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Abstract: Changes in electric parameters of a mesoporous silicon treated by a plasma 

chemical etching with fluorine and hydrogen ions, under the adsorption of NEPO 

(Nematodetransmitted Polyhedral) plant viruses such as TORSV (Tomato Ringspot Virus), 

GFLV (Grapevine Fan Leaf Virus) and protein macromolecule from TORSV particles are 

described. The current response to the applied voltage is measured for each virus particle 

to investigate the material parameters which are sensitive to the adsorbed particles. The 

peculiar behaviors of the response are modeled by the current-voltage relationship in a 

MOSFET. This model explains the behavior well and the double gate model of the 

MOSFET informs that the mesoporous silicon is a highly sensitive means of detecting the 

viruses in the size range less than 50 nm.  

Keywords: Biosensors, Porous Silicon, Plant Viruses, MOSFET, Double Gate, current-

voltage response 

 

1. Introduction 

Biosensors based on nanotechnologies are now widely investigated for the possible applications to 

monitor environmental pollutants [1]. Detecting plant viruses in agriculture is one of such applications. 

Since various shapes, sizes and biochemical properties of a large number of different viruses and 

bacteria are already known [2], the biosensors need to be able to identify different types of biological 
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objects. In this direction, the porous silicon is now widely considered as a candidate for the 

biosensors[3]. 

It is known that viruses are having sizes from 20 to 500 nanometers and bacteria having more than 

500 nanometers. Among the viruses, plant viruses, in particular NEPO plant viruses such as GFLV and 

TORSOV have the orbicular shape with a diameter about 30 nanometers. Each viral particle, i.e., a 

virion consists of a genetic core and a protective protein coat called viral protein, i.e., capsid [2]. The 

capsid does not have a smooth surface. Its surface has many protuberances. These protuberances are 

composed of polar organic molecules. It is the polar molecules which make the viral protein adhere 

very well to various material surfaces. Therefore viral particles’ interaction with the surfaces is granted 

by property of the viral proteins’ macromolecule structure. 

Mesoporous silicon (MesoPS) is a good material for sensing biological objects because it can sense 

bio-substance, and is bio-compatible, mechanically stable and simple to use [4-8]. Furthermore, it 

doesn’t need analyte molecules as in carbon nanotube [9]. Porous structure has a similar to nanoporous 

membrane for the filtration of virions with an ultrahigh selectivity [10]. Therefore pores in porous 

silicon work as a natural membrane for small biological particles. It turned that, the pore structure was 

found to play a significant role during infiltration of protein into the photonic crystal [11]. 

It was found that the porous silicon gone through a plasma-chemical process involving fluorine and 

hydrogen ions can induce more polar organic molecules to be absorbed and have more stable electric 

parameters [12]. Hence the treatment increases the sensitivity of the porous silicon to the adsorbed 

viruses.  

In this paper changes in electric parameters of porous silicon under the adsorption of plant NEPO-

viruses particles are described. Protein macromolecules from TORSV viruses are used to determine the 

role of the coat protein in the adsorption process. 

2. The preparation of a MesoPS silicon sensor and loading of a virus onto the sensor 

Samples of MesoPS were formed from a p-Si wafer in 100 direction by the anode electrochemical 

etching within HF-based solution [HF(48%):ethanol=1:1]. During etching, additional illumination is 

provided and ultrasonic processing is applied to the silicon surface. After manufacturing, a plasma 

chemical treatment with ions of fluorine and hydrogen has been done on the surface of the MesoPS. 

The average porosity of the MesoPS and the diameters of the registered pores has been controlled to be 

about 47 % of the upper surface area and not to exceed 100 nanometers. Detailed processes of 

preparing the MesoPS are described in the reference [12]. Measurements with a secondary ionic mass 

spectroscope have shown that the concentrations of hydrogen, oxygen and fluorine ions in the MesoPS 

are in the ranges of 15%, 1% and 4% of total atomic mass, respectively. Ions of fluorine and hydrogen 

stabilize the electrical properties of the MesoPS: The doped high-energy hydrogen ions on the surface 

area of the MesoPS results in increasing the saturated number of unbalanced silicone molecules. Since 

fluorine is more active to some oxygen molecules, it deters the surface structure changes of the 

MesoPS when it is open to air.  

Figure 1 shows the profile of the MesoPS sensors for the plant viral particle detection. On a part of 

the top surface of the porous silicon a thin metal layer is deposited as the electrode. The electric 

contact A is transparent for biological particles. The external voltage is applied through the bottom of 
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the substrate and the electrode. The sensors can be considered as composed of many silicon wires with 

lengths more 500 nm and thicknesses in nano-dimensions, covered with a thin dielectric layer 

containing fluorine and hydrogen atoms. Charge transport will be probable only through each 

nanowire between contacts A and B (figure 1). Current-voltage characteristics of the sensors between 

electric contacts A and B are measured before and after loading the viral particles. 

 

Figure 1. Cross-sectional view of the microelectronic devices with electric contacts A 

and B on the base of the mesoporous silicon formed from crystal silicon. 

 

 
 

TORSV (Tomato Ringspot Virus) and GFLV (Grapevine Fan Leaf Virus) viruses and protein 

particles are prepared by the department of microbiology and virology of I.I.Mechnikov university in 

Odessa, Ukraine. The protein particles are prepared by removing the core in the center of each TORSV 

virus. 

Loading the viral particles on the sensors has been carried out by the standard procedure [13]: Each 

viral particle is put to a bowl with a twice-distilled water to be the final concentration of 1 mg/ml. This 

solution is placed in dialysis devices and dialysised against the twice-distilled water with 100 times of 

the solution in volume, for a day at temperature 8 to 10 °С. Then a porous silicon sensor is placed in 

the solution for one hour under 10 mm Hg vacuum at 25°С. Finally the sensor is dried in a desiccator 

with СаСl2 for two hours. In figure 2, an atomic force microscopic image of mesoporous silicon 

surface and images of protein macromolecule, plant NEPO-viruses and papilloma virus particles. It is 

obvious that due to geometrical parameters of the viruses, they will be selectively getting into the 

pores. I.e., NEPO-viruses and their protein macromolecule can get into the pores as shown in Figure 2. 
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Figure 2. Atomic force microscopic image of mesoporous silicon surface and images of 

protein macromolecule, NEPO plant virus and papilloma virus particles. The numbers 

represent their characteristic sizes. 

 

 
 

 

Figure 3. Pore size distribution of the MesoPS sensors and characteristic sizes of 

viruses, bacteria, and protein macromolecules.  

 
In figure 3, the pore size distribution of the MesoPS sensors and the characteristic sizes of viruses, 

bacteria, and protein macromolecules are shown. The sensors’ pore sizes are mostly less than 50nm in 

diameter. Hence the sizes are too small to accept virus particles with sizes bigger than 100 nm and 

bacteria. Thus plant NEPO-virus particles can be selectively adsorbed by the pores. The geometrical 

sizes of the plant virus particles and the protein macromolecule are good for the pore sizes. It means 

that the MesoPS sensor can selectively detect different NEPO-viruses based on their geometrical sizes. 
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Hence on geometrical size point of view, the MesoPS sensor is very effective in detecting viruses with 

sizes not more than 50 nanometers. 

 

3. Results and Discussion 

 
Figure 4 shows the dependences of current dsI  on the bias U  with before (curve 1) and after 

adsorbing TORSV and GFLV viruses, and protein particles for curves 2-4, respectively. The all 3 

sensors show the same characteristics when no viruses are adsorbed as shown in curve 1. The 
dependence of current dsI on bias U for all curves in Fig. 3 is very similar to source-drain 

characteristics of the MOSFET (Metal-oxide semiconductor field emission transistor). The curves 

reveal that filling pores with different size particles work like different voltages applied between 

source and gate in the MOSFET. The adsorbed biological particles have almost the same chemical 

properties, but difference in their geometrical sizes. It is obvious that the number of the 

viruses/proteins in each particle will be inversely proportional to its geometrical size. Hence particles 

with larger sizes will introduce more charges to the sensor. Hence they introduce more influences to 

the electrical parameters of the sensor. 

 

Figure 4. Dependences of current Ids on bias U before (curve 1) and after adsorbing 

TORSV and GFLV viruses, and protein particles (curves 2 to 4). 

 

0 1 2 3 4 5 6 7 8 9 10
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

I ds
,A

U,volts

 1
 2
 3
 4

 
The non-monotonic increase in current with U could be explained by assuming that each silicon 

wire in the MesoPS is a MOSFET with a different physical size. Each MOSFET reveals different 

electrical characteristics from others. The total current density in quantum wires and other quantum 

devices are represented by the sum of currents originated from quantum and drift diffusion 

phenomena. In these wires and devices, the Current-Voltage characteristics are also showing non-

monotonic relationships [14]. The physical sizes are equally significant to both classical and quantum 

physics. Dimensional quantization leads to the occurrence of discontinuities in UI  curve. The 
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current transport theory in quantum wires explains the non-monotonic current-voltage relationship in 

figure 3 [14].  

The top electrode plays the role of a source and the crystalline silicon plays the role of a drain 

(figure 5). Since the silicon wires are covered by the dielectric SiF layer, the surface with adsorbed 

particles can plays the role of a gate (figure 5 b). The viruses adhere easily to the SiF layer because 

ions such as fluorine and oxygen on the surface of the SiF layer interact with polar molecules at the 

surface of the viral proteins. 

 

Figure 5. Illustrations of filling of a porous silicon wire surface with the adsorbed virus 

particles (a) and (b), and interaction between polar molecules on the surface of a capsid 

and the F-Si-H group on porous silicon surface (c). 

 

 

The current dsI  can be given as sum of current dsiI through each MOSFET which is symbolizing 

each silicon wire between electrodes.  

dsi

N

i
dsids NIII 




1

      (1) 

where N represents the total number of the wires between electrodes. In Eq. 1, it is assumed that the 

current in each wire is equal to those of other wires. The number N  in the geometrical size of 1 mm² if 

it is assumed that the average distance between pores are 100 nm, becomes equal to 108. If it is 

assumed that all these wires have almost the same characteristics, the total current will be 108 times of 
the current through each wire, i.e., dsiI810 .  

Geometrical and physical parameters of a nanodimensional transistor are similar to the DG (Double 

Gate) device described by Taur [15]. 
In the DG device, the current dsiI  can be derived from the following relationships: 
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In Eq. 2,   is obtained as the solution of the following equations. 
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where q  is a electron charge, k  is Boltzmann constant, T  is absolute temperature, Si  is dielectric 

constant of silicon, Sit , L  are channel thickness and length respectively (fig.5, b), W is the device 

width,  the effective mobility,  is the work function difference at the gates, gV  and V  are the gate 

voltage and the applied source drain voltage, in  is intrinsic carrier concentration in silicon and 

SioxSi tr  / , where ox is dielectric constant of the SiF layer, is structural parameter. The 

dependence  and dsI on gV  is found at H. Moris’s work [16]. Function )(ln gds VI  is linear from 0 up 

0.4 volts.  
To find equivalent gV  values for curve 2 to 4 in Fig. 4, let’s introduce   which is defined as, 

0
ds

ad
ds

I

I
 ,       (4) 

where 0
dsI  and ad

dsI are saturation currents before (curve 1 in Fig. 4) and after adsorbing biological 

particles (curve 2-4 in Fig. 3). For curve 1, it is possible to consider that gV  is approximately equal to 

zero. By this consideration, gV  value for after adsorbing TORSV and GFLV viruses, and TORSV 

protein particles can be calculated by the  values corresponding to each of them. The magnitude of   

is in the range from 102 up to 105 after adsorbing TORSV and GFLV viruses and protein particles 

(Fig.4 curves 2 to 4). This informs that detecting biological nano-objects with the MesoPS is a highly 
sensitive method. In Fig. 6, curve 1 shows gV  values calculated from parameter  , which obtained 

from Fig. 4 data for the applied source drain voltage of 5 volt.  

 

Figure 6. Dependences of parameter  (curve 1) and adsorbed number of particles, Ns 

(curve 2) on the gate voltage Vg. Error bars represent confidence intervals.  
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For a purpose, it might be necessary to count the number of the adsorbed particles. This can be done 

by estimating the capacitance of the sensor based on its geometry and material characteristics. Since 
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each silicon wire has the form of a coaxial cylinder by the dielectric layer etched on its surface as 

shown in Fig. 2(b), can be used to estimate the capacitance formula [17]:  

1
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where 0 is the permittivity of vacuum. The capacitance Ci for inner radius 1r =25 nm, surface 

dielectric layer thickness  =5 nm, length L=0.5 m and the dielectric constant =4.5 [18] is equal to 

10-7 nF. Hence the capacitance of the sensor with active surface area of 1 mm² is calculated as around 

10 nF from Eq. 5.  

When it is assumed that the charge on each electrically active particle is equal to one electron 

charge, the number of adsorbed particles can be estimated as following way: Since the surface charge 

sQ  can be expressed as CVQ gs  , the number of adsorbed particles, sN are calculated as 

qCVqQN gss //  . In Fig. 6, curve 2 shows the dependence of number sN on voltage gV  from 

experimental data.  

The volume of the total porous space of the MesoPS with porosity 47% is calculated as 
13107.4  m3. Since the volumes of protein, GFLV and TORSV virus particles are calculated as 

2410096.4  m3, 231063.1  m3, and 23107.2  m3, respectively, with the diameter values shown in Fig. 1. 

The maximum numbers of the protein, the GFLV and the TORSV particles, which can fill the volume 
are estimated as 111047.1  , 10100.3   and 101074.1  , respectively. These numbers are more than the sN  

in 910 range as specified in curve 2 of Fig. 6. This means that the porous space is a partially filled. 

These numbers also indicate that the smaller size particles can penetrate more to the porous space. As 

a consequence, the conduction response of MesoPS increases, i.e., more current is induced for smaller 

size particles as shown in Fig. 4. Hence it can be said that the MesoPS has a very high sensitivity to the 

viral and their protein particles. MesoPS is performing a role of natural membranes. This role will 

probably be responsible for raising selectivity of the MesoPS. It is expected that the selectivity of 

MesoPS for protein particles will be increased if the pore sizes are less than 20 nm.  

It is also noticed that as informed by Eq. 5 and the MOSFET model, the capacitance value of the 

sensor is defined only by its geometrical dimension and material property. The presence of viral and 

protein particles in the pores cannot result any change in the capacitive parameters of the sensor 

because no changes in chemical compositions and geometrical properties of the sensor are induced by 

the particles.  

Conclusions 

Electronic devices based on the mesoporous silicon can be used to detect selectively small 

biological particles such as TORSV and GFLV which are classified as the plant NEPO viruses. The 

mesoporous silicon sensors can effectively select viruses with sizes mostly less than 50 nanometers 

among huge number of known viruses. The manufacturing simplicity is the advantage of the 

mesoporous silicon sensor. Improving manufacturing technology, it is possible to achieve selective 

identification of various biological particles and their concentration.  
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