully used irf Wal time visual surveillance system for trackingltiple targets
[13]. Let V' (x) be the intensity of locatiow in theith image ofN consecutive images array O'(X)

and/7(x) are the standard deviation and median value ehsities. The initial background model

[V (X).¥a(X).¥4(X)] is obtained as

V(%) min, {Vi (X)}
Vo (X) = max {Vi (x)} : wherefe\/" (%-n( g‘ < 2¢(% (10)
Yo (%) max{‘vi (x)-V*( x)‘}

After initialization, three change maps, the detectsupport mapds, motion support mapn(g
and change history map9, are adopted to represent the number of timased [pcation is classified
as a background pixel, moving pixel and elapseédiamund pixel respectively.

_[gS( x t=1)+1 if xis background pix¢
9S( %9 _{ gS( x t-1)  if xis foreground pixe (11)
(= mS( x t1)+1 if(‘ (% Y- I x t-1)> Z*U)D(‘ (% t+=10-1( x> 2*0) (12)
mS( x t-1) otherwise
255 if x is foreground pixe
13
(%9 S(%t=1)- 235 otherwise (13)

Change maps are set to zero after the backgroudelnsoupdated.
For updating the background model, the new backgtomodel [ym(x),yn(x),yd(x)] is

determined as follows.

Vo (X). 72 (2.78(%) ] if (g ¥>  N(pixel-based
Ya( %), ><) L(ﬂ it (g% < .* NJ mg)x , Nobject-based
Vol

X) vs( x)} otherwise

[ym yn yd

(14)

where| 5 (x),¥:(X),¥5(X)] is the current background model? (x),y2(x).y5(X)] presents that
the pixel is classified as background pixel, Wrﬁlg;(x),y,:(x),yg(x)] presents the pixel is
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classified as foreground pixel. As presented ir],[£3andr, are scaling factors to adjust the effect of

numberN, they are typically 0.8 and 0.1, respectively.
Giving the minimumy;, (x), maximumy, (x), and the median of the largest interframe absolute

differencey, images, a pixet from imagel" is a foreground pixel if:

(15)

5() Z{O background ((It(x)—ym(x)) < r3yd,) D((yn(x) -t (x)) < rsyd)
1 foreground otherwise.

wherer, is set to 2 in our system. According to the comipyeof calculation, the computational cost

of this algorithm is low, and the detailed discasstan be found in [13]. It means that background
subtraction is practically feasible in WSNSs.

Normally, the output result of target detectiothis minimum boundary rectangle (MBR) of target.
Target detection is always the basic and prelinyiii@m for target classification and tracking which
will be detailedly discussed in the following secis.

3.1.2 Target Classification Based on 2-D ILWT ad/S

With the MBR results of target detection, the targ&ormation is acquired. Next, target
classification is desired for further signal prageg. Target classification contains two key eleteen
feature extraction and division. Feature extractefers to a transformation for reducing the nundfer
effective features of an original data set by retej most of the intrinsic information. For images,
compression can be considered an effective techri@ueature extraction.

The use of the discrete wavelet transform (DWT)dorbedded lossy image compression is now
well established [14]. The wavelet transform ofiadtion f (x) O L, (R) is defined as (1-D case):

WT{ £(%:3,.8} =] f( s (R (16)

wherey, , (x) defines the family of the wavelet functions:

a a

W 5 ()= |15|w(xfbj (17)

where d, # 0 is the scale of the transform adglis the parameter of spatial location.
With the discrete translation of functioh(x) on a dyadic scalé, =2’ and discrete translation
d, = 2'k, the discrete wavelet transform (DWT) can be preskas follow [15]:

DSWH f( 3:2).2 k= ¢ = W{ { kd,=2 5,=2 k (18)



Sensor007, 7 1011

where C,, is the wavelet coefficients of the functioh(x) , and the wavelet function forms a

orthogonal and complete dyadic family:

W, (x)= Z_ij(Z’j X— k) oj1

Thus, the functionf (x) may be obtained from its wavelet coefficiefs, :

F(x)=22C (¥ (20)

0z k0z

For discrete signal$ (n), n0Z ,the DWT is defined as:
DWT{ f(r);2. 2 §={g}=3, (0 g(m2 & (21)

Ey . ‘
where g (n—2j k) is the discrete equivalent of tr2e2’¢/(2-l (x— 2 k)) With DWT, the f (n) can

be written as a multiresolution decompositionJdavels, j =1,...,J, given by [15]:

f(n)= J Zijkgj(n—Zj k)+z (?’k]n( s k (22)

j=1k0Z KOz

where §; (n—2j k) is the synthesis wavelets and discretely equal;to, and the scaling coefficients
e Is defined as:

ej,k:Zf(n)h*(HJk) (23)

n

whereh, (n—2J k) is the scaling sequences.

For images, a wavelet descomposition is appliest fo image rows and then to columns. The two
dimensional wavelet transform leads to a descortipasin four sets of coefficients: approximation
and details in three different orientations, vettidiorizontal and diagonal. The full descompositi®
obtained by iterating the filtering on the approatron set, where the approximation-tth level can
be approximately considered as the compressed imbagyenation [14].

However, in WSNs, the limited processing abilitidsvireless sensor nodes limit the possibility to
employ DWT algorithm. To simplify the computatioa,lifting scheme (LS) is introduced in DWT
[16]. LS exploits the redundancy between the higespand low pass filters necessary for perfect
reconstruction and reduces the number of arithnogterations up to a factor of two, compared to the
filter-bank implementation, The LS based wavel@nsform seems to be an ideal candidate for
embedded image compression issues, due to itsesstipicture and good decorrelation properties [17].



Sensor007, 7 1012

As shown in Figure 2, in LS, the input data aret $plo two signals with evenly and oddly indexed
samples respectively. One signal is convolved wittrimal lifting filter prl(z), and then the role of

the two signals is then reversed and dual liftittgrf du, ( 2) is applied, wherepr, (z) anddu,(2) are

simple and short FIR filters. Afteg iterations of primal and dual lifting, the inpugsal )((”'1) is split
into d” which corresponds to the details;p(f"l), and)((“) which corresponds to the approximation.
In reconstruction, the reconstruction filtepr'(z) and du(2z) are exactly equivalent to its

decomposition counterpagr, (z) andduy ( ), without its sign, i.e.,

pr'(z)=-pr(2 24

du (2 =-dy( 3 25§

Figure 2. The structure of the lifting scheme in DWT.

ITI a, =z Ugflite 4 Ay 2" =aq,

2 > + = »( +

(2] —
pri(z) du (z)| - i (z u, (z

_| z I—l V2 + - ™ ") T b,

b, = Z((,n_l) Prediction

For conquering the disadvantage of lossy image cesspn in LWT, a further improvement is
achieved by combining the benefits offered by tmedger wavelet transform (IWT) and integer LS,
because IWT enables true lossless reversible tranations [18]. The structure of ILWT is illustrdte
in Figure 3. Because of completeness, the perfocmahIWT is slightly worse than DWT. However,
ILWT structure can greatly reduce the computatiamahplexity which implies that ILWT is an ideal
choice for low energy systems. In practice, ILWE leeen successfully used in embedded processing
of wireless sensor nodes for image compressionrgless sensor networks [18]. Then the compressed
image can be considered as the compact representaitioriginal image for target classification,
which can decreasing the computational complexitthe polynomial computation in each node and
ensuring this selected subspace can retain enatrgisic information of the original space.
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Figure 3. The structure of lifting scheme in LWT.
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After image compression, SVM is used to construckaasifier for target classification. A SVM is
essentially a linear classifier operating in a biglimensional space. For reducing computatiore,lo
a kernel functionK([)] is used to perform input-feature transformatm('[)], which is defined as

follows:
K (m) =g mp( 9. (26)

With the kernel functions, the basic form of SVMass follow.
|
f(m) =si9n(2 q (¢ m @( m))+ % - (27)
i=1

where g, is the weighting factor$0<qi <oo), b is a scalar threshold for adjusting the resafts

classification, here, it is set to 0. In this paethird degree polynomial kernel is used:
K(m, n):(rﬁ n+1)3 (28)

Unfortunately, the training phase of SVM algorithmmay take a long time. However, once the
classifier is trained, SVM just need to estimate thosterior probability for each class, so the
computational complexity is rather low. For mulétegory classification, multiple classifiers can be
trained and combined for more complicated clas#ifimi. Moreover, some distributed training
methods for SVM algorithms were proposed in maigrditures. These methods are demonstrated
feasible in WSNs [19]. After training, the preresjte parameters of kernel functions are transfeiwed
each node for classification. Each node just needserform some polynomial operation, which is
reasonable for the processing ability of wirelemsssr nodes.

3.1.3 Target Tracking and Estimation with ARMA Mode

After target detection, wireless sensor node usserical information of target location for target
tracking and estimation. Target tracking is alwgeformed by Kalman filter. However, it is
extremely challenging to implement a Kalman filietrack a maneuvering target if the dynamic model
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of target is highly nonlinear [20]. Although a stiand particle filter can solve the nonlinear non-
Gaussian problem [21], it cannot solve the estiomaérror of cumulating problems when manoeuvers
occur. Furthermore, some algorithms have been peagpdor maneuvering target tracking, such as
unscented patrticle filter [20], radial basis funatibased particle filter [21]. But these algorithars
computation-expensive for wireless sensor node swtiple embedded data processing capabilities.

When the target is moving in Cartesian coordinaties, target motion can be described by the
following state space model, which is expressedgtbe X-axis for simplicity.

x (k+1) = Fx(k) + Gw( k) (29)
And the measurement model is given by
y(k+1) = Hx(K) +v(K) (30)

where the process noise(k) and the measurement nois¢k) are assumed to be zero mean,

independent white Gaussian sequences. In the dagenmneuvering target, the state vectors
defined asx :[x X x]T wherex is the target positionx is the velocity andk is the acceleration.

The corresponding matrices are

r T2_ T_3
1T — 6
2 T2

F={0 1 T, G=|—| H[10} (31)
00 T .

whereT is the measuring interval.
Here, a new state vecto:d‘z[xl X, x3]T is given, wherex' andx are related by the following

equation
X' =P*x (32)
and the transformation matrig* is given by
1 0 O
H
T2
P'=| HF =1 T — (33)
) 2
HF
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Thereforex ,i =1,2,3, in vectorx' are related to the target position, velocity aockéeration by

X
X X T2
X, | =P x|=| x+ Tx+7 X 134
% XI' | x+2Tx+ 2T2%

The new state vectax' contains only the target position information atclke subsequent time
instant, and it is equivalent to in presenting the motion of target since theyratated by a linear
transformation. This implies that the problem ofnmavering target tracking can be viewed as a
problem of adaptive time series prediction [22].

Here, the ARMA model is adopted due to its outsiamdoerformance in model fitting and
forecasting and its light computational cost [2BRMA model is a widely-used model for the
prediction of future values. It contains two ternise auto regressive (AR) term and the moving
average (MA) term. The AR term is a linear reg@sf current value against one or more prior
values. It captures the dependency of current vaheeits nearest prior values. And the MA term is
introduced to capture the influence of random shdokthe future. In general, a linear system can be
derived as follow.

(=3 aq m )+ ol ) 53

where the system input i&(n), output iss(n), a andb are the AR coefficients and MA
coefficients respectivelyp is the order of the system aad&k p. The measurement equation is

y(nj=s(nN+uv(n, 0< nc N-1 (36)

whereu(n) is the measurement noise aNdis the number of measurements.

Normally, the MA coefficients are estimated by ming the error between the actual
measurements and the weighted impulse responserssxjgenerated by the estimated denominator
coefficients.

For reducing the computation complexity in estimgtithe AR and MA coefficients, the AR
coefficientsa is estimated by using the robust singular valueodw®osition (SVD) based linear
predictive coding algorithm (LPCA) method, whileethMA coefficients h are estimated by
minimizing the error between the actual measuremantl the weighted impulse response sequence
generated by the estimated denominator coefficiastasual [22]. The SVD based LPCA method is
presented as follows.
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The forward prediction in LPCA is described by
~ M ~ B
y(n)=>ay(n) (37)
i=1

whereM is the order of the filtery(n) is the estimatey(n) is the measured data, and the above
equation can be written as

Y =A4 (38)

where 4=[4,3,,..3,]' , Y is a (N-M)x1 vector and A is a (N-M)xM matrix,
p< M < N-M. The optimal vectoa is given as follows:

ATAG=ATY (39)

For decreasing the computational complexity of cotimg A'A , the robust SVD method is
applied. Let

0

A=ulP v (40)
00

where U=[u,U,,..4_y] and V=[v,v,..v,| are unitary matrices of dimension

(N-M)x(N-M) andM xN, p =diag[0,, 0,....,0,] is anr xr matrix where and is the rank of

A. So the optimal weighta as

a=y plvulY (41)

k=1

According to the target state model, a third orfileer is ideally sufficient to track a maneuvering
target. However, it must be noted that the ordehefproposed ARMA filter should be higher than the
order of the target state model, especially fogeatracking with noise. In this paper, the ordethe
system is set t@ =4,q= 3. Furthermore, tracking target with ARMA model regs a delay oN
steps for the parameter estimation. However, tingdlpm only occurs in the initialization. When
sufficient measurements are available, no delagqgsired.

3.2. Distributed Target Localization with P2P Manne
Although each wireless sensor node can achievettaetection, classification and tracking, 3-D

localization can only be achieved by fusing theoinfation from multiple wireless sensor nodes,
because single wireless sensor node can only actingirbearings of target. Because of the requiremen
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of dynamic, energy efficiency and low computatiaomplexity, a multi-view localization method
based on distributed P2P signal processing frameisqroposed.

3.2.1 Multi-view Localization

For integrating the bearing information of eacheléss sensor node and achieve target localization,
a simple multi-view localization method is propogedconquer the negative effects of occlusion and
obstacles by fusing MBR results of several sensdes. It is assumed that the measuring uncertainty
of target position can be effectively approximateg a 2-D Gaussian distribution in MBR. As
illustrated in Figure 4, after projecting the Gaasdlistribution to the ground, multi-view localtxan
fuses Gaussian distribution results by

E(x|rl,...rn):f(izzl: p( ¥7,)x p(r,)j 2y4

where p(x|ri) denotes Gaussian distribution acquiredthywireless sensor nod@,(ri) is the scale
factor. Here, it's given by distance between wselesensor node and targét. presents the

normalizing operatorx is the fused result. Then the approximate positibmoving target can be
calculated as expectation of the distribution

E(x):ZxDp( X) (43)

Figure 4. Multi-view localization fuses Gaussian distributigsults from different
wireless sensor nodes.

O Wireless Sensor Node
I Probability Distribution of Target

“— Partially Fused Information
Transmission

The fused results are at most as large as the taimtgrof the most accurate individual sensor
node, if all sensor nodes work normally. But if soreensor nodes are broken or blocked, the
corresponding results are not credible. So, ifpfuability distribution becomes zero or even |dtera
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fusing the MBR results of some sensor nodes, tlative sensor nodes will be considered as useless
ones, the results will not be fused and the origiesults will be transmitted to other nodes indtea

Furthermore, a simple voting mechanism, utilizihg status consistency and the target tracking
information, is applied. For each node, one voteast for the resulting target class, and votes are
counted for 5 neighboring frames at each steptdatget class receiving the largest number of votes
decides the target's class in this node. This gotmechanism reduces the number of random
misclassifications in video sequence caused byetmgoral occlusion.

3.2.2 Multi-view Localization with Distributed PZFgnal Processing Framework

Because of the inherent characteristic of the nwidtiv localization method, it can be
incrementally carried out in distributed P2P sigpabcessing framework. In this application, the
resource consumption retains the general form wisatescribed in Section Il, and the application-
specific information utility metric is discussedhere.

Image sensor node is a kind of bearing-only sensde. For bearing-only sensor nodes, Wang [24]
has proposed an entropy-based sensor selectioistiewhich selects an informative sensor such tha
the fusion of the selected sensor observation thighprior target location distribution would yiedah
average the greatest or nearly the greatest reduictithe entropy of the target location distribati

The entropy of the probability distribution of thiew of wireless sensor node H, is

H'=~[p(z')log p( 7) d? (44)

where z' is the view of sensar about the sensor location. For computing the itligion in numerical
method, the discrete representationpnffz“) with a grid8z’, H' is computed as

H'=- p(z')logp( 2)d 2 (45)

And the entropy of the sensing model of wirelesssee node for the actual target locatiox is
approximated as

H*=~[p(z|Xlog B 7} d: (46)

where X is the maximum likelihood estimate of the targetdtion in the prior target location
distribution in the partially fused results.

Because the wireless sensor nodeith larger entropy differenceél’ - H.?® yields on average larger
reduction in the uncertainty of the posterior tatgeation distribution [24], the sensor selectaan be
considered as the following problem

i =arg ma>(H V- His) (47)

which implies that theH,” —H.* can be used as the predicted contribution meiig,....-
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Furthermore, the confidence degmgg, ...... Of the wireless sensor nodes can be evaluatetievy t
Mahalanobis distance between tracking result ofatineless sensor node and the final fusion redult a
last instant, because Mahalanobis distance caly ei@sermine the similarity between two probability
distribution sets [25]. The confidence degree finée as:

B S (0) ==( Xy~ K] 5 Xy~ %) (48)

where X;(t) is the probability distribution of sensor at ingta-1, )2{_1 and %!, is the mean and
covariance of probability distribution of final fies result at instant—1 respectively.
Then the objective function of sensor node seladiiaring information fusion is as follow.

M (S (9) =-(1-a)  Hy = i ] X = Xa) 52 X~ X0)-a 'ZH(ET)U)) “

where the relative weight is set &= 0.5 in this paper.
The criterion for finalizing fusion is evaluated tye entropy of probability distribution of target
position which is defined as

Z p(%)log p( x (50)

If the entropy exceeds the predefined value, tlealipation is considered to be finished, then the
current wireless sensor node will transmit the ltdsack.

For multi-target tracking, multiple leader sensades will be dynamically and autonomously
established and trigger the distributed P2P sigmatessing based multi-view localization for each
target. The inherent characteristic of P2P netwpvies many benefits on distributed multithreading
signal processing, which implies that distributétPFsignal processing framework will perform better
in multi-target tracking.

Because the collision often occurs in multi-targedcking, it is difficult to associate the
measurements of each sensor node with individugletss The assignment between tracks and
measurements is formulated as a discrete optimizairoblem to maximize a dimensionless global
likelihood ratio of the measurements-to-tracks esgimns. The nearest neighbor approach [26] is
adopted to associate the measurements to traclletbymining which measurement is closest to the
predicted target-originated measurement. For sfgpd the computation, Mahalanobis distance is
also used to determine the optimal associatedisefsuleach target:

I =arg mln((Ppredicted - X i)T 5 o (( Poredicted™ X ))) (51)

I<i<N
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rediciea 1S the target position predicted by ARMA modé’.li,and ii are the mean and covariance
of probability distribution ofth potential positioniN is the number of potential position.

Actually, the multi-view localization algorithm caalso be carried out in traditional centralized
client/server framework and distributed client/sgrframework. For comparing the performance of
centralized and distributed client/server framewoakd the proposed distributed P2P framework and
studying the tracking performance of the combimadiking system with several specific algorithms, a
real world target tracking experiment is describad the results are analyzed in the following secti

whereP

4. Simulation Results

In this section, an indoor target tracking expeniis described and the tracking performance,
energy consumption and communication latency afetatracking with ARMA model in a centralized
client/server framework, a distributed client/serframework and a distributed P2P framework will be
evaluated. The distributed mobile agent framewarkgnored, because the overhead of the mobile
agent is large in visual target tracking [7]. Besmwf the space limitation, just a small number of
nodes are deployed and tested. But this scenamialsa be considered as a prototype of the WSN [27]

4.1. Deployment of the Wireless Sensor Network

As illustrated in Figure 5, a wireless sensor nekwaith 18 wireless sensor nodes is deployed in a
room with a distributed P2P framework. Each wirelssnsor node consists of one image/pyroelectric-
infrared sensor pair which has 60° visual angle ZB8dmm camera lens. Each wireless sensor node is
working autonomously. As soon as target entersrdoking area, the correlative wireless sensor siode
are awakened by the pyroelectric-infrared sensoduieo and then the image acquisition, target
extraction, feature extraction, target classifimatand target tracking are performed continuoustyl u
the target leaves.

Each node processes the input information at adreate of 10 Hz with video down-sampled to
160x120 pixels. Each node can locally estimate moegergy consumption and share the reserved
energy information per minute. Each tracking datekage is 1 kbytes and the interval is 0.1 seclbnd.
carries partially fused tracking result and a ¢ipassed itinerary. In this experiment, the sdenair
target moving is as follow: one person pushed fodwea chair to the center of the room, and then
walked to the other side. In some angles of vighes,person and the chair was separated in the latte
scenario, so it changed to multi-target trackingjopem.
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Figure 5. The setup scenario of the wireless sensor netwodkstributed
P2P framework.
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4.2. Multi-Target Tracking Results

Figure 6(a), (b), (c) and (d) respectively show sleguential signal processing results in 4 of 18
wireless sensor nodes, N1, N8, N10 and N18 astrfltexl in Figure 5. Each sequential signal
processing result consists of 4 intermediate reswihere the first row presents the original images
second row is the foreground target detection tgsuhe third row shows the rescaled contour
information of targets and the fourth row illusésthe target classification results.

Figure 6. Signal processing results sequences in 4 of 18essesensor nodes, where
the solid rectangle represents that the clasdicaesult is human type and the dashed
rectangle represents that the classification réesulbn-human type.

(©)

The results illustrate that the proposed trackipstesn combined with background substraction
algorithm and 2-D ILWT and SVM algorithm in eachreless sensor nodes can successfully achieve
target detection, feature extraction and targessifi@ation, even if targets are partially blocked.
Obviously, the person and chair can be clearly re¢pd. It means that, although multi-target may
involve many severe occlusions at one time, thay loa automatically detected once they can be
separated correctly in at least one of the wiredessor nodes.

During target classification, a total of 5000 byamages of human and 4000 binary images of
non-human, which were produced in different datéth wifferent groups of people, are used for
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training, and 2000 binary images of human and I&68ry images of non-human are used for testing.
In such a extensive experiment, the classificatiocuracy for human and non-human are 92.4% and
95.5% respectively, although the limitation of viamgles and disturbances of obstacles will alsseau
misclassification, i.e., in Figure 6(d).

Figure 7. Multi-target tracking results of (a) distributedAPffamework, (b) distributed
client/server framework and (c) centralized clisatver framework.
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The final multi-target tracking results of the pospd tracking system based on distributed P2P
framework is illustrated in Figure 7(a), where thagectories of targets are labeled for classiiorat
The tracking trajectories are compared to the tragéctories. The results verify that the multigeir
tracking system based on distributed P2P framewankeffectively realize multi-target tracking.

4.3. Performance Comparison

For investigating the performance of the centralizelient/server framework, distributed
client/server framework and distributed P2P framiythe distributed target localization algorithe i
carried out in centralized client/server, distrémitclient/server and distributed P2P framework,
respectively. The setup scenarios of the centlindient/server framework and distributed
client/server framework are illustrated in FigureMhere the wireless sensor network is divided éto
clusters in distributed client/server framework.

Figure 8. The setup scenario of the wireless sensor netwof&)icentralized
client/server framework and (b) distributed clisetier framework.
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The multi-target tracking results of each framewark illustrated in Figure 7. Obviously, the
performance of distributed P2P framework is mudtelo¢han other two frameworks in target tracking.
The reason is that raw data transmission in ba#nttserver frameworks will shapely increase the
amount of data, the confused data transmission wgbravate the congestion of wireless
communication, and cause the measurements to baf-segjuence and packet loss. Compared to the
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other two client/server frameworks, the distribuRZP framework dynamically chooses the proper set
of wireless sensor nodes for progressive signatgasing according to the current predictions of
information contributions, energy consumption aifétime of WSNs. The integrated objective
function defined in Eq. (49) ensures the tradeeffreen information utilities and energy consumption
Moreover, the performance of distributed clien¥serframework is better than the performance of
centralized client/server framework, because tls&riduted signal processing decreases the workload
and data transmission of processing center andowegrthe quality of wireless network service.

Figure 9. Comparison between centralized client/server fraamkwdistributed
client/server framework and distributed P2P framedwo
(a) time delay and (b) energy consumption.
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Furthermore, the time delay and energy consumpii@ommunication of the three mechanisms are
compared for further investigation. As illustratedrFigure 9, the time delay and energy consumption
of a distributed P2P framework are also much leas in a centralized client/server framework and
distributed client/server framework at each timstamt. The reason is that the distributed P2P
framework can dynamically and sequentially carry signal processing to attain a desired level of
performance in WSNs, and ensure to exchange tBedeaount of data between wireless sensor nodes
according to the situations of each wireless semsmfes, such as the reserved energy, energy
consumption, signal processing ability and predicieformation contribution. Inversely, in two
client/server frameworks, once the target is seilseda number of sensor nodes, a significant amount
of traffic is triggered, this may easily lead tongestion in the forward path, which will cause cesi
time delay and energy consumption.

From the comparison of tracking performance, timedayl and energy consumption between
distributed P2P framework, distributed client/servieamework and centralized client/server
framework, it is obvious that the proposed distiélsuP2P framework and the proposed combined
tracking system based on background subtractidd, IPWT, SVM, ARMA model and multi-view
localization algorithms can succeed in robust raltijet tracking in WSNSs.

5. Conclusions

For performing target tracking in the strictly ctased wireless sensor networks, this paper
proposes a distributed P2P signal processing framewand introduces a combined target tracking
system. In the distributed P2P framework, signalcpssing is progressively carried out in a set of
selected wireless sensor nodes with an integrateion based on some feasible factors for achggvi
the tradeoff between energy consumption and infaomautility. The combined target tracking system
consists of a series of specific in-node algorithmisch as background subtraction based target
detection, ILWT and SVM based target classificati?dRMA model based target tracking, and a
multi-view localization algorithm based on the dlmtited P2P signal processing framework. Then an
indoor experiment is carried out for investigatthg performance of the proposed tracking system and
comparing the impacts of centralized client/sefv@mework, distributed client/server framework and
distributed P2P framework in tracking, time delayd a&energy consumption. The experiment results
demonstrate that the distributed P2P framework isféective signal processing framework with better
performance in processing, time delay and energyswoption of wireless sensor networks than
centralized client/server framework and distributiiént/server framework, and the proposed target
tracking system based on the distributed P2P sygakessing framework can be successfully achieved
in strictly constrained wireless sensor networkd perform target detection, classification, tragkin
and localization.
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