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Abstract: Wireless sensor networks (WSNs) are autonomousanktwthat have been
frequently deployed to collaboratively perform w&trdocalization and classification tasks.
Their autonomous and collaborative features resertit@d characteristics of agents. Such
similarities inspire the development of heterogerseagent architecture for WSN in this
paper. The proposed agent architecture views WSKat-agent systems and mobile
agents are employed to reduce in-network commuaitafccording to the architecture,
an energy based acoustic localization algorithrpraposed. In localization, estimate of
target location is obtained by steepest descentlsedhe search algorithm adapts to
measurement environments by dynamically adjustiegarmination condition. With the
agent architecture, target classification is acdmhed by distributed support vector
machine (SVM). Mobile agents are employed for featextraction and distributed SVM
learning to reduce communication load. Desirabderiing performance is guaranteed by
combining support vectors and convex hull vecténgsion algorithms are designed to
merge SVM classification decisions made from vagimodalities. Real world experiments
with MICAz sensor nodes are conducted for vehidealization and classification.
Experimental results show the proposed agent aathite remarkably facilitates WSN
designs and algorithm implementation. The localiratind classification algorithms also
prove to be accurate and energy efficient.

Keywords: wireless sensor networks, multi-agent system, recmlent, target localization
and classification, support vector machine.
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1. Introduction

Wireless sensor networks (WSNs) are wireless néswvitrat consist of a large number of spatially
distributed autonomous sensors (generally refetcechs sensor nodes) and collectively monitor
environmental conditions, such as temperature, souibration, and so forth [1,2]. WSN can be
employed in applications ranging from environmentabnitoring and battlefield surveillance to
condition based maintenance [1,2,3]. Among thestagkthese applications, target localization and
classification are most frequently involved [3,8,3]. Both tasks can be viewed as sensor fusion
problems as illustrated in [2]. More specificallige target localization and classification problisnto
make the best estimates with regard to the locadiuh type of the observed targets by rationally
combining information collected by relevant sensodes [2].

A thorough overview of these problems can be foun[8]. In the publication, a general purpose
collaborative framework is proposed for localizatend classification in WSN. Localization problems
are overviewed in [4,5,6]. It shows localization ggmarily achieved by two approaches, i.e. by
estimate of time delay of arrival (TDOA) or estimalf energy attenuation. Each algorithm has its own
advantages and disadvantages [6]. In [3] energgdéocalization using acoustic signatures in WSN
is presented. Classification in WSN is reportefBif]. In [3], maximum likelihood and support vecto
machine are used for classification. Real worldegxpents to classify armed vehicles with acoustic
and seismic signatures are demonstrated in [7].

In WSN scenarios, the energy based localizatiorhatkis preferred. The primary reason is that
TDOA requires related sensors to be accuratelytspmized. But accurate synchronization at present
is too expensive. Localization with acoustic sigimas is most desirable, because the models of
acoustic energy attenuation are relatively easyedtablish and less influenced by environmental
changes. Support vector machine [7] is very swatédal classification in WSN because it is espegiall
designed for small sample learning. Moreover iersp representation of the learned classifier regui
less in-network data exchange.

As shown in [2], localization and classification\WMSN are in essence sensor fusion problems. It
necessitates cooperation between sensor nodes allabocative processing algorithms. The
collaboration entails in-network information exchas, but in WSN limited bandwidth and power
supply make bulk data exchanges prohibitively espen[1,3].

To deal with the above problems, a variety of epeffcient collaborative processing algorithms
have been developed [3,8,9,10,11]. An informatidmesh collaborative algorithm is introduced in [9].
Different from the method in [9], mobile agents araployed to perform collaborative processing in
WSN in [10,11]. Mobile agents can remarkably reduncaetwork wireless transmission by migrating
in the network to perform assigned tasks [10,11je Tharacteristics of agents (including mobile
agents and multi-agents) such as autonomy, refyctiand social ability perfectly match the
autonomous, reactive and collaborative feature8V8N [10,12]. Such resemblance has motivated
attempts to model WSN as a multi-agent system@asted in [13,14].

Undoubtedly it is desirable to use these proposehitactures to develop scalable WSN systems.
But in literatures [10,12] only mobile agents arpleited, while in literatures [13,14] merely muilti
agents are investigated. Intuitively the potentil agents will be better exploited if multi-ageand
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mobile agents are merged. Inspired by this, wg@gse to model WSN with a heterogeneous agent
system (i.e. a combination of mobile agents andtiragents). It is believed such architecture
represents WSN better than solely using eithenerint

The proposed architecture is a hierarchical one. dritire WSN is viewed as a multi-agent system.
Individual agents belong to different hierarchitmlels in accordance with their roles in the networ
Collaborative processing (or equivalently, senagidn) is primarily accomplished by multi-agent
cooperation, but mobile agents are also used escakbulk data exchanges. This architecture greatl
facilitates designs and implementations of WSNatdidition the architecture also readily adapts to
diversified deployments at various scales.

With the agent architecture, target localizationd arlassification in WSN are implemented
accordingly. Energy based acoustic localizatioadsieved by multi-agent collaboration. An adaptive
steepest descent search algorithm is introducedarch for the best estimate of target locationgdta
classification is achieved by a combination of rragfent and mobile agent using SVM. Distributed
SVM learning using convex hull vectors is develogedenhance the learning accuracy with low
communication needs. Acoustic and seismic signatare observed for classification’s purpose. The
features are extracted by means of wavelet pack&bndposition. Fusion algorithms are devised to
merge classification decisions made by agents dsstgres of different modalities.

Experiments are conducted to evaluate the propasgdtecture and corresponding collaborative
algorithms. Results show that the proposed ardhiteaemarkably facilitates the system designs and
implementations. Applications of vehicle localinatiand classification show the proposed steepest
descent search and distributed SVM algorithms aeegy efficient and accurate.

The rest of the paper is organized as followselttien 2, existent agent architectures for WSN are
introduced. Existent algorithms for target locdiiaa and classification are overviewed in sectioin3
the section that follows, the heterogeneous agecttitacture is developed. Agent collaborative
algorithms for localization and classification aecordingly proposed respectively. In section 3 rea
world experiments of vehicle localization and ciasation are conducted and the results are redorte
A conclusion is given in section 6.

2. Existent Agent Architectures for Wireless SensoNetworks
2.1. Brief overview of multi-agent systems and feagents

The terms multi-agent and mobile agent have lorgnhesed in research communities, however
paradoxically they are effectively not clearly aefil [12]. To make them fit into the objectives hist
paper, the definition of agent given in [12] is pthl. According to [12], agent is defined as “a
computational mechanism that exhibits a high degréeautonomy, performing actions in its
environment based on information (sensors, feedbackived from the environment”.

A multi-agent system is one where there is more thee agent, and where the agents interact with
one another [12]. For WSN applications, hierardhinalti-agent systems are of particular interests.
Here hierarchy is used in the sense system comfmofiem different task levels are represented by
different agents. Such systems have significantioations for WSN, as is to be illustrated soon.
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In contrast, a mobile agent can be regarded as@adkind of agent which has the unique feature
of mobility [10]. A mobile agent migrates from osensor node to another to autonomously perform
assigned tasks. Usually the derived results arelseeck to the sensor node that dispatches thelenobi
agent, but the mobile agent itself generally dessriocally.

Note that a sensor node is an autonomous entitghwimakes decisions by reasoning with the
information acquired by its sensors [2]. Evidentlg characteristics of a sensor node match thet agen
definition perfectly. The sensor node, therefoan be viewed as an agent. Consequently it would be
appropriate to model WSN in software with multi-agsystems and mobile agents.

2.2. Multi-agent and mobile agent architecturesviareless sensor networks

Now that a sensor node can be viewed as an agenstiaightforward to consider WSN as a multi-
agent system. The hierarchical multi-agent arctutecis presented for WSN in [14]. Mobile agents
have been found wide application in WSN too.

The multi-agent architecture in [14] is briefly somarized as follows. The entire WSN is viewed as
a homogeneous hierarchical multi-agent system.t@pegent is the interface agent. It is responsible
for accepting user requests, processing them andding feedbacks. It also dispatches instructimns
agents at lower levels. Based on geographical tondiand other factors, WSN can be divided into
regions managed by regional agents. A region ighdursplit into several sub-regions called clusters
and managed by cluster agents. At the bottom ofhieearchy is the query agent, which actually
corresponds to a sensor node.

Apparently the established hierarchical agent sechire is an adequate software abstraction of the
functionalities of WSN. But it is more than a simptoftware model. Its cooperative, social and
adaptive characteristics make designs and impleatiens of scalable WSN much easier.

Applications of mobile agents in WSN is mainly dniv by some drawbacks of the prevalent
client/server computing paradigms [10,11] .Collatime computing paradigms with mobile agents
have been proposed to address these drawbackschrparadigms, instead of sending raw data from
sensor nodes to the server, mobile agents carpnimcessing codes are sent to these sensor nodes to
carry out local processing. When local processinitnished, derived results are sent back. Usulaéy
size of the codes carried by a mobile agent is msmlaller compared to the data to be sent.
Accordingly communication energy consumption isstically reduced.

Compared to multi-agent architectures for WSN, reobigent architectures are relatively simple
and straightforward. In such architectures, moagents are usually dispatched by a sink node @ bas
station and migrate from one sensor node to antohgerform assigned tasks. Since the mobile agents
are essentially software codes, they can be dymdijmgrogrammed. Therefore the architectures offer
much flexibility to collaboration processing in W&Xd make the network adaptive to various types of
applications. As stated above, multi-agent and fedadogent architectures for WSN make it easier to
design the network structures and implement cot#bee processing algorithms between sensor
nodes. It is also clear that these two architestare essentially complementary. If they are coethin
their strengths will be fully exploited. Later ihet paper, a merged architecture will be proposed an
applied to collaborative localization and classifion in WSN.
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Before a merged architecture and its applicatioesravestigated, the problems of localization and
classification are overviewed first to preparethekground for further discussion.

3. Target Localization and Classification Algorithims

In this section, several localization and clasatfimn algorithms are briefly presented. Signatafes
a variety of modalities can be used for targetlieation in WSN [5,9,15]. But acoustic signatures a
most frequently used because such signatures caadig measured and the localization accuracy is
good [3,4,6]. Thus the discussion is confined t@uatic localization. Contrast to localization,
classification relies less on signature modalitiesrefore it is discussed in a general sense.

3.1. Target localization with acoustic signatures

3.1.1 Propagation of acoustic signatures

In the paper, the localization problem is consedinvithin two dimensions, that is, the target is
assumed to be positioned in a plane. Suppose tustc signature emitted by the target at position

IS u (t)and it propagates at the velocitycofin cases where the acoustic wave propagateg iaiththe

velocity ccan be assumed to be a constan84m/s Two dimensional propagation of the acoustic
signature is mathematically represented by [3,6]:

1
)=— = u(t- 1

where u, (t) is the acoustic signature propagated to locappmhose Cartesian coordinates are
expressed by

p, =[x, yI" (2)

Note
ty =cp—p| (3)

is the time needed for the signature to travel ftocationp, to p, . |  represents the vector 2-norm:

| yT|[=% + ¥ 4)

Suppose a microphone sensoris deployed at position, and the sensor gainag. Then the
acoustic signature measured by the sensor is [6]

a
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wheren, (t) is additive noise (assumed to be uncorrelated thigtsource signature).

Eq.(5) is a comprehensive description of the prapag characteristics of acoustic signatures.

Information of the acoustic source can be inferfiemn this equation. Specifically the acoustic
localization problem is to estimape from the observed signatwgt) by the microphone sensor. The

algorithms to be introduced rely heavily on theabpropagation models, especially Eq. (5).

3.1.2 TDOA method

Acoustic signature reaches deployed sensors atreliff time. The term,, in Eq.(5) exactly

describes such time delay of arrival (TDOA). Thotigé absolute TDOA can not be measured without
knowledge of locatiop,, the relative TDOA,, of sensorm at p,, with respect to reference sensor

at p, can be determined by means of cross correlatiohdp,

tn =argmaf R, ¢ )] (6)

R == [ u(hu(t-0) ™

-7

NoteR . (7) is the cross correlation of, (t) andu, (t) . Recall from Eq.(3},, is determined by

tw =ten=te=C (PP -[P P ) (8)

In Eq.(8), there are two unknowns (npte[x, y]"), therefore another such equation is needed to
determing, . If another senson positioned ap,, is available, then we have

Ps =Pl ~[[Ps=P (| =tne
fon-edAoe o

Ips =P =[PP =t.c

Solution of Eq.(9) yields the estimated positiorof the target whose true locationpijs In its
formulation TDOA is involved. That is why this appch is called DOAmethod.

3.1.3 Energy based method

When an acoustic signature is propagating, it ésdlgpropagating energy emitted from the source.
Physically, energy of vibration is proportionalttee square of vibration amplitude. Following Eq,(1)
energy decays in a manner that is inversely prapwt to the square of the distance from the source

[4]:

5, (10)
[Ps =Pl

wherek is a coefficient,E is the source energy & and E_ is the energy propagatedrp.
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Similar to the principles of TDOA method, thoughsalute energy can not be measured, relative
energyE,, can be calculated:

1 +
= [7 7 Juof at

E, =—DO (11)
mr 1 "
= [7 7 | of at
On the other hand, using Eq.(1B), is determined by
E, _lp.-p.[f
Emr :Em :M (12)
T ”ps - pm”

Following the same principle of the solution in thi®OA method, the target position can be
estimated by combining several equations similaiEtp(12). Evidently it is called energy based
method because energy propagation models playotméndnt role in the formulation of this algorithm.

Observe the similarities between the TDOA method emergy based method. They both estimate
the true target position by inferring from knowrlateve quantities (relative time delay and energy
respectively). Comparatively, the former methodlass affected by noises as a result of cross
correlation but requires more computation (evatuaf Eqg.(6) necessitates investigation of a large
number of possible) . Moreover it requires accurate synchronizatiérihe involved sensors. The
latter is relatively efficient in computation butulmerable to noises. Choosing the appropriate
localization method is problem specific where ti@tleetween accuracy and efficiency may be needed.

3.2. Target classification with support vector miaeh

In the context of this paper, target classificatiorio infer which hypothesis the target belongs to
from the signatures observed by deployed sensdessification algorithms have been extensively
investigated [3,7,17]; therefore there are a retho$ algorithms for choice. In WSN scenarios,murp
vector machine (SVM) [17,18,19] is especially apaplile and suitable, for available samples come in
small number due to limited memory. Another appeginerit of SVM is its sparseness. By sparseness,
it means the learned SVM classifier is represebtednly a small portion of given samples in most
cases. In other words, support vector machine oiigli performs data compression. Such data
compression makes SVM extremely suitable for WSpliegtions, because it can significantly reduce
communication load. Classification in WSN is esediyt distributed due to the distributed sensor
deployment. Consequently distributed SVM learnicigesnes need to be exploited.

3.2.1 Fundamentals of support vector machine

Mathematically a binary classification problem arhulated as [17,18]: given a setMfsamples
{(x, W}, where x,OXOR" , yOY={+,-1} andy, denotes the class label of the sample
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determine the hypothesk(x,u,)0{H(x u)} that meets certain criteria. As far as SVM isaaned,
the criteria is minimization of structural riskscatine hypothesis takes the following form [17]

H (x,w,b) ={x | (w [p(x))+b =0} 13}

wherep: X - F maps elements X to a higher dimensional feature sp&cpw is the weight vector
andbis the bias. The notatigfidenotes the inner product operator.
The hypothesibl (x,w,b) minimizing structural risks is denoted By(x,w,b), which is determined

by the following quadric optimization [17,18]:

N 1 N N

max > a == > aayy K x ) (14)
i=1 i=1j=1
N

s.t. Y ayy =0 (15)
i=1

0<a,<C,i=1-- N (16)

In these equationk? is the predefined cost parametars.is the Lagrange multiplieK () is a
kernel function defined as(x;,x; ) = (@(x, ) [gAX; )) .

Suppose the optimal solution to Eq. (14y'is[a,,q,....a,]. Thenx;associated withy| #0 is

called a support vector (SV). That is exactly whigs tmethod is named support vector machine. Let
iSVdenotes the s{sﬂa] # (} . Then the derived hypothesis(x,w,b)is expressed as [17]

H (x,w,b)= > ya KXx,x)+b 17}

misy
Consequently, the decision function of SVM is [18]

00 =5gn(Q Y@WK &, X )+ D) (18)

maisv

The decision function (18) is based on the derilrggothesis (17), so the notations are identical
with those used in (17). Thegn( function is the sign function. Therefore (18) medmat given any

new sample, if >y a,K(x,x)+b>0, thenxbelongs to classl (the output ofgn()), otherwise-1.
misV

Note that the SVM classifier (17) is learned inemtcalized manner, that is, all the samples are
available during the learning processing (i.e. sotuof Eqg.(14)). But in WSN, samples are distrédait
over the network; consequently distributed learmmeghods need to be investigated.
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3.2.2 Simple algorithm for distributed support weahachine learning

In WSN scenarios, the samplgs, y)} Y, are distributed across the network. Suppose thdewho

samples (denoted Iny) are distributed ovegr sensors in WSN. The sample segmenbDoét the sensor
k is denoted b, . Distributed SVM learning from, (1< k < p)can be transformed into a centralized
one, if all segments are sent to a concentrationt pchere SVM is learned following Eq.(14) . But
such data concentration is not applicable in moSINAapplications. As illustrated before, in WSN
bulk data transmission is prohibitive due to eneagyg bandwidth limitations. As a result, centradize
SVM learning is not feasible; therefore distributedrning needs to be exploited.

A simple distributed learning method is based ug@nsparseness of SVM [19]. Note in Eq.(17),
only support vectors contribute to the final cléesi Moreover these support vectors usually actoun
for a small portion of the whole samples. In otiverds a SVM classifier is sparsely but sufficiently
represented by its support vectors. Based uponathgervation, it is both intuitive and natural to
propose to learn the global SVM classifier from toscentration of local support vectors instead of
local sample®, (1<k< p). For detailed information concerning this methptbase refer to [20]. In
this way, communication energy consumption is $icgutly decreased, because the numbers of
support vectors are much smaller compared to theleveamples. This simple intuitive learning
method is called ‘SV only’ algorithm because ordgdl support vectors need to be transmitted for
final SVM learning.

3.2.3 Convex hull vector approach for distributagggort vector machine learning

The SV only algorithm is very intuitive and indeeffiective in some cases, but not in all cases. The
rationale of the SV only algorithm is that localpport vectors are representative of local segments,
whose union is accordingly representative of thelatsamples too. However this is not the truth.
There is a gap in between. In [21] convex hullngptoyed to draw representative samples from local
segments. The drawn samples are called hull ve(ttyr$ and their union is also representative of the
whole samples. The principle of convex hull is vsinaightforward and derived from observations that
in the feature space support vectors are alwaykeboundary of samples. This is shown in Figure 1.
In this figure diamonds and stars represent sampfeswo classes. The support vectors are
circumscribed by circles which are shown to be #yam the boundaries. The boundary polygons are
called convex hulls and the samples on the polygoashe corresponding hull vectors.

An appealing characteristic of convex hull is thlaé convex hull of a large dataset can be
constructed with the convex hulls of its subsetser&fore by convex hull, more information pertinent
to the local segments is preserved than the SV agtyithm. It is shown in [20] that compared te th
SV only algorithm, better distributed learning a@aty is achieved by using hull vectors in the featu
space to represent the local samples.
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Figure 1. Convex hulls of samples in the feature space ¥MS
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Figure 2. Divide and conquer algorithm to compute the conwatk (in 2-dimensions).

Determinehull(S), the convex hull of a point s&twhose cardinality is.

Step 1.If n<<2, then return the points, as they are the conwdixdi S. Otherwise, perform the
remaining steps:

Step 2.Divide then points byx-coordinate into 2 setg, andB, each of siz&/2, where all points in
A are to the left of all points iB.

Step 3.Recursively computkull (A) andhull (B).

Step 4. Combinehull(A) andhull(B) to determine

hull(S)=hull(hull(A) U hull(B))

a) Find the upper and lower common tangent lines batall (A) andhull (B).

b) Discard the points in the quadrilateral formedhs/ 4 points that represent the tangent lines.

c) Number the convex points (i.eepumeratdhe outermost points so that they remain ordered fo
subsequent iterations).

A comprehensive introduction to convex hulls argbathms to compute them can be found in [22].
Here a divide and conquer algorithm (in 2-dimensjois presented and shown in Figure 2. The
algorithm is essentially a recursive one whichasyeto understand and implement. However it must be
emphasized that convex hull computation in theuieaspace is very difficult. It requires explicit
mapping from the sample space to the feature spdweh is at least presently a challenging problem.

Obviously for SV only and convex hull approachdse former is simpler but the latter is more
accurate. Choice between the two algorithms dependise objective of the distributed learning.

In the following section, the heterogeneous agesftiecture is first developed; then the previously
discussed localization and classification algorghame adapted for the proposed architecture.
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4. Collaborative Localization and Classification wih the Heterogeneous Agent Architecture

From above discussions, it is clear both localaratnd classification in WSN call for collaboration
between sensor nodes. It is also known the mudtirgrchitecture facilitates sensor node cooperatio
and the mobile architecture significantly reducen@twork communication load. However for the
collaborative localization and classification in WSooth sensor node cooperation and exchanges of
data in bulk are needed. Therefore it is necesaad advantageous to merge these two agent
architectures to meet the requirements presenttéebge applications.

In this section, the heterogeneous agent architecyproposed to combine multi-agents and mobile
agents. With such architecture, appropriate algaorét are accordingly developed for collaborative
localization and classification in WSN.

4.1. Heterogeneous agent architecture for wireksssor networks

The proposed heterogeneous architecture framevgogskiown in Figure 3. From the figure, it is
obvious that the architecture is a heterogeneoas fon both multi-agent systems and mobile agents
are incorporated. The multi-agent system is a ththreal one. The top is the interface agent, which
receives user query about the environment, inqtiredower level agents accordingly and reports the
query results to the users. The immediately lovesell is the regional agent. In such architecture,
several regional agents may coexist, and each e ¢harge of a region within the sensor field.
Regional agents receive query requests from trefatte agent and control sensor nodes within its
region to collaboratively respond to the requeAtsegion is further split to sub-regions (clustettsat
are coordinated by manager agents. Manager ageetsiylcontrol the behavior of these sensor nodes
which are modeled as observing agents (OA). Effelstia manager agent and its OAs play the
dominant role in WSN collaborative processing. Tikislue to the fact that a target or an event to be
dealt with must belong to one cluster organizechbyanager agent. This is a miniature multi-agent
system relative to the whole system.

Mobile agents may be involved in collaboration g evel, from interface agent query at the top to
OA collaborative processing at the bottom. Newddbs in most cases, mobile agents are involved at
lower levels, because much of the practical collation takes place at lower levels. It must be
clarified that mobile agents are only used wherdaede As a simple but practical guideline, mobile
agents are used in cases where data transmissioesda bulk or utilization of mobile agents gives
superior performance.

In Figure 4, it shows an illustrative WSN deployrnédor target localization and classification
following the proposed agent architecture. The aefislds are divided into several regions based on
geographic conditions. Regional agents directly momicate with the interface agent. It is postulated
the clusters within a region and the manager agamredefined. They may also be dynamically
determined, but that is beyond the scope of thiepaVhen the target is detected in a region, agent
collaborative localization and classification startordingly.
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Figure 3. Heterogeneous agent architecture for WSN.
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The number of those observing agents involved italooration and the subsequent collaboration
mechanisms for localization and classification pn@blem dependent. In the following, collaboration
schemes for acoustic localization and hull vectda SVM are discussed in detail.

4.2. Agent collaborative acoustic localization

To confine the discussion within the scope of laedion, it is assumed that the target is statipnar
or moves very slowly across the sensor field. Meeeave suppose that the locations of the sensor
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nodes are known a priori. The location may be iamify specified during the deployment or
determined by the WSN self localization algorithassntroduced in [23].

As stated above, the TDOA and energy based metteodboth be employed to localize a target in
WSN. TDOA doesn't rely on propagation models ofestigated acoustic signatures, but it exerts
higher synchronous requirements on the sensordvenan localization. If these sensors are badly
synchronized, the time delay calculated by crosgetaiion will be far from reliable. Moreover, TDOA
requires to calculate the cross correlation of aigres measured by several observing agents. m suc
collaboration, it is nearly impossible to avoid banges of time series signals in bulk. Because no
compression can be done to the time series, otberthie phase information will be lost. In addition
searching for the peak of the cross correlatiorction is computationally expensive. To the contrary
the energy based method only requires exchangkeofdoustic energy measured at each observing
agent. For these reasons, the energy based mesthbdsen for target localization in WSN.

As noted in Eq.(12), there are two unknowns indfeation; therefore it seems two such equations
are sufficient to determine the target positionwdweer, note all the®, satisfying Eq.(12) forms a
circle in a plane. Solutions of two such equaticasespond to the intersections of two circles,alhi
usually corresponds to two solutions to Eq.(12)er€fore a third equation is needed to uniquely
determine the target position. That is to sayeas$t four observing agents are needed to collabelat
localize the target by 3 such equations:

P.~Pn| En =[PP 4 En=0
P.~Pn| En ~[PsP o E,=0 (19)
P. =P En PP 4 En=0

Before turning to its solution, it should be detared which observing agents are used to establish
Eq.(19). We propose to select the 4 observing ageat report the highest energy level. The chisice
actually intuitive, since it is believed the measuents near a target are more reliable.

There is no closed form solution to Eq.(19). Morogue to noises and other possible interference,
there is usually no exact solution to Eq.(19). Mathtically it is a common practice to find a sauti
that makes the terms on the left hand side approachas much as possible. We propose to derive the
most exact solution of Eq.(19) by solving the opptiation problem:

2
e popd e (20)

3
min J(ps)=2[ PPy
j=1

Note that Eq.(20) is an unconstrained optimizapooblem which has been extensively explored
mathematically. In this paper we recommend to esngladient based steepest descent search method
[24] to solve it. Its computation expense is comafigely low and converges fast to the solution.

Though Eq.(20) is an unconstrained optimization,syece the target is within the sensor field, the
search space should be constricted within the.figld even better approach is to search within the
region where it is detected. Another important éssoncerning solution of Eq.(20) is choice of an
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appropriate initial search position. Intuitivelyethocation of the observing agent that provides the
highest energy level is selected as the initialcdepoint. The rationale is that a sensor is close¢he
target if it receives higher level of energy. Swsmarch choice intuitively guarantees the fastest
convergence.

Figure 5. Agent collaborative localization algorithm.

Localization is achieved by collaboration betwdss manager agent and OAs in its cluster.
Step 1:0n detection of a target, the manager agent irtstalt p observing agents in its cluster to
takeN samples of the acoustic signature and report fveirageenergy respectively.
Step 2:Each observing agent takssamples; calculates the average energy by:
1 N
En=—"7 > VL]

Nam j=1

Then report its average energy to the manager agent
Step 3:The manager agent receives all the average erergyhen selects theobserving agents

m ,m,,m;andm, that report the highest average energy to forrauta optimization(20).

Step 4:Steepest descent search algorithm is applied we $20).
The resulted converged poiRt is the best estimate of the target location.

Figure 6. Steepest descent search algorithm with terminatmaition relaxation.

Step O:Initialize :
Maximum search stefs;
Termination conditiore,;

Search countée=0,
The initial search positiop? =p,, Where

m, =a]rg ma>{ Emj ]

j=1,2,3,4

Step 1:

While k<U+1
Pt =ps-0J(pY)
If piﬂ —IOE S&

Then p,=p

Else k=k+1
End If

End While

Relax termination condition by setting= A¢,, wherei >1. Then go tdStep Q

Step 2:
Steepest descent search is finished and the estrtaget location i =p“*.

k+1
s

, go toStep 2

In the steepest descent search, maximum search ateptermination condition have to be set
beforehand. It is possible (e.g. due to noisegs)ithtne given search steps, the termination cardis
not met. To address this problem, we propose tamyecelly adjust the termination condition. If
termination condition is not met when it has reachbe assigned maximum search steps, the
termination condition is relaxed accordingly.
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In Figure 5, the formally formulated localizatiolg@arithm by agent collaboration is presented. Note
in the presented algorithm, average energy is u3éeé. steepest descent search algorithm that
dynamically adjusts termination condition is shown Figure 6. Note that the observing agents

involved in (20) are determined by the processemeesl in Figure 5. The notations here are congisten
with the ones used there. Naqigin (20) is a vector of two dimensions, thapis([x,y]". The

notationJ(p,) in Figure 6 denotes the gradienti@d,) :

(P
[0
RICE (21)

0y,

Figure 5 and Figure 6 give the complete descriptbrthe algorithms for agent collaborative
localization in WSN. Next we proceed to the clasatfon problem.

4.3. Agent collaborative support vector machinessification

4.3.1 Distributed support vector machine learniridp \wull vectors and support vectors

As shown before, distributed algorithms are neddddarn SVM classifiers in WSN. The SV only
algorithm is simple but its performance is not&atitory, because much important information is. los
Though the convex hull approach (in feature sppoegerves most of the important information of the
whole samples, however it requires explicit mappirig the feature space. Choice between these two
algorithms is actually find the tradeoff betweearteng complexity and accuracy. In this paper, we
propose to balance complexity and accuracy by coimdpithe two algorithms in the sample space.

Figure 7. HV and SV algorithm for distributed SVM learningtivmobile agents.

Distributed SVM learning is accomplished by sendmgbile agents from the manager to related
observing agents. The distributed HV and SV legrmalgorithm is used. Convex hull vectors are
calculated by the divide and conquer algorithm.

Step 1: The manager agent determines thebserving agentéOA}f’:l involved in the collaborative

learning and sends mobile agents to the obsergagtaOA (1< i< p) respectively.

Step 2: When a mobile agent arrives at the observing a{;@mﬁl, the feature extraction agent
prepares feature sampl@s Hull vectorsHV, of D, are calculated by the divide and conquer algorithm.
Support vectorssV are determined by learning the SVM classifier fil@mFinally determine the union
HSV = HYU SV and send it to the manager agent.

p

Step 3: The manager agent learns the global SVM classifi{g) from the sample®, =UHS\/i

i=1
following the optimization (14).
The resulted SVM is the learned classifier usirggify and SV algorithm.
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In the proposed algorithm, the hull vectors (itee samples on the boundary) are computed in the
sample spacenstead of thefeature space This way the computation is much simplified but
comparatively less information is preserved. To pensate for such information lose, support vectors
are merged with them. Since both support vectodshati vectors are used, it is called the HV and SV
algorithm.

In real world classification applications, the saespstored at local sensor nodes are raw data;
therefore feature extraction has to be performereelearning the SVM classifier. The feature
extraction method is to be discussed later. Atgaresve assume that the feature extraction algorith
is available.

Mobile agents should be used for distributed SVEriéeng in WSN. Otherwise large volumes of
raw data have to be transmitted to the managerntsdem each relevant observing agent. A mobile
agent based distributed SVM learning with the H\ &V algorithm is presented in Figure 7. Note
that in the proposed learning scheme, a featuraaidn agent is incorporated into the SVM learning
agent to extract feature vectors from raw datacdllobserving agents.

When the global classifier is learned, it can bedu® classify new samples observed in the cluster.
Usually classification of a target in WSN is alstask that requires collaboration.

4.3.2 Collaborative support vector machine clasaiion decision

In real world applications, usually more than onedality of signature is observed. For example
acoustic and seismic signatures may be observedetucle classification. Therefore there may be
several classifiers learned by the manager agewch Elassifier is responsible for classificatiomgs
one modality of signature. To achieve the best r@oyy classification decisions made from various
modalities should be fused.

The fusion is essentially the combination of hegereous and homogeneous decisions. The fusion
of classification decisions from the same modadititomogeneous, but that of decisions from differen
modalities is heterogeneous. We propose a hiecicHusion scheme for such hybrid fusion.
Homogeneous decisions are first merged; then thedfaecisions from various modalities are further
fused.

A distance based fusion is proposed for homogen&wmisn. Suppose a target is estimated to be
located atP,and there aren observing agen{®©A} ", (located afP}", respectively) that detect the

same modality of signature. The classification siecif, is made using the signature providedoy.
Since measurements at locations closer to the ttange generally more accurate, therefore the
corresponding classification decisions should beemeliable. Inspired by such observation, we
propose a distance based fusion:

= (22)
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T (23)
Ips =il

Here w is the weight for decisiofy, and F is the homogeneously fused decision.

Now that homogeneous fusion has been finishedrdggaeous fusion can be embarked. Generally
heterogeneous fusion depends on a priori knowlemfgéhe confidence associated with different
modalities. From experience, it is known that ddéf@ modalities of signatures produce different
classification accuracy. A straightforward fusgxheme is placing more confidence on the modalities
producing better accuracy. This is achieved byirggetltarger weights just as the approaches for
homogeneous fusion. Suppose there lamaodalities whose homogeneously fused decisions are
F. (1<r <k) respectively. Assume classification accuracy camogr each modalityM, is known a
priori and denoted b% . Under such assumption, heterogeneous fusiorhis\ad by

YA
F=fl— (24)
> A

r=1

A final remark on heterogeneous fusion is thatsifecmtion accuracy, may be obtained by testing

the corresponding SVM classifier with known samgles whose labels are known a priori).
In the above discussions, it is supposed that d#a¢ufe extraction method is available. In the
following section, it will be shown how the featarare extracted from raw data.

4.3.3 Feature extraction with wavelet packet

Feature extraction is problem specific varying frapplication to application. That is why it is
supposed to be available in the preceding discasslo this paper, we focus on extracting features
from acoustic and seismic signatures.

To extract their features, the characteristicsoouatic and seismic signals have to be investigated
first. A real world seismic signature is presentedFigure 8. Obviously the signature shown are
noticeably noised and non-stationary. The transaaracteristics of the observed signature make
classical spectral methods like Fourier transformmatinsuitable for efficient analysis. In [25],i#
proposed to use wavelet packet decomposition (WBDfeature extraction. WPD provides detailed
information of a transient signature in both tinmel drequency domain by decomposing it into several
successive sub-band signals. An energy based Wdlréeextraction method is proposed in this paper
following the same WPD principle in [24]. It is bfiy summarized as follows.
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Figure 8. Seismic signal observed by a seismic sensor@alavorld WSN deployment.
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First the signature is decomposed by WPD usingvelet packet db4 at level 3. This results in 8
consecutive sub-band signals, denotedSlgy), (i=1,2,...8)respectively. Then energi of S, (1) is

calculated by :j|%(1)|2 dt. Finally the feature vector is constructed by conmg energy of these

sub-bands a&'=[E, E,,...,E] . Practically F' is usually normalized t¢=F"/max(F ") . The
decomposed sub-band signals of the signature uréig are shown in Figure 9. In the figuggis the
sub-band signal of the lowest frequency a®ds the highest. Energy distribution among these
frequency bands varies with the type of the tatiggt generates the seismic vibration; therefortufea
vectors composed of the sub-band energy can reprisgecharacteristics of the target.

In the formulation of agent collaborative localipatand classification algorithms, some approaches
and methods are intuitively proposed (not theoadlficestablished). Real world target localizatiord a
classification experiments are required to evalttze validity.

Figure 9. Wavelet packet decomposition of the seismic sighalvn in Figure 8.
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5. Experiments
5.1. Experimental setup

In this section the proposed agent collaboratigorthms are evaluated in a real world WSN
deployment for vehicle localization and classificat The experiments are carried out on a schoadlyar
Big toy tanksandjeepsare used to simulate real vehicles. The WSN casapr8 MICAz motes from
MICAz mote developer’s kit (a commercial product@rossbow Inc.) [26]. The MICAz is a 2.4GHz,
IEEE 802.15.4 compliant module used for enabling-pmwer, wireless sensor networks. The mote
offers sensor boards that can measure signatuchsastacoustic, acceleration and so forth [26fhén
experiments, acoustic signatures are measuredebgdbustic sensors provided by the MICAz sensor
board. However the mote is not equipped with senfwrseismic signatures; therefore seismic sensors
are artificially connected to the mote throughsémsor board interface. Moreover the MICAz motes
are programmed to sample at the frequency of 1K}24 to accommodate acoustic and seismic
signatures of high frequency.

In the experiment, the 8 MICAz motes are randor@pldyed on the schoolyard as illustrated in
Figure 10. As shown in the figure, the 8 motes demhdy s1, s2 through s8 are deployed within an
area approximately in the size2asmx 36m. Their corresponding andy coordinates in the Cartesian
coordinate system are marked in the parenthesesstéhin the figure denotes an imaginary target.

Following the proposed heterogeneous agent arthigecsl through s7 are configured to be
observing agents and s8 is programmed to takeotbef a manager agent. Meanwhile s8 is connected
to a laptop, which therefore also serves as thefate agent. In this configuration, the system loan
viewed as a miniature implementation of the progdseterogeneous agent architecture, though only 8
sensor nodes are available.

A final remark on the deployment is that s8 will participate in measurements of any kind. It is
solely responsible for coordination of the obsegvé@igents and dispatch of mobile agents.

Figure 10. Deployment of MICAz motes on the schoolyard fohieée localization and classification.
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5.2. Agent collaborative vehicle localization expeents

In the localization experiment, the vehicle is & tank emitting loud sound. It is kept stationary
during the localization. Nevertheless it must kaified that the proposed method is equally applea
to localization of moving vehicles. In one expenethe vehicle is deployed at a position whose
Cartesian coordinates are4,( 3. This is exactly where the target is in Figure Tbe acoustic
signatures measured by microphone sensors at shds&3 (shown as examples) are shown in Figure
11. The signatures have all been processed torglimthe influence of sensor gain discrepancy.

Following the proposed localization algorithms, s2, s3 and s5 (reporting tiéghestaverage
energy) are selected to collaborate. The averageg@and the positions of these observing ageets ar
used to determine the objective function (20). $teepest descent search is carried out by the manag
agent s8. The search result is reported in FigRrénlthe search, the termination condition istedie
0.005, while the maximum search step is assignethetal00. Numerical calculation shows no
relaxation of termination condition is needed. Bearch starts from the position of s1 which reports
the highest average energy. It takes dilysteps to converge to the estimated locatidrB9, 2.52.

The estimate is 1.05m away from the true positidre distance between s1 and the target is 10.97m,
therefore the relative localization error is no enthrari.05/10.9% 100%=9.57 *. This result proves the
proposed agent collaborative algorithm can effitygmerform vehicle localization in WSN.

As pointed out in the formulation of the agent abbrative algorithm, the selection of agents
involved in the objective function (20) is actually intuition. To compare with the intuitive appoba
an experiment using the 4 agents giving the loaestage energy is conducted. The result is shown in
Figure 13. As shown in the figure, s4, s5, s6 ahdreporting thdowestaverage energy) are chosen
for collaboration and the search is started fronfreporting the highest average energy among the 4
agents). It takes 11 steps to converge to the atariocation-3.07, 1.9} which is 1.43m away from
the actual position. Again no relaxation of terntioia condition is deed.

Note that the proposed algorithm needs 10 stepshendstimated position is 1.05m from the true
location. By comparison, localization using thegémts with the highest average energy requires less
search steps and provides better localization acguiTherefore the proposed search method is time
efficient and accurate. Further evaluation of theppsed search method (i.e. searching with thetagen
reporting highest average energy) is carried oubbglizing vehicles randomly positioned within the
sensor field as shown in Figure 14.

As shown in Figure 14, 9 locations (denoted by Arbugh T9, and marked by stars) are randomly
chosen. Their corresponding estimated locationslaneted by E1 through E9 respectively (marked by
diamonds). It shows that the algorithm can acciydbealize vehicles at randomly selected position.
Note that some of the localization results (like EB, E6 and E8) are more accurate than others. Thi
is due to differences in the relative positionsaestin deployed sensor nodes and the vehicles.

The efficiency and accuracy of the proposed agehalworative localization algorithm has been
validated by these experiments. Its good localbraticcuracy also benefits the agent collaborative
classification because the proposed homogeneossifatation decision fusion is based upon the
estimated position of the target.
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Figure 11. Acoustic signatures measured by microphones at2sand s3.

Figure 12.Vehicle localization by collaboration between s4, s3 and s5.

Figure 13.Vehicle localization by collaboration between s4, s6 and s7.

S-200¢

Amp

Y (m)

tude(mV)

600

400}
2000

0

-400

-600+

[

== T,
e
wz

v
.

-800 :
0

20— .

50 100 150 200 250

Time (ms)

* MICAz mote
* Targel position
—»—Search path

15}

10} (-13.6, 83)

(—7.:1, 15.5) ( 5_9, 14.9)
S7 S6

S (40, 3.0)17,/54) (93,42)
| |
(131, -4.9
-5} ) |
g2 (532.-8.6)
10l (67,-11.1) s4 |
3

-15 I L ! . I \

15 -10 -5 0 S 10

Y (m)

XK (m)

* MICAZ mote
* Target position
—» Search path

20 : .
7.4, 15.5
15l 6 : ) (5§6, 14.9)
2]
101 (136, 83)
s
5_
0_
5| (131,49 |
s2 (5.2, -8.6)
1ol ¢67,-11.1) -7 1
s3
-15 I L 1 1 | |
-15 10 -5 0 5 10

X (m)

1379



Sensor007, 7 1380

Figure 14. Agent collaborative localization of randomly pasited vehicles in the sensor field.
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5.3. Agent collaborative vehicle classification esiments

The vehicle classification experiments are perfarmsing the same deployment in Figure 10. The
vehicles to be classified are either toy tankseepsg. To achieve better classification accuracth bo
acoustic and seismic signatures are observed byAKII@otes. In our implementation, s1, s3, and s5
are programmed to measure acoustic signaturese whjls4 and s6 are configured to measure seismic
signals. Once again s8 serves as the manageraggintterface agent. Note that s7 is not usedh Suc
choice is to maintain the equilibrium between agemieasuring acoustic signatures and the ones
measuring seismic signatures.

Learning samples are prepared in a supervised agipr@®ifferent vehicles are placed at various
positions. The seismic and acoustic signals arerdowly measured and stored by corresponding
observing agents. Meanwhile an operator deterntimesehicle type and instructs the manager agent
to send vehicle type information to the observiggrdas. This ensures the locally gathered sampées ar
correctly labeled. All sampling lasts for 2 secan@ecall that the sampling frequency is 1.024 kHz;
therefore each sample contains 2048 sample points.

When samples are prepared, the proposed distril@dd learning can be started. Mobile agents
are sent from the manager agent s8 to observingtsagé through s6 to extract features, learn local
SVM classifiers and compute hull vectors. Radiai®dunction (RBF) is used as the kernel for SVM
learning.

Typical acoustic features of toy tanks and jeegsdmmonstrated in Figure 15. In the figure, Sn
denotes the nth component of the feature vectorremmthalized energy is expressed in logarithm
coordinate. Evidently the features make these typed of toy vehicles distinguishable, but such
features are more than enough to separate toy teotkgeeps. For example, the first component sl is
identical for both vehicles; therefore it contribsitextremely little, if any at all, to the discrmation of
the vehicles. Following the same principle, compuse4, s5 and s6 are negligible too, because these
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components don’t vary much for two vehicles. Irsthvay an 8-dimensional feature vector is reduced
to a 4-dimensional one. As a result it decreasestimputational expense of both SVM learning and
hull vectors. Furthermore the resulted support arscand hull vectors are significantly reduced in
number. Similarly the seismic features are alsoced to 4-dimensional ones.

Now that feature vectors are extracted from rave @deid artificially reduced, they can be used to
learn local SVM classifiers and calculate corregjiog hull vectors. The samples at each observing
agent are split into two parts, one for SVM tragnemd the other for testing. The sample splittind a
performance of learned SVM are listed in Tablen1Téble 2, the statistics concerning derived suppor
vectors and hull vectors are reported.

In Table 1, ‘T’ denotes a toy tank and ‘J’ refeosat toy jeep. ‘Training# and ‘Testing#' are the
numbers of samples used to train and test the Skibsifiers respectively. Accuracy shows how well
the learned SVM classifies the testing samples.i@isly SVM classifiers learned from different
samples (even if they are of the same modalitysgre contrasting accuracy. This is not unusual,
because as said above, each observing agent ganhsdrve a portion of the whole characteristics of
a target. That is also why agent collaboratioreisded to enhance classification accuracy.

Figure 15. Typical acoustic features of the toy tank andjéap using wavelet packet decomposition.
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Table 1.Local learning with acoustic and seismic features.
Observin Training# Testing#
g g esting Accuracy
Agents T J T
sl 40 38 42 36 92.31%
Acoustic  s3 41 37 41 37 89.74%

s5 42 36 40 39 83.33%
s2 39 36 43 35 82.05%

Seismic  s4 40 35 38 40 76.92%
s6 38 37 39 39 78.21%
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In table 2, ‘SV# denotes the number of supportteec (SV), ‘HV # means the number of hull
vectors (HV). ‘HSV # refers to the number of thectors in the union of support vectors and hull
vectors. We are most interested in the differenesvéen SV# and HSV#. Because SV# indirectly
represents the transmitted data volume for the &Y agorithm and HSV #corresponds to that of the
HV and SV algorithm. In all cases, HSV# is lardaart SV#, which is expected by theoretical analysis.
Accordingly the HV and SV algorithm consumes moreergy for communication between the
manager and observing agents. As noted beforevhatbrs are incorporated to improve distributed
learning accuracy. Now let us turn to see its liegrperformance as shown in Table 3.

In the table, ‘Centralized’ refers to the tradii@b centralized learning algorithm that sends all
samples to a central point and learns the global $\assifier accordingly. Evidently the centralized
algorithm performs the best for both modalities;ahese it has access to all available samples. The H
and SV algorithm is almost as good as the ceng@legorithm. In contrast, the SV only algorithm
performs much worse than the centralized. For dmodeatures, it is nearly 7% worse than the
centralized. For seismic, it is almost 10% worsparformance.

Therefore as far as learning accuracy is concethed;lV and SV algorithm proposed in this paper
is superior to the SV only algorithm. However jastshown in Table 2, the accuracy improvement is
at the cost of increase in communication load. Wgusuch tradeoff is desirable, because in
classification applications, accuracy is of thehleigt priority compared to other factors like energy
consumed by wireless communication.

Table 2. The numbers of support vectors, hull vectors aed tmions.

Observing SV# HV# HSV#
Agents T J T J T J
sl 29 13 26 22 36 26
Acoustic  s3 35 9 30 26 38 26
sb 29 13 26 22 36 26
s2 17 17 28 19 32 25
Seismic  s4 19 19 24 25 32 32

s6 18 18 24 24 32 30

Table 3.Learning performance of different algorithms anadatlities.

Learning Algorithm Training#  Testing# SV# Accuracy
SV only 126 234 41 88.46%
Acoustic HV and SV 188 234 35 93.59%
Centralized 156 312 64 95.19%
SV only 108 234 108 74.79%
Seismic HV and SV 183 234 93 83.33%

Centralized 156 312 64 84.29%
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Furthermore it should be noted that data transomskias been drastically decreased by mobile
agents. Feature extraction and the HV and SV dlguoriboth perform data compression. Take
transmission of raw data of s1 for example. Allditgr, 624kByte raw data have to be transmitted
(note that, a double point takes 4 bytes; eachsawple is 2048*4 bytes; there are 40+38 samples all
together). However, for the HV and SV algorithmngsimobile agents, only 0.248kByte data (volume
of the derived 4-dimensional hull vectors and suppectors) need to be transmitted. Even if didpatc
of mobile agents is taken into account, the datiasimission is still much smaller than 624kBytes.

Now that global SVM classifiers have been learneth@ manager agent using acoustic and seismic
features respectively, they can be used to classityown targets detected in the sensor field.

The classification of an unknown target is reldfiveasier than the learning of the classifier ftsel
When a target is detected and located, the mareagmartt instructs the observing agents to measure
either acoustic or seismic signatures. Then mohgents for feature extraction are sent to these
observing agents. The extracted features are sehkttb the manager agent where homogeneous and
heterogeneous fusions are carried out to makeueglfclassification decision.

In the experiment, s1, s3 and s5 measure acougtiatare; s2, s4 and s6 observe seismic signatures.
A toy tank is place at positioff4,-5) whose estimated position (5.3, -4.3) The homogeneous and
heterogeneous fusion results are presented in fdblowing the proposed fusion algorithms.

In the table, the weight for homogenous fusionatednined following (23) but normalized. The
modality weight for heterogeneous fusion is detesdiupon their classification performance. In this
experiment, as shown in Table 3, the classificamauracy is 93.59% (using the HV and SV
algorithm) for acoustic modality and 83.33% forsseic modality. Therefore the normalized modality
weight for acoustic classification is 93.59% / &B0+83.33%) =0.529. The seismic modality weight
is similarly calculated.

According to the decision rule, a positive decisineans a toy tank while a negative one means a
toy jeep. For acoustic classification, s1 and digbe the target is a toy tank, but s5 reportsiaaoy
jeep. Disputes arise and fusion needs to be maderno a more reliable decision. The situation is
similar for seismic classification. Homogeneousdnsesults are further fused following (24) and th
final decision is 1.0638. It means the global fasidecision is a toy tank. Such decision is in
accordance with the truth, for it is known a pritrat the target is a toy tank.

Table 4.Fusion results of agent collaborative classificatiecisions.

_ Modality Homogeneous Fusion  Hetero-
Modality iah Agent geneous
Weight Decision ~ Weight  Fusion pecision

sl 1.6405 0.2459
Acoustic 0.529 s3 2.2360 0.5344 1.1692

s5 -1.9544  0.2196

s2 0.9673 0.4894
Seismic 0.471 s4 1.8766 0.3373 0.9455

s6 -0.9279 0.1733

1.0638
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The fusion results in Table 4 show that local deaisnay be incorrect, but following the proposed
fusion algorithm a reliable global decision is ohéal. Therefore the proposed method is efficient to
perform hierarchical fusion of both homogenous aetdkrogeneous decisions.

As corroborated by the experiment results, the gsed heterogeneous agent architecture
significantly facilitates designs of WSN and renadly reduces in-network communication load. With
this architecture, the proposed localization arabsification algorithms are easily implemented and
prove to be accurate and energy efficient.

6. Conclusions

This paper proposes to model WSN as a heterogeragmnt system. With this architecture, target
localization and classification tasks are impleradrthrough agent collaboration. The developed agent
system is basically a 4 level hierarchical multemigsystem where mobile agents are employed when
necessary and beneficial. Both target localizatiod classification tasks in WSN essentially require
some kinds of collaboration. As shown in the pajtes, very convenient to achieve such collaboratio
through the proposed agent architecture. Pragticadrious forms of collaboration are possible.
Therefore much effort in the paper is devoted teettgp the appropriate collaboration mechanisms.
These mechanisms should provide desirable accaatyat the same adapt to WSN constraints like
limited power supply and bandwidth. Based upon thi®nale, energy based acoustic localization by
multi-agent collaboration is proposed, becauseequires less in-network communication. In the
proposed SVM classification method, hull vectors ased to guarantee good accuracy and meanwhile
keep communication load as low as possible. Thegmtion of mobile agents drastically reduces data
exchange by transmitting codes instead of raw dasaconfirmed by the experiment results, the
heterogeneous agent architecture remarkably siegpBipplication designs and collaborative algorithm
implementations. It is also proved that the prodasgent collaborative algorithms for localizationda
classification are accurate and energy efficient.
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