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Abstract: Detecting and identifying weak gaseous plumes using thermal imaging data is
complicated by many factors. These include variability due to atmosphere, ground and plume
temperature, and background clutter. This paper presents an analysis of one formulation of the
physics-based radiance model, which describes at-sensor observed radiance. The background
emissivity and plume/ground temperatures are isolated, and their effects on chemical signal
are described. This analysis shows that the plume’s physical state, emission or absorption,
is directly dependent on the background emissivity and plume/ground temperatures. It then
describes what conditions on the background emissivity and plume/ground temperatures have
inhibiting or amplifying effects on the chemical signal. These claims are illustrated by analyz-
ing synthetic hyperspectral imaging data with the adaptive matched filter using two chemicals
and three distinct background emissivities.
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1. Introduction

Remotely detecting and identifying weak gaseous plumes using infrared measurement instruments is
a challenge that receives continual attention. Burr and Hengartner [1] have provided a comprehensive re-
view of this problem. Generally, the ability to detect a gaseous effluent is influenced by its concentration
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pathlength, atmospheric interferences, the temperature difference between the plume and the background
surface, the emissivity of the background, and the complexity of the background surface. Collectively,
these elements are termed clutter.

When trying to detect and identify gaseous effluents, the type and variability of background clutter
in an image presents many modeling challenges. This subject is complex and has been studied from
many perspectives. There have been several studies that address the characterization of background
clutter [2, 3]. Endmember estimation is another method that models the types of clutter in an image
on a subpixel (multiple background types within a pixel) level [4, 5]. There are also several studies that
address signal-to-noise (SNR) and signal-to-clutter (SCR) ratios [6, 7]. These terms are used to represent
the performance of least squares approaches to gas detection.

This paper studies the background clutter from a different perspective. We explore the effect of the
background emissivity on the chemical signal as influenced by the temperature emissivity (TE) contrast;
that is, we identify when the background emissivity will have inhibiting effects on the signal strength
and in turn reduce SCR. We view the temperature emissivity contrast as a difference in radiance signal
contribution of the plume and the background. First, we isolate the TE in a formulation of the physics-
based radiance model. Then, we conduct analyses of the TE’s contribution to the chemical signal while
isolating the effect of the background emissivity. We describe the contributions of these terms to the
chemical signal and identify cases where the plume/ground temperatures and background emissivity
have amplifying/inhibiting contributions to the signal. To illustrate our claims, we simulate and analyze
simplified hyperspectral images using the InfraRed Systems Analysis in General Environments (IR-
SAGE) code [8–10].

This paper is organized as follows. Section 2 states the physics-based radiance model along with the
analyses of the temperature emissivity contrast. Section 3 describes image simulation and gas detection
methods. Section 4 presents results of the simulation studies. Section 5 presents conclusions.

2. Physics-Based Radiance Model and Analysis

We explore the three-layer physics-based radiance model to gain insight into how the structure of
the background emissivity impacts the at-sensor observed plume signal [1, 11, 12]. This model can be
written as

Lobs(ν) = τa(ν)[(1− τp(ν))B(Tp; ν) + τp(ν)Lg(ν)] + Lu(ν) + e(ν) (1)

where Lobs(ν) represents sensor-recorded radiance in W/cm2∗Sr∗cm−1 at wavenumber ν (cm−1), τa(ν)

and τp(ν) are dimensionless terms representing the atmosphere and plume transmissivity, respectively,
B(T ; ν) has radiance units and is Planck’s Blackbody function at wavenumber ν and temperature T (K),
Lg(ν) and Lu(ν) are the ground-leaving and atmospheric upwelling radiances, respectively, and e(ν)

includes unmodeled effects and sensor noise [2, 3].
Following the convention of [1, 13], we model the ground-leaving radiance as

Lg(ν) = εg(ν)B(Tg; ν) (2)

where εg(ν) is a dimensionless quantity representing the emissivity of the ground at wavenumber ν, and
0 ≤ εg(ν) ≤ 1. Note that this formulation ignores the reflected atmospheric downwelling radiance.
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This assumption is reasonable in the Longwave Infrared band (LWIR) because the reflected radiance
contribution to observed signal is negligible [13].

The Beer-Bourger-Lambert Law [14] gives an explicit expression for the transmissivity of a gas in
terms of the chemical effluent’s concentration path-length, c (with c measured in parts-per-million-meter,
denoted ppm-m), as follows:

τp(ν) = e−A(ν)c (3)

where A(ν) is the absorbance coefficient of the gas in ppm-m−1 [14]. For optically thin plumes, this term
is well approximated by the first two terms in a Taylor Series expansion [1]. This gives

τp(ν) ≈ 1− A(ν)c (4)

for small c.
We now substitute Eq. (2) and Eq. (4) into Eq. (1) to arrive at the working-gas-plume linear model

Lobs(ν) = τa(ν)[B(Tp; ν)− εg(ν)B(Tg; ν)]A(ν)c + τa(ν)εg(ν)B(Tg, ν) + Lu(ν) + e(ν) (5)

which we interrogate further.
The right hand side of Eq. (5) shows that atmospheric radiance observed by the sensor is an additive

layering of upwelling radiance Lu(ν), ground radiance attenuated by atmosphere τa(ν)Lg(ν), and the
signal due to the chemical plume τa(ν)[B(Tp; ν) − εg(ν)B(Tg; ν)]A(ν)c. This representation has been
used to motivate scene whitening and the use of least squares approaches for gas detection [1, 12].
We will use this formulation to explore the effect that background emissivity and the ground/plume
temperatures have on the chemical signal.

The radiance due to the chemical plume is the first term on the right hand side of Eq. (5), namely

τa(ν)[B(Tp; ν)− εg(ν)B(Tg; ν)]A(ν)c. (6)

We will refer to Expression (6) as the chemical signal throughout the remainder of the paper. Inspection
of this term shows that radiance due to the plume is a function of atmospheric transmission, plume and
ground temperature, ground emissivity, and the plume gas absorbance and concentration path length.
We note that while Expression (6) is one possible formulation for the chemical signal, there may be
other approaches; for example, alternate formulations arise when log-transformations and linear mixture
models are used. In this paper, we do not consider alternate modeling regimes. Thus, it is important
to note that the conclusions we draw from the formulation given in Expression (6) are only pertinent
to the linearization that we have applied in this analysis. We are interested in how the structure of
the background emissivity affects the chemical signal. Toward that end, we will make the following
assumptions:

1. The gas exhibits absorbance at wavenumber ν.

2. The gas is present at some fixed concentration path length c.

3. The atmospheric transmission, τa(ν) is such that all plume radiance is not being attenuated by
atmosphere at wavenumber ν.
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Assumptions 1 and 2 confirm that there is a chemical signal (gas absorbance or concentration path length
of 0 imply chemical signal of 0). Assumption 3 confirms that chemical radiance can pass through the
atmosphere and reach the sensor.

To isolate the effects of background emissivity on the chemical signal at a single channel, we will
focus our attention on the Temperature Emissivity Contrast that is defined below

TE(Tp, Tg, εg, ν) = B(Tp; ν)− εg(ν)B(Tg; ν). (7)

Expression (6) shows that the chemical signal is proportional to TE. Thus, larger values of TE (in
absolute value) will yield larger chemical signals at wavenumber ν, making the plume easier to detect at
that wavenumber. Therefore, we investigate the properties of the background emissivity εg(ν) that will
yield a larger TE. We consider three plume-ground temperature cases: Tp = Tg, Tp > Tg, and Tp < Tg.
We analyze TE for each of these temperature cases in the next sections.

2.1. Case 1: Tp = Tg

This case is presented first since it is the easiest to interpret analytically. Equality of the plume and
ground temperatures implies that B(Tp; ν) = B(Tg; ν) = B(T ; ν) for the common temperature T . Thus,
when Tp = Tg = T , we can express Eq. (7) as

TE(Tp, Tg, εg, ν) = B(Tp; ν)− εg(ν)B(Tg; ν)

= B(T ; ν)− εg(ν)B(T ; ν)

= (1− εg(ν))B(T ; ν) (8)

Since 0 ≤ εg(ν) ≤ 1, Eq. (8) demonstrates that a smaller εg(ν) will result in a larger TE and hence a
larger chemical signal. We also note that TE is strictly positive for this temperature case. An εg(ν) = 1

is required for TE = 0, but this happens only for a true Blackbody. This indicates that the plume is in
emission (emitting radiation) when Tp = Tg. A gas plume in emission is contributing to the observed
radiance signal, and the chemical may be seen as peaks on the observed radiance at wavenumbers where
the gas exhibits positive values in A(ν).

2.2. Case 2: Tp > Tg

When Tp > Tg, it follows that B(Tp; ν) > B(Tg; ν) since Planck’s function is monotonically in-
creasing with respect to T . We can write the plume’s Blackbody radiance as a function of the ground’s
Blackbody radiance. We express this as

B(Tp; ν) = (1 + δ1(ν))B(Tg; ν) (9)

where we use δ1(ν) to represent the relative difference between the plume and ground Blackbody func-
tions as follows:

δ1(ν) =
B(Tp; ν)−B(Tg; ν)

B(Tg; ν)
. (10)
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Substituting Eq. (9) into Eq. (7) yields

TE(Tp, Tg, εg, ν) = B(Tp; ν)− εg(ν)B(Tg; ν)

= (1 + δ1(ν))B(Tg; ν)− εg(ν)B(Tg; ν)

= (1 + δ1(ν)− εg(ν))B(Tg; ν). (11)

Eq. (11) is also easy to interpret as a function of εg. First, we note that because δ1(ν) is positive when
Tp > Tg and is additive in TE, it can be shown that TE is strictly positive for this temperature case.
This says that the plume is strictly in emission for this case. It also says that a larger chemical signal
is observable compared to the previous temperature case. Since εg(ν) is subtracted in Eq. (11), small
emissivities yield a larger chemical signal at wavenumber ν.

2.3. Case 3: Tp < Tg

This temperature case is the most difficult to interpret analytically. When Tp < Tg, it follows that
B(Tp; ν) < B(Tg; ν). Similar to the previous section, we can write

B(Tp; ν) = (1− δ2(ν))B(Tg; ν) (12)

where the δ2(ν) is now expressed as

δ2(ν) =
B(Tg; ν)−B(Tp; ν)

B(Tg; ν)
. (13)

Note that the order of the Blackbody functions in Eq. (13) has changed from Eq. (10) to maintain a
positive δ2(ν) function for this temperature case.

We substitute Eq. (12) into Eq. (7) and find that

TE(Tp, Tg, εg, ν) = B(Tp; ν)− εg(ν)B(Tg; ν)

= (1− δ2(ν))B(Tg; ν)− εg(ν)B(Tg; ν)

= (1− δ2(ν)− εg(ν))B(Tg; ν). (14)

The fact that δ2(ν) is a subtracted term in Eq. (14) complicates the interpretation of what properties
of εg(ν) are desirable for a larger TE and larger chemical signal. We provide a graphical summary of
TE for the three temperature cases in the next subsection to clarify how εg(ν) contributes to TE for
each temperature case. For this temperature case, TE can be positive, negative, or 0, and this is directly
dependent on εg(ν) as well as Tp and Tg. A plume in absorption (TE < 0) is decreasing the observed
radiance signal at wavenumbers where A(ν) is positive. In this case, the gas can be seen as troughs in
the observed radiance. A plume that is neither emitting nor absorbing (TE = 0) is transparent to the
sensor and cannot be detected.

2.4. Graphical Summary of TE for the three temperature cases.

We present a plot of TE as a function of εg(ν) for the three temperature cases at ν = 1000 cm−1

in Figure 1. We set the ground temperature to Tg = 300K and vary the plume temperature at Tp =

305, 300, 295K.
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Figure 1. Temperature emissivity contrast plotted as a function of emissivity for three tem-
perature cases at ν = 1000 cm−1: 305K = Tp > Tg = 300K (red line), Tp = Tg = 300K

(green dashed line), and 295 = Tp < Tg = 300K (orange line). TE is non-negative when
Tp ≥ Tg, which indicates the plume is in emission. TE can be positive or negative, depend-
ing on εg when Tp < Tg, which indicates the plume can be in emission or absorption.

The plots of TE for the Tp > Tg and Tp = Tg cases are the red and green lines, respectively. The
plot shows that values of εg(ν) closer to 0 increase the magnitude of TE. This is consistent with the
interpretation of the analyses.

The plot of TE when Tp < Tg illustrates which values of εg(ν) yield a larger TE in magnitude.
We can see that TE crosses the horizontal axis if εg(ν) = B(Tp; ν)/B(Tg; ν). This shows that when
εg(ν) = B(Tp; ν)/B(Tg; ν), the plume is neither emitting nor absorbing and there is no chemical signal
at wavenumber ν. The fact that TE can cross the horizontal axis informs us that small emissivities
(closer to 0) or larger emissivities (closer to 1) have the potential to make the absolute value of TE

larger for this temperature case.
The implications of this plot are as follows. When the gas exhibits an absorbance feature at wavenum-

ber ν and TE is positive the plume is in emission. The analysis implies that backgrounds that have
emissivities closer to 0 at wavenumber ν will then contribute to a larger chemical signal, and thus the
plume will be easier to detect. We note that this is true for each temperature case Tp = Tg and Tp > Tg.
When Tp < Tg it is possible for TE to be either positive or negative (plume is in emission or absorption).
This is illustrated by the orange line in Figure 1. Thus, for this case, there are two ways that background
emissivity can contribute to a larger TE. If TE is positive then emissivities closer to 0 yield a larger
TE and a larger chemical signal. When TE is negative then emissivities closer to 1 may contribute to
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a larger chemical signal. Thus the plume will give some chemical signal for emissivities near 1 when
Tp < Tg and TE < 0 and this distinguishes this temperature case from those where Tp ≥ Tg.

3. Experimental Methods

The goal of this section is to explore the validity of the analysis presented in Section 2. While the
analysis describes the effect of εg(ν) on the chemical signal at a single channel, hyperspectral instruments
record a radiance vector across the LWIR band. As such, we will explore how these phenomena affect gas
detectability in a multivariate setting. To illustrate the claims made in the single channel analysis, we will
restrict ourselves to a specific subset of gases and background emissivities. We choose gases that exhibit
strong absorbance over a small range of wavenumbers and no absorbance everywhere else. We also select
emissivities that do not change ordering over the wavenumbers where the gas exhibited absorbance. The
intent is that illustrating the phenomena with gases and backgrounds that exhibit this relationship will
allow for immediate interpretation of the results in relation to the model analysis provided in section 2.
We intend to explore the effects of general background emissivity and gas absorbance variability on gas
detectability in future work.

We employ IR-SAGE to simulate simplified hyperspectral images. The background spectra used in
this study are laboratory-measured individual background materials from the Nonconventional Exploita-
tion Factors Data System (NEFDS), a government database of surface reflection parameters. We selected
three distinct background emissivity clusters and used the mean spectra of the three clusters in image
simulation. These spectra are representative of the following three groups: Brick, Snow, and Steel-
Copper Tubing. These spectra are presented in Figure 2(a). Note that in the LWIR (750-1250 cm−1),
these emissivities are relatively high.

Two gases were selected for image simulation. We selected Carbontetrachloride (CCL4) and Tetraflo-
urosilane (SiF4). These gases exhibit one large dominant absorbance feature. A plot of the absorbance
spectra for these gases is presented in Figure 2 (b). The spectrum for CCL4 shows a major feature around
790 cm−1. SiF4 exhibits a dominant feature around 1025 cm−1. Note that the background emissivities
show a consistent ordering across type (they do not cross) where each of the chemicals exhibits positive
absorbance.

The simulated images have dimensions 75 × 120 × 126 (rows by columns by spectral dimension).
The wavenumber range used is 750 to 1250 cm−1 in steps of 4. The three background spectra are
inserted across the rows in three 25-pixel swaths. The chemicals are inserted as six 20-column bands
at concentration pathlengths 16, 8, 4, 2, 1, and 0 ppm-m. This orientation produces 500 pixel replicates
within a background/gas concentration combination.

Images were created for each temperature case. The ground temperature, Tg, was kept constant at
300K, and the plume temperature, Tp, was varied at Tp = 305K, 300K, and 295K for the CCL4 images.
This temperature range was selected to illustrate the effect for each of the background emissivities on
detection. A slightly wider temperature range was needed to illustrate the effect for SiF4: Tg = 300 and
Tp = 305K, 300K, 292K.

Simulated sensor noise was used to perturb the spectra in each pixel. Variability due to atmosphere,
temperature, and emissivity from pixel to pixel were held constant to enable us to study the effect of the
background emissivity’s variability across the spectrum on the chemical signal. IR-SAGE models sensor
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Figure 2. (a) Background emissivity spectra used in image simulation. (b) Chemical Ab-
sorbance spectra used in image simulation.

noise from a zero-mean Gaussian distribution with standard deviation defined by the ratio of sensor
incident radiance to the signal-to-noise ratio. Please see [8–10] for detailed descriptions of the sensor
noise model.

We use the Adaptive Matched Filter (AMF) as a gas detector, note that this is equivalent to the gener-
alized least squares solution to a linear model e.g. see [1, 15]. The image analysis process is as follows.
The non-gas pixels can be formulated as

Loffi
= τa ¯Lg + Lu + ei, i = 1, ..., 500 (15)

where bold terms are vectors of length 126 (126 spectral channels) and¯ denotes the Hadamard product
(elementwise multiplication). We compute the mean of these pixels for use in background radiance
subtraction. This can be represented as Loff = τa ¯ Lg + Lu + ē for the 500 non-gas replicates as
the atmospheric transmissivity and background radiance are not varied across pixels. We subtract this
quantity from each of the gas pixels that contain the same background type, i.e., we compute

Lobs −Loff = τa ¯ [B(Tp)− εg ¯B(Tg)]¯Ac + e− ē. (16)

Eq. (16) shows how the background mean subtraction removes radiance due to ground as well as atmo-
spheric upwelling radiance and leaves the chemical signal and noise. These data are processed with the
AMF. Explicitly we compute

AMF = (A′Σ̂−1A)−1A′Σ̂−1(Lobs −Loff ) (17)
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where A is a 126 × 1 vector of the gas absorbance spectra and Σ̂ : 126 × 126 represents the spectral
covariance matrix computed on the non-gas pixels. This formulation of the filter is sometimes used in
practice in the LWIR. It assumes no information about the atmosphere, plume or ground temperatures,
and emissivity is available. It also assumes that TE is constant across the spectral dimension [1, 2].

If the AMF is deemed statistically significant based on a 5% level two-sided hypothesis test [16],
then we say we have “detected” the gas in that pixel. This test is conducted under the assumption that
the errors follow a Gaussian distribution. We apply this solution to each of the 500 replicates within each
gas concentration path-length/background combination and then record the proportion of detections:

p̂ =
# of detections

500
. (18)

We use p̂ as an estimate of the gas detection probability. We get 18 detection probabilities for each image
as there are three backgrounds and six gas-concentration path-length levels. Lastly, we plot detection
proportions versus concentration path length and look for orderings (conditioned on background emis-
sivity) in these curves. We then interpret these results back to the claims to the effect that background
emissivities should produce a larger chemical signal and better detectability for each chemical.

4. Results

In this section, we present the results of analyses performed on the six synthetic images that were
generated using IR-SAGE. Sample detection proportions were computed for each combination of con-
centration path-length and background type. Taken together, these data form the empirical detection
proportion curves presented in Figure 3 (for CCl4) and Figure 4 (for SiF4).

First, we consider Figure 3(a), which is a plot of the empirical detection curves for CCL4 when
Tp = Tg = 300K. Examination of the plot shows that the backgrounds can be ordered by detection
proportion as (best to worst) Steel-Copper, Brick, and Snow. Figure 3(d) shows a plot of the CCL4

absorbance spectra along with the background emissivities. We see that where CCL4 exhibits the large
absorbance peak, the background emissivities can be ordered from low to high as Steel-Copper, Brick,
and Snow. Thus, the results here are consistent with the characterization of TE for this temperature case:
lower background emissivities contribute to larger chemical signal when the plume is in emission.

Next, we consider the detection proportion plot for 305K = Tp > Tg = 300K in Figure 3(b) which
shows the same ordering in backgrounds as the previous temperature case. It also shows that detection
has generally increased over all backgrounds. These observations are consistent with the characterization
of TE as they represent the fact that the backgrounds that give better detection for the Tp = Tg case are
the same as for the Tp > Tg case. They also represent the fact that Tp > Tg gives a larger TE and in turn
a larger chemical signal.

Third, we consider Figure 3(c), which shows the empirical detection curves for CCL4 when 295K =

Tp < Tg = 300K. Now we see that the ordering in the detection curves by background is Snow, Brick,
and then Steel Copper. Inspection of Figure 3(d) shows that the background emissivites can be ordered
(high to low) as Snow, Brick, then Steel-Copper where CCL4 exhibits its dominant absorbance peak.
These results are consistent with the analysis of TE for this temperature case. They illustrate that, for an
absorbing plume and a large enough (negative) TE, the backgrounds that give best detection are those
that exhibit larger emissivities and not smaller ones as in the previous two temperature cases.
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Figure 3. Detection proportions for CCL4 when (a) Tp = Tg = 300K, (b) Tp = 305K >

Tg = 300K, (c) Tp = 295K < Tg = 300K, and (d) gas absorbance spectra and background
emissivities.
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Now we consider Figure 4(a), which is a plot of the empirical detection curves for SiF4 when
Tp = Tg = 300K. Examination of the plot shows that the backgrounds can be ordered from best to
worst detectability for SiF4 as Brick, Steel-Copper, and Snow. Figure 4(d) shows that the background
emissivities can be ordered from least to greatest as Brick, Steel-Copper, and Snow where SiF4 exhibits
its dominant absorbance peak. This ordering is consistent with the analysis of TE: smaller emissivities
yield a larger chemical signal for this case.

Next, we consider Figure 4(b), which gives the SiF4 detection proportions when 305K = Tp > Tg =

300K. Examination of this plot shows that the background orderings by detection proportion are the
same as the Tp = Tg case. The plot also shows that detection has generally increased for the emitting
plume at a higher temperature.

Last, we consider the plot in Figure 4(c), which presents the empirical detection proportions when
Tp = 292K < Tg = 300K. This plot shows that the backgrounds that yield best detection have changed
ordering to Snow, Steel-Copper, and Brick. Again, we see that larger emissivities yield larger detection
proportions for a large TE when Tp < Tg.

5. Conclusions

The effects of clutter on gas plume detection/identification is a complicated problem that is ap-
proached from multiple perspectives. This paper studied the effects of background emissivity and
plume/ground temperatures on the chemical signal. The analysis is most pertinent to treatments of
the physics-based radiance model that linearize the plume transmissivity term and work with linear ap-
proaches to gas detection or identification.

Our investigation has shown that, when ignoring reflected downwelling radiance, the physical state
of the plume (emission, neutral, or absorption) is not only dependent on the plume/ground temperatures,
but is also directly dependent on the background emissivity, εg(ν), at a particular wavenumber. We have
shown that Tp ≥ Tg implies that the plume is strictly in emission and that values of εg(ν) closer to 0
will contribute to a larger observed chemical signal. Further, when Tp < Tg, we have shown that it is
possible that the plume is in emission, absorption, or neither emitting nor absorbing (neutral). A neutral
plume happens when εg(ν) = B(Tp; ν)/B(Tg; ν). Thus, the background has the potential to completely
obscure the plume at wavenumber ν. The analysis also shows that emissivities closer to 0 or 1 in this
case have the potential to contribute to a larger observed chemical signal.

The analysis was verified by analyzing simulated hyperspectral radiances in the absence of atmo-
spheric, background, and temperature variability. The gas absorbance and background emissvities used
in image simulations exhibited a very strong relationship: the background emissivity ordering did not
change over the wavenumbers that exhibited gas absorbance. This made it possible to illustrate the re-
sults of the model analysis in a multivariate setting. In general, real background emissvities and gas
absorbances will not exhibit this relationship, so we aim to further explore this phenomenology while
allowing the gas absorbance and background emissivity to vary across the entire LWIR portion of the
spectrum.
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Figure 4. Detection proportions for SiF4 when (a) Tp = Tg = 300K, (b) Tp = 305K >

Tg = 300K, (c) Tp = 292K < Tg = 300K, and (d) gas absorbance spectra and background
emissivities.
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