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Abstract: Multi-sensor systems (MSS) have been increasingly applied in pattern 

classification while searching for the optimal classification framework is still an open 

problem. The development of the classifier ensemble seems to provide a promising solution. 

The classifier ensemble is a learning paradigm where many classifiers are jointly used to 

solve a problem, which has been proven an effective method for enhancing the classification 

ability. In this paper, by introducing the concept of Meta-feature (MF) and Trans-function 

(TF) for describing the relationship between the nature and the measurement of the observed 

phenomenon, classification in a multi-sensor system can be unified in the classifier 

ensemble framework. Then an approach called Genetic Algorithm based Classifier 

Ensemble in Multi-sensor system (GACEM) is presented, where a genetic algorithm is 

utilized for optimization of both the selection of features subset and the decision 

combination simultaneously. GACEM trains a number of classifiers based on different 

combinations of feature vectors at first and then selects the classifiers whose weight is 

higher than the pre-set threshold to make up the ensemble. An empirical study shows that, 

compared with the conventional feature-level voting and decision-level voting, not only can 

GACEM achieve better and more robust performance, but also simplify the system 

markedly. 

 

Keywords: Genetic algorithm, classifier ensemble, multi-sensor system, optimization, 

fusion 
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1. Introduction 

 

Classification is one of the most important purposes of multi-sensor systems (e.g., target recognition 

[1, 2], personal identity verification [3], landmine detection [4]). It is well known that data available 

from multiple sources underlying the same phenomenon may contain complementary information. 

Intuitively, if such information from multiple sources can be appropriately combined, the performance 

of a classification system could be improved. A classification system, capable of combining 

information from multiple sources or from multiple feature sets, is said to be capable of performing 

data fusion. Usually there are two conventional approaches to deal with this, i.e., feature-level fusion 

and decision-level fusion [2, 5-7]. In feature-level fusion, features are extracted from multiple sensor 

observations, and combined into a single concatenated feature vector which is input to a classifier such 

as neural networks, decision trees, etc. Decision-level fusion involves the fusion of sensor information, 

after each sensor has made a preliminary solution of the classification task [8]. There have been some 

qualitative suggestions about how to choose the fusion strategy: Brooks [6] supposed that feature-level 

fusion would be a superior choice if the information represented by the data was correlated, while 

decision-level fusion would be a better choice if the data was uncorrelated. Additionally, in [9] it was 

demonstrated that decision-level fusion worked well when the data was fault-free, but its performance 

degraded faster than feature-level fusion when measurement error was introduced to the system. 

However, most of these conclusions are from empirical research and neither data fusion nor decision 

fusion can be proven to be the optimal fusion technique for all events, so the search for the optimal 

fusion framework in multi-sensor systems is still an open problem. 

In the last decade, quite a lot of papers have proposed a classifier ensemble for designing high 

performance pattern classification systems [10, 11]. A classifier ensemble is also known under 

different names in the literature: combing classifiers, committees of learners, mixtures of experts, 

classifier fusion, multiple classifier systems, etc [12]. It has been proven that in the long run, the 

combined decision is supposed to be better (more accurate, more reliable) than the classification 

decision of the best individual classifier [13]. Generally, the research on classifier ensembles involves 

two main phases: the design of the ensemble process and the design of the combination function. 

Although this formulation of the design problem leads one to think that effective design should address 

both phases, most of the design methods described in the literature focus on only one of them [10, 14]. 

For the multi-sensor system, as we know, there is not so much research focused on the application of 

classifier ensembles. Ref. [15] argued that application of classifier ensembles in the decision-level 

fusion could be helpful for moderation to compensate for sampling problems where moderation can be 

regarded as replacing any fusion parameter’s value with its mathematical expectation. But the results 

could be better convinced if there is a large-scale empirical study for proof and it is almost impossible 

to moderate sophisticated classifier, such as neural networks, because of the high variability of 

excessive parameters. Another approach proposed in [16] by Polikar et al. is generating an ensemble 

of classifiers using data from each source, and combining these classifiers using a weighted voting 

procedure. The weights are determined based on the individual classifier’s training performance as 

well as the observed or predicted reliability of each data source. In essence, the approach is derived 

from AdaBoost [17] which involves subsampling the training examples [18]. We have also shown an 

analogous application of the Bagging  algorithm [19] in mechanical noise source identification [20]. 
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Moreover, Roli et al. presented an application of classifier fusion for multi-sensor image recognition 

[21]. The common feature is that Refs. [16, 20, 21] mostly focused on the decision level. As shown in 

later sections (see Section 2.3), we believe that these approaches could be synergistic with the new 

method proposed in this article. 

In this paper, an approach named Genetic Algorithm based Classifier Ensemble in Multi-sensor 

system (GACEM) is proposed. By introducing the concept of Meta-feature (MF) and Trans-function 

(TF), the fusion problem can be unified in the classifier ensemble framework and then it has been 

shown that either the feature-level fusion and or the decision-level fusion is just a special case of our 

framework. After that, different from the previous application of GA [22, 23], an ad hoc chromosome 

coding strategy in GACEM is presented for the selection of feature subset and the optimization of 

decision combination simultaneously. Correspondingly, some genetic operators such as crossover and 

mutation operators are modified to take into account a binary and real-coded chromosome template. 

By doing so, the final classifier ensemble framework is obtained after evolution. Finally, an 

experiment of classification of 35 kinds of different sound sources is designed and the results prove the 

effectiveness of GACEM. 

The paper is organized as follows. In the next section we analyze the feasibility of application of 

classifier ensemble in multi-sensor system. The technical detail of GACEM is discussed in Section 3. 

Section 4 provides and analyzes the experimental results of sound source classification. Finally, 

conclusions and some potential further research directions are presented in Section 5. 

 

2. Problem Formulation and Analysis 

 

2.1 Problem formulation 

 
Consider a classification problem where a test pattern (whch may be an event, a physical 

phenomenon, etc.) is to be assigned to a class label S  ( 1 2{ , , ...,  }LS s s s , L  is the number of possible 

classes). And measuring the test pattern is carried out by means of M  sensors. Here the sensors may 

be heterogeneous or homogeneous. Let us assume that the observations on the test pattern from the i -

th sensor is represented by feature vector iR  ( 1,...i M ). Without the loss of generality, iR  ( 1,...i M ) 

is assumed to be a row feature vector. Now the goal is to find the most appropriate mapping from the 

observation set 1{ ,...  }MR R  to the pattern class label S . 

The conventional avenues for the problem are shown in Figure 1, i.e., (a) feature-level fusion and (b) 

decision-level fusion. As shown in Figure 1(a), the features for training can be expressed as 

1[  ]MR R  and the single classifier is trained based on the features from all sensors, while in Figure 

1(b), the i -th classifier is trained only on the feature vector iR  and then all the classification results are 

combined to form a comprehensive decision through a given strategy such as voting or averaging. 
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Figure 1. Demonstration of (a) feature-level fusion and (b) decision-level fusion. 
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2.2 Definition of Meta-feature and Trans-function 

 
As mentioned above, iR  can be considered a quantitative estimation of the test pattern’s characters 

using the i-th sensor. Intuitively, it is believed that different sensors probably give different 

measurements due to the factors of sensor type, position, sensitivity, etc. But it is worth noting that 

they are describing the same test pattern after all. So there must be some kind of inherent relationship 

among them. Here we call R0 Meta-feature (MF) which is defined as the intrinsic and natural 

expression of the test pattern’s characters, which is probably a priori in most situations. Suppose there 
is a functional relationship iT  between 0R  and iR , i.e., 0( )i iR T R . Then we define iT  as the Trans-

function (TF) from 0R  to iR ， [1, ]i M  . Specially, if iR  is the same as 0R , then the TF is invariant, 

i.e., 0 0( )i iR T R R  . 

The concepts of MF and TF are the theoretical basis of applying classifier ensemble methods in 

multi-sensor systems. Unfortunately, in many situations, the concept of MF and TF may be hard to 

substantialize and understand, so they are of less use for calculation than theoretical deduction. But 

under certain conditions, they do have exact physical meaning. For example, in the sound 
measurement system (see Section 4.1), if we use the power spectrum as the feature vector, then 0R  is 

the power spectrum at the excitation point (sound source position) and iT  is in fact equivalent to the 

square of magnitude of the frequency response function (FRF) between the excitation point and the i -

th response point (sensor position). And given a precise system model (e.g., the finite element model 

built in ANSYS), all the information mentioned above can be calculated. 

 

2.3 Classifier ensembles in multi-sensor systems 

 
Using MF and TF, the observation set 1{ ,...  }MR R  can be rewritten as 1 0 0{ ( ),..., ( ) }MT R T R . And 

then the classification problem can be modified as: how to find the most appropriate function 

1 0 0( ( ),..., ( ) )MH T R T R  which is the mapping from the observation set 1 0 0{ ( ),..., ( ) }MT R T R  to the 

pattern class label S . Without the loss of generality, define a single-variable function 0H  to replace 

the multi-variable function H, i.e., 0 0 1 0 0( ) ( ( ),..., ( ) )MH R H T R T R . Here it is obvious that the 

classification problem in Multi-sensor System (MSS) is in essence identical with the commonly used 
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concept of pattern classification in non-MSS. That is to say, any technique proven to be effective in 

pattern classification is also believed to be theoretically effective in pattern classification in MSS. 

Many researchers have shown that the classifier ensemble is a very promising way to improve 

classification performance [10, 11, 21] and a typical demonstration figure of a classifier ensemble can 

be found in [24]. As shown in Figure 2, several feature sets are generated from the raw data from an 

observed phenomenon and then a number of classifiers can be obtained by training from versatile 

combination of different feature sets. It is notable that the numbers of feature sets (M) and classifiers 

(N) may be unequal. Finally, on the base of classification of each classifier, the final classification 

result can be given through some kind of fusion rules, such as majority voting [25], plurality voting 

[26], weighted averaging [27]. 

 

Figure 2. General framework of classifier ensemble. 

 
 

 
Analogously, in MSS, the feature vector iR  ( [1, ]i M  ) is also generated from the MF 0R  

describing the observed phenomenon. What’s more, the combination of feature vectors from different 

sensors will lead to versatile classifiers. As shown in Figure 3, the red line iT  means the TF from 0R  to 

feature vector iR  ( [1, ]i M  ). The green line ijC  ( [1, ]i M  , [1, ]j N ) are binary (0-1) parameters 

representing whether the feature vector iR  contributes to the training of the j-th classifier jf , i.e., 

1ijC   means positive and 0 negative. Besides, the importance of the j-th classifier can be indicated by 

j . Besides, it is very important to understand that the generated classifier jf  may be a sub-classifier 

ensemble system by performing such operations like Bagging or Boost as mentioned in [16] or [20]. 

This, however, is not the focus here. Further studies will be summarized in our next study. 

In particular, two special cases are given: 
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Figure 3. Framework of classifier ensemble in multi-sensor system. 
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Obviously, (1) is in accordance with the feature-level fusion [see Figure 1(a)] and (2) is in 

accordance with the decision-level fusion [see Figure 1(b)]. Next, given a pool of N  classifiers, there 

are a number of possible combining strategies to follow. But it is usually not clear which one may be 

the optimal for a particular problem. The simplest idea is to enumerate all possible solutions, i.e., 

assessing the classification accuracy on a validation set with all possible solutions and then choosing 

one exhibiting the best performance [10]. But the burden of exponential complexity of such search 

limits its practical applicability for larger systems. For example, If 5M N  , the number of possible 

combination of feature will be 7

01

( ) 1 2 1 3.36 10
N M

i MN
M

ij

C


     . Considering there would be 

hundreds of sensors in large-scale MSS in engineering, the exhausted search is obviously unpractical 

for application. So we need more feasible search algorithm. 

 

3. GACEM: Genetic Algorithm based Classifier Ensemble in a Multi-sensor System 

 

In essence, searching for the optimal classifier ensemble framework in MSS belongs to the 

‘optimization-centered’ problem while traditional optimization techniques often fail to meet the 

demands and challenges of highly dynamic and volatile information flow [28]. In the prevailing 

optimization approaches, the genetic algorithm (GA) provides a valuable alternative to traditional 

methods due to its inherent parallel nature and its ability of global optimization. 
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3.1 A brief introduction of GA 

 

A genetic algorithm is a search algorithm based on the mechanics of natural selection and natural 

genetics. It efficiently utilizes historical information to obtain new search points with expected 

enhanced performance. In every generation, a new set of artificial individuals is created, using the 

information from the best of the old generation. Genetic algorithm combines the survival of the fittest 

from the old population with a randomized information exchange that helps to form new individuals 

with higher fitness. There are three basic genetic algorithm operators: selection, crossover, and 

mutation. Those operators combined with the proper fitness function definition constitute the main 

body of genetic algorithms [29]. GA has been used in various pattern recognition problems, such as 

image registration, semantic scene interpretation, and feature selection [28]. 

In summary, the GA search process typically comprises of the following steps: 

Step 1. Randomly generate initial population of chromosomes. 

Step 2. Evaluate fitness (objective function) of each chromosome. 

Step 3. Are the termination criteria met? If YES, go to step 7. If NO, go to step 4. 

Step 4. Generate new population by selecting pairs for mating, recombination using crossover and 

mutation. 

Step 5. Evaluate fitness (objective function) of each new chromosome. 

Step 6. Identify the fittest individual in the population. Go to step 3. 

Step 7. End. 

 

3.2 Detail of GACEM 

 

In this section we present an approach, i.e. GACEM, to find the optimal classifier ensemble in MSS. 

As mentioned above, the purpose of GACEM is optimization for design of both the ensemble process 

and the combination function. 

 

3.2.1 Chromosome coding strategy 

 

A customized coding strategy has been developed for our task. Given M  sensors and N  classifiers, 
the length of chromosome is ( )MN N . The first part of chromosome has MN  gene positions 

representing the binary value of ijC  ( [1, ]i M  , [1, ]j N ) (We call it b-Part). And the second part 

contains N  positions corresponding to the different decisions weights of N classifiers respectively 

(We call it r-Part). It is worth noting that they are real-value coded and a normalization step is to be 

performed, i.e., '

1

i
i N

i
i

w
w

w





( [1, ]i N  ), to keep sum of the weights as one.  

For example, if adopting weighted averaging as decision combination function, when 4M   and N 

= 3, a possible chromosome coding is shown in Figure 4. 
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Figure 4. A possible chromosome when 4M   and 3N  . 

 
3.2.2 Fitness function 

 

Although there have been some studies on how to evaluate the performance of classifier ensembles 

and various measures have been proposed for the purpose [12], we don’t think those heuristic 

statistical parameters are surely to be superior to directly choosing the classification accuracy as the 

criterion for evaluation. And it is believed that choosing an additional validation set other than the 

training set for evaluation will moderate the risk of overfitting [30]. So the classification performance 

on an evaluation sample set is adopted as the fitness function in GACEM. 

 

3.2.3 Selection operators 

 

We choose the roulette selection in GACEM. The standard roulette selection chooses parents by 

simulating a roulette wheel, in which the area of the section of the wheel corresponding to an 

individual chromosome is proportional to its fitness performance. 

 

3.2.4 Crossover operator 

 

Since there are both binary and real value codes in the chromosome, we need a hybrid crossover 

operator. For the b-Part, the scattered crossover function is adopted, which creates a random binary 

vector and selects the genes where the vector is a 1 from the first parent, and the genes where the 

vector is a 0 from the second parent, and combines the genes to form the child. While for the r-Part, 

we use the intermediate crossover function, which creates children by taking a weighted average of the 
parents. For example, if 1p  and 2p  are the parents: 1  0 0 1 0 1 1 || 0.3 0.7 p    , 

2  < 1 0 1 0 1 0 || 0.4 0.6 p   , the binary vector is [ 1 1 0 0 1 0 ]  and the random ratio is 0.2. Then 

the children are: 1   0 0 1 0 1 0 || 0.38 0.62 >c   , 2 < 1 0 1 0 1 1 || 0.32 0.68 >c  . 

 

3.2.5 Mutation operator 

 

Mutation is also designed to be processed for different parts. For the b-Part, a random gene is 
chosen and the value   is substituted by ( )NOT  . While for the r-Part, another gene is chosen 

randomly and the value   is replaced by a new random number between [0,1] . 
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3.2.6 Stopping criteria 

 

There are two termination conditions in GACEM. Either the maximum number of iterations over the 
terminal number maxI  of generations or the best fitness value beyond the value of fitness limit fitL , the 

algorithm will stop. 

 

3.3 Flowchart 

 

Now we have introduced most of the details of GACEM, but there is still another three important 

prerequisites before performing the algorithm: (1) choosing the basic classifier, (2) determination of 
N  and (3) choosing the decision combination function. For (1), first it is notable that GACEM is 

classifier-independent, i.e., any classifier, such as a neural network (NN) or a decision tree (DT), could 

in theory be applied as basic classifier for the ensemble, but considering the fact that GA is inherently 

a time-consuming kind of search strategy, the more efficient ones like decision trees and k nearest 

neighbors (k-NN) will be better choices. For (2), theoretically, the range of N  could be from 1 to   

(this makes no sense of course), but too large value of N  will increase the complexity of a classifier 

ensemble system [30], while if N  is too small, the performance of the GACEM will deteriorate 

without enough diverse classifiers, so the search for an appropriate N  is a heuristic process and we 

will discuss it in Section 4.2. For (3), as we know, although there has been a lot of prevailing 

approaches such as voting and averaging [11, 31], none has been proved to be the panacea. The choice 

is indeed more of an art than a science. But it has been proved that ensemble many instead of all of the 

classifiers at hand could achieve better performance [23]. So the basic idea in GACEM is among all 

N  classifiers, just taking those whose weights (i.e.  ) are bigger than a pre-set threshold   to join 

the ensemble and ignoring the others. And the effect of different combination function will be 

discussed in Section 4.2.3. 

The flowchart of GACEM is shown as below: 

Input: 

M  Number of sensors 

N  Number of classifiers 

BasClassifier  Basic classifier 

DCF  Decision combination function 

  Threshold for classifier selection 

trainS  Training set 

valS  Validation set 
nPop  Population size 

maxI  Terminal number of generations 

fitL  Value of fitness limit 

cP  Crossover probability 

mP  Mutation probability 
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Procedure: 

Step 1. Generate initial population of chromosomes. 

Step 2. 

Evaluate fitness (classification accuracy on valS ) of each new chromosome: 

for i  = 1 : nPop  

{ 
Decoding the i -th chromosome and building N  classifiers based on trainS ; 

Choosing those classifiers whose weight is bigger than   to construct the classifier 

ensemble; 
Calculating the classification accuracy (i.e., fitness of the i -th chromosome) of valS  

using  the generated classifier ensemble; 

Find the chromosome with highest fitness 0
bChm  among the population; 

} 

Step 3. Are the optimization criteria met? If YES, go to step 9. If NO, go to step 4. 

Step 4. Generate new population using the selection operator. 

Step 5. Perform the crossover operator according to the crossover probability cP . 

Step 6. Perform the mutation operator according to the mutation probability mP . 

Step 7. 

Evaluate fitness of each new chromosome: 
for i  = 1 : nPop  

{ 
Decoding the i -th chromosome and building N  classifiers based on trainS ; 

Choosing those classifiers whose weight is bigger than   to construct the classifier 

ensemble; 
Calculating the classification accuracy (i.e., fitness of the i -th chromosome) of valS  

using  the generated classifier ensemble; 
Find the chromosome with highest fitness bChm  and the worst one wChm ; 

} 

Step 8. 

Find the best chromosome during the evolution history and guarantee its survival to 
the next generation, i.e., comparing bChm  and 0

bChm , if the fitness of 0
bChm  is 

greater than bChm , then replace wChm  with 0
bChm ; otherwise replace 0

bChm  with 

bChm . Go to step 3. 

Step 9. End. 

 

4. Experimental Section 

 

4.1. Experiment description 

 

4.1.1 Experiment environment 

 

There have been a number of applications of MSS in modern engineering and sound source 

classification is one of them. In order to acquire a better estimation of the sound source’s characters, a 
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number of sensors are used for condition monitoring and data acquisition. For example, [32] 

demonstrated utilization of an onboard MSS for monitoring and diagnosis of ship’s acoustic health. In 

this article, an analogous experiment is designed. A ribbed cylindrical double-shell (see Figure 5) is 

built for simulation of the cabin of ship with reduced scale size and two vibration exciters (see Figure 

6) are placed in the double-shell to simulate sound source by working at different frequency condition 

(See Table 1). Moreover, seven sensors including five accelerometers and two hydrophones are used 

for data acquisition in different positions (See Table 2). The overall sketch map of the experiment can 

be found in in Figure 7. 

 

Figure 5. Structure of the ribbed double-shell model.            Figure 6. Positions of two exciters. 

 

 

  

Table 1. List of 35 kinds of sound sources. 

 

Sound source ID 1 2  3 4 5 6 7  8  9 10 

fA (Hz) 0 0 0 0 0 20 20 20 20 20 

fB (Hz) 20 110 220 280 320 0 20 110 220 280 

Sound source ID 11 12  13 14 15 16 17  18  19 20 

fA (Hz) 20 110 110 110 110 110 110 220 220 220 

fB (Hz) 320 0 20 110 220 280 320 0 20 110 

Sound source ID 21 22  23 24 25 26 27  28  29 30 

fA (Hz) 220 220 220 280 280 280 280 280 280 320 

fB (Hz) 220 280 320 0 20 110 220 280 320 0 

Sound source ID 31 32  33 34 35      

fA (Hz) 320 320 320 320 320      

fB (Hz) 20 110 220 280 320      

Note:  

 There are 35 kinds of different sound sources in all. 

 fA represents the working frequency of exciter A and fB represents the working frequency of exciter B. 

 0 Hz means the exciter is unused. 
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Table 2. Description of sensors. 

 

Sensor NO. Sensor Type (ID) Position 

1 Hydrophone (H1) Far field 

2 Hydrophone (H2) Near field 

3 Accelerometer (A1) Outer shell 

4 Accelerometer (A2) Outer shell 

5 Accelerometer (A3) Outer shell 

6 Accelerometer (A4) Inner shell 

7 Accelerometer (A5) Inner shell 

 

Figure 7. Sketch of the experiment. 

 

 
 

4.1.2 Feature generation 

 

In our experiment, the sampling frequency is 1 kHz and the analyzing frequency is 500 Hz. For each 

sound source, the sampling time is 10 s, so the time series of each sound source contains 10,000 points. 

When extracting data samples from the recordings, we choose the segments of continuous 512 points 

from the beginning in turn. Then the number of data samples of each sound source is 19 and among 

them, four are picked out for training, five for validation in the fitness function and 10 for testing the 

generalization. So the total number of data samples in training set, validation set and test set of all 

sound sources is 140, 175 and 350 respectively. And for a given sound source, the data samples in 

different sets are all I.I.D (Independent Identically Distributed) due to the steady signal character of 

the source. The detailed introduction of different sample sets can be found in Table 3. 
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Table 3. Detailed aggregation of training set, validation set and test set. 

 

Sound source ID 1 2  3 4 5 6 7  8  9 10 

Training set 4 4 4 4 4 4 4 4 4 4 

Validation set 5 5 5 5 5 5 5 5 5 5 

Test set 10 10 10 10 10 10 10 10 10 10 

Sound source ID 11 12  13 14 15 16 17  18  19 20 

Training set 4 4 4 4 4 4 4 4 4 4 

Validation set 5 5 5 5 5 5 5 5 5 5 

Test set 10 10 10 10 10 10 10 10 10 10 

Sound source ID 21 22  23 24 25 26 27  28  29 30 

Training set 4 4 4 4 4 4 4 4 4 4 

Validation set 5 5 5 5 5 5 5 5 5 5 

Test set 10 10 10 10 10 10 10 10 10 10 

Sound source ID 31 32  33 34 35 Total     

Training set 4 4 4 4 4 140     

Validation set 5 5 5 5 5 175     

Test set 10 10 10 10 10 350     

 

After computing the power spectrum of each raw data pattern, we then divide the spectrum vector 

from 0 to 500 Hz into 25 equal-width bins each holding 20 Hz frequency band. And the sum of each 

bin is taken as one dimension of the feature vector for the classification. So the raw data sample can be 
transformed into a 25-dimensional feature vector. Supposing 1 25[ ,..., ]x x x  represents such a feature 

vector, it is then to be scaled through the following step: 
min( )

max( ) min( )
i

i

x x
x

x x





, 1,..., 25i                                                       (3) 

to ensure all the elements of x  will vary between [0,1] . For example, the time series, power spectrum 

and feature vector of one sample of the 22nd sound source signal in channel A1 are shown in Figure 8. 

 

Figure 8. Demonstration of (a) time series and (b) power spectrum and (c) feature 

vector of the 22nd sound source. 

 

(a) (b) (c) 
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4.1.3 Experimental methodology 

 

In our experiments, GACEM is compared with the conventional approaches, i.e. feature-level fusion 

(FLF), decision-level fusion (DLF), and the single basic classifier generated on the Sensor channel 

with the Best Performance (SBP). Here the genetic algorithm employed by GACEM is realized in 

MATLAB 7.1. The experiments with GACEM are confined to four basic types of classifiers: (1) 

Linear Discriminant Classifier (LDC) [33], (2) Quadratic Discriminant Classifier (QDC) [33], (3) k-

Nearest Neighbor (k-NN) [34] and (4) Classification And Regression Trees (CART) [35]. Besides, in 

one round performance comparison among FLF, DLF, SBP and GACEM, the selected basic classifiers 

are identical. Here we do not optimize the architecture and the parameters of those basic classifiers 

because we care the relative performance of the ensemble approaches instead of their absolute 
performance. What’s more, as mentioned above, DCF  can be arbitrary rule. Without the loss of 

generality, we adopt the plurality voting as the decision combination function. 

The number of classifiers N  and the threshold   may be the most difficult input parameters to give 

because there is no general rule to follow. So we will discuss the influence of them on GACEM’s 

performance with different value in the next section. The other input parameters are listed as follows: 
7M  , 30nPop  , max 100I  , 0.99fitL  , 0.8cP  , 0.2mP  . 

 

4.2. Results and discussion 

 

4.2.1 Performance with N M  and 0.05   

 

In this test, we assume that N M  and 0.05  . And the plurality voting is adopted as the 

decision combination function. The results of the Classification Accuracy Rate (CAR) of GACEM 

with different basic classifier are given in Figure 9. 

 

Figure 9. Classification accuracy rate of GACEM with different basic classifier: (a) 

LDC, (b) QDC, (c) k-NN and (d) CART 
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Figure 9. Cont. 
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The best fitness function value versus generation of GACEM with different basic classifier is shown 

below in Figure 10. 

 

Figure 10. The best fitness curve versus generation. 
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Moreover, the chromosome individual with the best fitness of GACEM has been encoded in Table 4. 

Each row represents the feature source of the classifier, for example, in Table 4(a), the first classifier 

1f  is built on feature from the 2nd sensor channel (H2) and its weight is 0.2075. Because our given 

threshold is 0.05, so 1f  is accepted into the classifier ensemble system. 
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Table 4. Encoded chromosome individual with the best fitness on different basic classifier: 

(a) LDC, (b) QDC, (c) k-NN and (d) CART. 

 

 H1 H2 A1 A2 A3 A4 A5 Weight

1f  0 1 0 0 0 0 0 0.2075 

2f  0 0 0 1 1 1 0 0.0521 

3f  0 0 1 0 1 1 0 0.1354 

4f  0 0 1 1 0 0 1 0.1781 

5f  1 0 0 0 0 0 1 0.0688 

6f  0 0 0 0 0 1 1 0.1634 

7f  0 0 1 1 1 0 1 0.1948 
 

 H1 H2 A1 A2 A3 A4 A5 Weight

1f  0 0 1 1 0 1 1 0.2068 

2f 0 1 0 1 0 1 1 0.2214 

3f 0 0 0 1 1 0 1 0.1713 

4f 0 1 1 0 1 0 1 0.0860 

5f 0 1 1 0 1 1 1 0.0960 

6f 1 0 0 0 1 0 0 0.1436 

7f 0 1 1 1 1 0 0 0.0749 
 

(a) (b) 

 H1 H2 A1 A2 A3 A4 A5 Weight

1f  0 0 1 1 0 0 0 0.1367 

2f  0 1 0 1 0 1 1 0.0578 

3f  0 1 0 1 1 0 0 0.2177 

4f  0 1 0 0 0 1 1 0.1225 

5f  1 0 1 0 1 0 1 0.1507 

6f  1 1 1 1 1 1 1 0.1777 

7f  1 1 0 1 0 0 1 0.1369 
 

 H1 H2 A1 A2 A3 A4 A5 Weight

1f  1 1 0 0 1 0 1 0.2213 

2f 1 1 1 0 0 1 0 0.1335 

3f 0 0 0 0 1 0 1 0.1374 

4f 0 0 1 0 0 1 0 0.1258 

5f 0 0 1 0 0 1 0 0.1976 

6f 0 1 0 1 1 0 1 0.0821 

7f 0 0 0 1 0 1 1 0.1024 
 

(c) (d) 

 

Figure 9 shows that with any of the four kind of listed basic classifiers, i.e., LDC, QDC, k-NN and 

CART, GACEM yields the highest classification accuracy rate. This shows that GACEM has done the 

job of searching a more appropriate fusion strategy than FLF and DLF. What’s more, the variance of 

FLF, DLF, SBP and GACEM’s CAR over the four basic classifiers are 0.1804, 0.0358, 0.0204 and 

0.0106 respectively. This means that GACEM is the most robust approach among them and on the 

contrary FLF tends to be affected the choice of basic classifier dramatically. 

From the best fitness evolutionary curve shown in Figure 10, we find that the uptrend still occurs 

even in the last few generations except for curve of k-NN (The reason may be that k-NN’s CAR has 
been already high enough). So if we enlarge the value of maxI  with the permission of time consuming, 

GACEM may have the potential to achieve better performance. 

Finally, it can be found that in the classifier represented in Table 4, none is discarded due to its 

weight. That is to say, all the classifiers available have been considered qualified for chosen into 

GACEM. It suggests that there is still useful information hidden in the features and more classifiers 

could lead to a further mining. 
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4.2.2 Performance with 3N M  and 1/ N   

 

We then choose 3N M , 1/ N   and also adopt the plurality voting as the decision combination 

function. A natural explanation for choosing   is that the classifier whose weight is less than the 

average (1/ N ) will contribute little for ensemble. 

Comparison of CAR when 3N M  and N M  is demonstrated in Figure 11. We find that CAR 

does have been improved on all kinds of basic classifier, which proves that our hypothesis of enlarging 

the value of N  is helpful. 

 

Figure 11. CAR of GACEM with 3N M  and 1/ N  . 
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Also, the best fitness function value versus generation of GACEM with different basic classifier is 

shown below in Figure 12. Like Figure 10, it is further believed that more generations will yield better 

performance because of the existence of uptrend in the last few generations. 

 

Figure 12. The best fitness curve versus generation. 
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Surprisingly, when 3N M , the number of selected classifiers in ensemble is 7, 11, 3 and 12 using 

LDC, QDC, k-NN and CART respectively. In particular, when the basic classifier is k-NN, over all 21 

( 3 21N M  ) generated classifiers, only three of them are chosen for ensemble (see Table 5). On the 

contrary, the performance is even better than the ensemble consisting of seven classifiers presented in 

Table 4(c). This means that GACEM can generate classifier ensembles with far smaller sizes but more 

powerful classification ability. 

 

Table 5. Encoded chromosome individual with the best fitness on k-NN, noting 
that only 15f , 16f , and 19f  whose weight is greater than the threshold 

( 1/ 0.047N   ) are selected for ensemble. 

 

 H1 H2 A1 A2 A3 A4 A5 Weight 

1f  1 1 1 0 0 1 1 0.0280 

2f  0 0 0 1 0 1 1 0.0109 

3f  0 1 0 1 0 0 1 0.0095 

4f  1 1 1 1 1 1 1 0.0110 

5f  0 1 1 1 0 0 1 0.0261 

6f  0 0 1 0 1 1 0 0.0068 

7f  0 1 0 1 1 1 0 0.0082 

8f  1 0 1 1 0 1 1 0.0083 

9f  1 0 1 1 0 1 1 0.0125 

10f  1 0 0 1 1 0 0 0.0091 

11f  1 1 0 1 0 1 0 0.0277 

12f  1 1 0 0 1 0 1 0.0184 

13f  0 1 1 0 1 0 1 0.0049 

14f  1 1 0 0 0 1 0 0.0113 

15f  0 1 0 1 0 1 1 0.1960 

16f  0 0 1 1 0 0 0 0.4410 

17f  0 1 1 1 1 0 1 0.0132 

18f  1 1 0 1 0 0 0 0.0053 

19f  1 1 0 1 1 1 0 0.0964 

20f  0 0 1 1 1 1 0 0.0186 

21f  0 0 1 1 1 1 1 0.0359 

 

4.2.3 Performance comparison among different combination functions 

 

Another important factor in classifier ensemble is the combination function. In this section, majority 

voting, plurality voting and weighted averaging are selected in GACEM respectively. Here, we set the 

weight of each classifier in the chromosome as its weight when averaging. 
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When N M , 0.05   and the other parameters are the same as in Section 4.2.1. The results of 

experiments are given in Figure 13(a). When 3N M , 1/ N   and the other parameters are the same 

as in Section 4.2.2. The results of experiments are given in Figure 13(b). 

 

Figure 13. Classification accuracy rate of GACEM with different combination 

functions: (a) N M , 0.05   and (b) 3N M , 1/ N  . 
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Figure 13 shows: fixing the basic classifier, the CAR of GACEM varies little among the three kind 

of listed combination functions, i.e., majority voting, plurality voting and weighted averaging. This 

means that GACEM is not so sensitive to the selection of combination function. 
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5. Conclusions 

 

The experimental study shows that GACEM is superior to both the conventional feature-level fusion 

and decision-level fusion because it utilizes the combination of more than one classifier to obtain a 

more precise classification result. Besides, GACEM is able to choose the elites for ensemble among 

the classifiers where the good and bad are intermingled, which could reduce the complexity of the 

classifier ensemble system remarkably. 

Note that although GACEM has obtained impressive performance in our empirical study, we believe 

that there are still some candidate improvement directions on GACEM: (1) taking more sophisticated 

and powerful classifier such as support vector machine (SVM) as the basic classifier, (2) improving 

the basic classifiers by synergizing with subsampling the training examples such as Bagging or 

Boosting and (3) using different basic classifier for different subset of features set by adding extra 

gene positions to indicate both the basic classifier’s type and parameters and then allowing the GA to 

search the optimal setting. Also, it is feasible to design algorithms for sensor selection [36, 37] along 

the way that GACEM goes. 
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