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Abstract: Operationally-significant wind speed variability is often observed within 
synthetic aperture radar-derived wind speed (SDWS) images of the sea surface. This paper 
is meant as a first step towards automated distinguishing of meteorological phenomena 
responsible for such variability. In doing so, the research presented in this paper tests feature 
extraction and pixel aggregation techniques focused on mesoscale variability of SDWS. A 
sample of twenty eight SDWS images possessing varying degrees of near-surface wind 
speed variability were selected to serve as case studies. Gaussian high- and low-pass, local 
entropy, and local standard deviation filters performed well for the feature extraction 
portion of the research while principle component analysis of the filtered data performed 
well for the pixel aggregation. The findings suggest recommendations for future research. 
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1. Introduction 
 
Images from satellite synthetic aperture radar (SAR) of the ocean surface have been shown to 

routinely reveal the sea-surface roughness signatures of marine meteorological phenomena [1, 2]. This 
is because the near-surface wind rapidly generates short surface waves (here, we are referring to the 
order of magnitude 1 to 10 centimeter wavelengths) that roughen the surface. The characteristic 
wavelength of the SARs referenced above is also order of magnitude 1 to 10 centimeters. For example, 
the SAR aboard the Canadian Space Agency’s (CSA’s) RADARSAT-1 satellite is a C-band system 
(wavelength of approximately 5 centimeters). At moderate incident angles, such as those employed in 
the studies referenced above (e.g., 20o to 49o for RADARSAT-1 ScanSAR Wide mode), the bulk of 
the SAR backscatter is due to surface roughness elements that scale with the radar wavelength 
projected onto the scattering surface (i.e., Bragg scattering, as opposed to specular and wedge 
scattering). Thus, for the ocean surface, those roughness elements include the centimeter-scale waves 
driven by the near-surface wind. It follows that the variability of normalized radar cross section 
(NRCS, average backscatter divided by area) on a SAR image of the ocean is a function of the 
coincident overlying meteorological phenomena. For a recent review of SAR principles, see [3]. 

For the remainder of this discussion, we will focus on moderate incident angle wide-swath SAR 
images because they are the most commonly employed in corresponding meteorological studies. From 
the information provided above, one may conclude that as near-surface wind speed increases, so does 
SAR NRCS. However, there is a growing body of evidence that there is near-surface wind speed limit 
to this function, at which point the SAR NRCS becomes saturated [4]. This saturation is a function of 
incidence angle and polarization with HH-pol saturation occurring at a larger wind speed than VV-pol. 
The SAR NRCS is also a function of near-surface wind direction. Because the centimeter-scale surface 
waves driven by the near-surface wind generally travel with their crests oriented perpendicular to the 
near-surface wind direction, there are local maxima in NRCS when the radar look direction is opposite 
and along the near-surface wind direction. Local minima in NRCS occur when the radar look direction 
is perpendicular to the near-surface wind direction. The relative magnitudes of the maxima are incident 
angle and near-surface wind speed dependent. As incident angle increases (say, from 20o to 49o) and 
near-surface wind speed decreases (say, from 40 ms-1 to 10 ms-1), the NRCS becomes largest for a 
radar look direction opposite to the near-surface wind direction and there is a larger difference in 
NRCS between the maxima and minima. Figure 1 demonstrates these relationships from empirically-
derived C-band geophysical MODel (CMOD) functions (GMF) 4 [5] and 5 [4]. Both GMFs are tuned 
to wind speed at 10 m above sea level. Within Figure 1, they have been modified from vertical-vertical 
(VV) polarization to horizontal-horizontal (HH) polarization (i.e., to that of RADARSAT-1). These 
GMFs will be discussed in more detail below. 

 Radar incident angle, wavelength, and polarization also affect the relationship between the near-
surface wind vector and NRCS while sky condition (cloudy/clear, day/night) does not. As incident 
angle increases, NRCS decreases (see Figure 1). Of the typical wavelengths used for SAR, C-band 
provides the larger NRCS. VV polarization provides larger NRCS than HH polarization. And, of 
course, phenomena other than the near-surface wind vector can influence the spectrum of Bragg 
scatterers and therefore the NRCS (e.g., surfactant slicks, current shear, precipitation, and swell). See 
[6] for a thorough review of SAR imaging of the ocean surface. 
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The horizontal resolution of satellite SARs are quite high and their swath widths are large enough 
to capture the complete sea-surface roughness signatures of many meteorological phenomena. For 
example, the horizontal resolution for ScanSAR Wide images is 100 m with a swath width of 500 km. 
Other satellite SARs offer resolution 2 orders of magnitude greater than this (e.g., 1 m from that of the 
German Aerospace Agency’s TerraSAR-X in SpotLight Mode and 3 m from that of the CSA’s 
RADARSAT-2 in Ultra-Fine Mode), but at reduced geographic coverage (narrower swath widths).  

 
Figure 1. The relationship between NRCS, near-surface wind speed, and radar-relative 
near-surface wind direction for CMOD 4 and CMOD 5, continued on next page. 
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Figure 1. Cont. 
 

 
 

 
 

The high-resolution, wide swath, all-weather operation, near-surface wind-sensitive nature of SAR 
has fueled its emergence as a meteorological tool. Early studies, such as those referenced in [1-2], 
employed scaled NRCS SAR images to support feature detection and analysis. For example, [7, 8-10] 
examined convection cells of various scales. [11, 12] studied atmospheric gravity waves. [13-15] 
focused on atmospheric roll vortices. [16-18] investigated polar mesoscale cyclones while [19, 20] did 
so for tropical cyclones. [21, 22] researched the SAR signatures of atmospheric fronts and their 
prefrontal jets. We stress that the references above do not represent an exhaustive list of research into 
atmospheric features examined with SAR. Moreover, a similar compendium of research exists for 
oceanic feature detection [e.g., 23, 6]. 

Because of the relationship between SAR NRCS and the near-surface wind vector, several research 
groups have endeavored to employ satellite SAR as a high-resolution (order of magnitude 0.1 to 1 km) 
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scatterometer using an appropriate GMF (see the reviews by [24, 25]). Referring to the preceding 
discussion and Figure 1, note that given a SAR system of a particular wavelength and polarization, 
sensing an area of ocean at a given incident angle, over which there is a constant moderate near-
surface wind speed, one must still ascertain, a priori, the corresponding near-surface wind direction 
before near-surface wind speed can be calculated from the NRCS. This represents a liability compared 
to traditional scatterometry. Traditional scatterometers overcome this problem by sensing a given area 
of ocean surface from more than one look direction near instantaneously through either rotating 
conical scanning beams (e.g. the SeaWinds scatterometer aboard the National Aeronautics and Space 
Administration QuikSCAT satellite) or fixed beams (e.g. the Advanced Scatterometer aboard the 
European Space Agency (ESA) MetOP satellite). Near-surface wind direction ambiguity may be 
further reduced via numerical weather prediction (NWP) models. The liability of traditional satellite 
scatterometry over SAR scatterometry is its relatively large grid spacing (order of magnitude 10 km). 

The near-surface wind direction information used for SAR-derived wind speed (SDWS) have 
included NWP models [e.g., 26], scatterometers [e.g., 27], and linear geophysical features found within 
the SAR images [e.g., 28]. Comparisons between SDWS and that from buoys, NWP models, and 
scatterometers are quite good (root mean square errors of a couple ms-1 typically reported as in the 
papers cited above). It is also heartening to note that even though the routinely employed GMFs were 
validated over the open ocean, they have been found to be robust in the vicinity of mountainous 
coastlines [e.g., 29]. 

It follows that the meteorological phenomena sampled in NRCS SAR images are also present in 
corresponding SDWS images. [30] provides a wealth of such images and relevant citations. As an 
example of the detail available within SDWS images, consider Figure 2, which shows a SDWS image 
from 0310 UTC on 18 February 2000, originally described in [31]. The corresponding SAR image is 
from RADARSAT-1 ScanSAR Wide mode. The pixel size of the SDWS image is approximately 600 
m and it was generated using CMOD 4 with near-surface wind directions from the United States 
Navy’s NOGAPS NWP model. The NOGAPS wind vectors are the colored arrows within the image. 
The SDWS image is cropped at 25 ms-1 as that is near the accepted upper limit of applicability for 
CMOD 4. The 50 km band of large wind speed adjacent to the coast is a due to a mesoscale barrier jet 
forced by terrain blocking associated with a land-falling occluded front [32]. Other SDWS features of 
note include the sharp demarcation of the mesoscale barrier jet on its seaward side, gap flows [33] 
emanating from Icy Bay (60.00°N, 141.50°W) and Yakutat Bay (59.75°N, 140.00°W), and the 
variability in the wake [33] of Kayak Island (59.75°N, 144.4°W). 

The near-surface wind speed variability revealed within Figure 2 (a change from breeze to 
gale/storm force over a distance of 1 to 10 km) is not atypical of SDWS images. It is clear that 
knowledge of the near-surface wind speed variability present within the imaged area of Figure 2 would 
be of great value to civilian and military maritime operations also within that area. Without the SDWS 
image, it is doubtful whether the variability referred to above would have been detected. Operational 
numerical weather prediction models can fail to capture the flow in the vicinity of complex terrain, as 
seen for example in the difference in wind direction between NOGAPS and the SAR-detected island 
wakes in Figure 2. Recall that the resolution of scatterometer data is coarser than that of SDWS images 
(order of magnitude of 10 km) and thus cannot sample the near-surface wind speed adjacent to the 
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coast or its sub-resolution variability. Finally, there were only two operational buoys within the image 
area, both located within the northeastern portion of the image. 

The present research describes digital filtering and analysis techniques for SDWS images aimed at 
eventual automated distinguishing of the meteorological sources of mesoscale (defined by [34] as 
wavelengths of 2 km to 2000 km) near-surface wind speed variability. The description of the SDWS 
data is located in Section 2. Section 3 contains the image filtering and analysis procedures employed. 
Key results from a set of 28 case studies are found in Section 4. Section 5 presents conclusions and 
recommendations for future work. 

 
Figure 2. SDWS image from 0310 UTC on 18 February 2000 [2].  

 
 

2. Data 
 
The SDWS data presented herein are based on a selection of RADARSAT-1 SAR images 

containing various commonly observed meteorological phenomena. A total of 28 RADARSAT-1 
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ScanSAR Wide B images (pixel spacing as small as 50 m and a swath width of 450 km, as processed 
by the Alaska Satellite Facility (ASF)) were selected as cases for this study. All cases are images from 
Alaskan coastal waters including the Gulf of Alaska, the Bering Sea, and the waters surrounding the 
Aleutian Islands. These regions are areas where strong forcings commonly occur and interact to 
generate significant spatial near-surface wind speed variability. Recall that in the present research, we 
focus on mesoscale near-surface wind speed variability. It is often the case that multiple overlapping 
mesoscale meteorological phenomena occur within one 450 km swath. Here, the choice of images was 
carefully designed to provide a robust test for the filtering techniques described within Section 3. The 
SAR images were downloaded from the National Oceanic and Atmospheric Administration’s 
(NOAA’s) Satellite and Information Service Comprehensive Large Array-data Stewardship System 
(CLASS) and are available at http://www.nsof.class.noaa.gov/saa/products/welcome. 
 
2.1 Image Processing 

 
The system used to convert all of the SAR images to SDWS for the present research is the Johns 

Hopkins University Applied Physics Laboratory (APL), NOAA, SAR Wind Retrieval System 
(ANSWRS) software package, described in [35]. This software package was developed to provide a 
means of quickly converting SAR images to SDWS images by assuming a priori knowledge of the 
near-surface wind direction. The operational version of ANSWRS at APL, NOAA, and the ASF 
employs NOGAPS near-surface wind directions. ANSWRS is capable of processing satellite SAR 
images from RADARSAT-1 and RADARSAT-2, ESA’s ERS-2 and ENVISAT, the Japanese 
Aerospace Exploration Agency’s Advanced Land Observing Satellite, and TerraSAR-X. The GMFs 
CMOD 4 and CMOD 5 as well as L-band and X-band GMFs are available with the ANSWRS package. 
In addition to NOGAPS wind directions, those from other NWP models, and generic user-specified 
and SAR-based techniques, are also available. The outputs from ANSWRS include SDWS images and 
netCDF files containing the SDWS data. 

The parent ScanSAR Wide B images employed herein were processed by ANSWRS. A brief 
summary of the configuration follows. First, 3 pixel by 3 pixel averaging was performed on the 
calibrated raw NRCS images in order to optimize the reduction of speckle while preserving maximum 
meteorological variability. The images were then converted to wind speed using NOGAPS near-
surface wind directions and CMOD 4. Each SDWS image was then resampled onto a rectangular 
latitude – longitude grid. The final image size for all images processed here is 1200 x 1200 pixels and 
the final pixel size is approximately 450 m. Table 1 provides a summary of each case study image of 
the present research.  
 
3. Procedures 

 
The SDWS image analysis procedures described in this section are designed to explore the potential 

for automated discrimination between the various phenomena responsible for mesoscale variability in 
near-surface wind speed over the ocean. Thus, at most stages in the process, several different methods 
are tested in parallel. Output from the most successful methods at each stage is used as the input for the 
next stage. As in most image recognition applications, the process is broken into four stages [36]. First 
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the image data are cleaned to remove artifacts of no interest to the current analysis, in this case NRCS 
from land. Second, various two-dimensional filters are applied to each image as a means of feature 
extraction. Third, various aggregation algorithms are applied to the filtered images to diagnose which 
pixels belong to the same phenomenon. The results of the second two stages are assessed manually.  

 
Table 1. Description of the case study image dataset used in this study. Column 1 includes 
the date/time information. Column 2 gives the general geographic location. Column 3 gives 
a description of any mesoscale features in the image that would be expected to be captured 
by the filtering. These features include meteorological phenomena as well as image 
artifacts that might impact the results. “Synoptic Scale Front” is included in this list 
because the sharp cross-front discontinuity is a major source of mesoscale near-surface 
wind speed variability. 

Image Date/Time Location Mesoscale Meteorological Phenomena 

2006, Sep. 01, 0426 UTC Aleutians Gravity Waves, Island Wakes 
2006, Dec. 12, 1655 UTC Aleutians Convection Cells, Island Wakes 
2007, Jan. 29, 0451 UTC Aleutians Island Wakes, Convection Cells 
2007, Feb. 01, 0323 UTC Gulf of Alaska Image Artifact 
2007, Feb. 05, 0446 UTC Aleutians Synoptic Scale Front, Gravity Waves, Island Wakes 
2007, Feb. 25, 1527 UTC Gulf of Alaska Gap Flows, Image Artifact 
2007, Feb. 26, 1819 UTC Bering Sea Synoptic Scale Front 
2007, Apr. 29, 0426 UTC Aleutians Synoptic Scale Front, Gravity Waves, Island Wakes 
2007, Sep. 20, 0425 UTC Aleutians Gravity Waves, Island Wakes 
2007, Oct. 25, 0546 UTC Bering Sea Synoptic Scale Front and Cyclone 
2007, Nov. 21, 0235 UTC Gulf of Alaska No Significant Features (Control Case) 
2007, Dec. 07, 0310 UTC Gulf of Alaska No Significant Features (Control Case) 
2007, Dec. 08, 0240 UTC Gulf of Alaska No Significant Features (Control Case) 
2007, Dec. 09, 0533 UTC Bering Sea Synoptic Scale Front, Convection Cells 
2007, Dec. 10, 0322 UTC Gulf of Alaska No Significant Features (Control Case) 
2007, Dec. 11, 0252 UTC Gulf of Alaska No Significant Features (Control Case) 
2007, Dec. 12, 0405 UTC Aleutians Synoptic Scale Front, Gravity Waves, Island Wakes 
2007, Dec. 13, 0335 UTC Gulf of Alaska Stable Stratification Wind Speed Variability 
2007, Dec. 18, 0250 UTC Gulf of Alaska Mesoscale Barrier Jet 
2007, Dec. 21, 0301 UTC Gulf of Alaska Synoptic Scale Front, Gravity Waves 
2007, Dec. 24, 0456 UTC Bering Sea Mesoscale Front 
2007, Dec. 26, 0538 UTC Bering Sea Convection Cells 
2007, Dec. 27, 0327 UTC Gulf of Alaska Synoptic Scale Front, Gravity Waves 
2007, Dec. 27, 0507 UTC Aleutians Stable Stratification Wind Speed Variability, Island 

Wakes, Image Artifacts 
2007, Dec. 28, 0258 UTC Gulf of Alaska Synoptic Scale Front, Gravity Waves, Image Artifacts
2007, Dec. 28, 1824 UTC Bering Sea Convection Cells, Image Artifacts 
2007, Dec. 29, 0550 UTC Bering Sea Convection Cells, Stable Stratification Wind Speed 

Variability 
2007, Dec. 30, 0340 UTC Gulf of Alaska Island Wakes, Gap Flows 
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Finally, various artificial intelligence algorithms are described which could be applied in future 
studies to automatically determine which mesoscale atmospheric phenomenon is associated with each 
group of pixels in the SDWS image. Thus, only the first three stages are tested here due to the limited 
number of cases. All three stages were performed by a single Matlab program, written to exploit the 
modularity of the Matlab image processing, statistics, and mapping toolboxes 
(http://www.mathworks.com/). 
 
3.1 Image Cleaning 

 
The primary contaminant of SDWS images is NRCS from land. While it is possible to distinguish 

land from sea by statistical analysis of the SAR images, it is easier to use one of the readily available 
geographic datasets to mask out the land areas within the image. This masking is done in two stages, 
first to set the wind speed in any potentially land-contaminated pixels to a value of least regret, zero, 
and then to mask out the broader area which those zero values could impact through the two-
dimensional feature extraction filters. For filters with a strictly finite radius of influence, the first stage 
is not necessary. It is included here to allow for filters with weak tails extending beyond their nominal 
radius of influence, although none such are used in this research. The first land masking stage takes 
place before feature extraction while the second land masking stage takes place after feature extraction. 

For this research, the United States Geologic Survey (USGS) 30 minute gtopo30 digital elevation 
model (DEM) data were used. These data were first downloaded from the USGS web site 
(http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html) and then read into the Matlab analysis 
program and interpolated onto the same geospatial grid as the SDWS images using the mapping 
toolkit’s ltln2val function. Because pixels that contain even some land are contaminated for the 
purposes of this analysis, the land mask is extended two pixels beyond those initially marked as land. 
This extension is done using the mapping toolkit’s bwdist distance transform function with a 
chessboard distance metric, 

1 2 1 2max( , )Dist x x y y= − − , (1) 
where x1 and y1 are the coordinates of one pixel and x2 and y2 those of the other. 

The second stage of land masking is identical to the first except that it is applied to the filtered 
SDWS images and uses a buffer that is two pixels greater than the filters’ radius of influence, the extra 
pixels again being included to allow for the spread in land contamination to pixels adjacent to those 
marked as land in the USGS dataset. 
 
3.2 Feature Extraction 

 
Image filtering for feature extraction is intended not to isolate a single characteristic that 

unambiguously identifies a particular atmospheric phenomenon, but rather to provide a set of metrics 
that will together provide enough information to distinguish between all of the phenomena on an 
image. The success of this process depends both on the degree to which the various phenomena exhibit 
different spatial patterns of near-surface wind speed variability and the ability of the filters to capture 
this set of distinctions. Because each of the atmospheric phenomena observed in the Gulf of Alaska 
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SDWS images can be distinguished manually by a skilled meteorological analyst, the first criterion is 
met. Thus, the key issue is selection of an appropriate set of filters. 

The filters tested in the present research are all implemented in the Matlab image processing 
toolbox. Each is a two-dimensional finite impulse response (FIR) filter. They include popular 
examples of each of the most common filter categories used in digital image analysis. The Matlab 
functions implementing each function are listed in Table 2. 

 
Table 2. Feature extraction filters, the Matlab functions in which they are implemented, 
and the toolbox which contains them. 

Filter Function Toolbox 
Gaussian filter2, fspecial Core, Image Processing 
Local Entropy entropyfilt Image Processing 
Local Standard Deviation stdfilt Image Processing 
Local Median medfilt2 Image Processing 
Sobel Edge Detection edge Image Processing 

 
For high and low-pass filtering, a Gaussian filter is used with a standard deviation of 10 pixels (3 

km) and a radius of influence of 21 pixels (9.45 km). The low-pass Gaussian filter maps the mean 
near-surface wind speed while the high-pass Gaussian filter maps its mesoscale variability which is the 
target of this research. No one choice of filter radius is optimal for all mesoscale meteorological 
phenomena. Indeed, the choice used here appears to be too small for several of the phenomena found 
in the Gulf of Alaska (see the Results section). 

A high-pass local entropy filter [37] is applied to quantify near-surface wind speed variability over 
a broader range of scales. The entropy value reported at each pixel is calculated over a rectangular 
neighborhood of 41 by 41 pixels, 18.45 by 18.45 km. Thus, it has the same influence radius as the 
Gaussian filter. A high-pass local standard deviation filter over the same neighborhood is applied to 
obtain a different measure of this same information. A local median filter provides a more scale-
restricted measure of near-surface wind speed variability, focused on scales smaller than the radius of 
influence. It is applied here as a high-pass filter over the same neighborhood used with the local 
entropy filter.  

Because none of the filters above distinguishes between edges and other morphologies of near-
surface wind speed variation, an edge detection filter is also applied. The edge detection filter is 
applied with the Sobel [38] approximation to the near-surface wind speed gradient. The available 
alternative approximations (Pewitt, Roberts, Zero-Cross, Log, and Canny) were contemplated, but 
Sobel was found to yield the most nearly continuous string of flagged edge pixels for atmospheric 
wind speed boundaries. 

The high-pass and edge detection filters provide a certain degree of redundancy, but also measure 
different aspects of the mesoscale near-surface wind speed variability as described above. The 
correlation matrix for the filters is shown in Table 3. The correlations are computed separately for each 
of the 28 test images, with the mean and standard deviations of these values being presented in the 
table. The correlation matrix indicates that none of these measures is completely redundant. The 
outputs of the entropy and median filters are highly correlated while those of the Gaussian high-pass 
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filter and the Sobel edge detection filters are virtually independent of the other filter outputs. The 
correlations between the local standard deviation filter output and those of the local entropy and 
median filters are all modest but non-negligible. 
The information extracted from the SDWS images by these filters could probably be increased by 
more extensive tuning of the filter radii. In particular, the use of band-pass filters to eliminate both the 
synoptic scale flow and the small scale noise would probably improve the feature extraction for 
mesoscale near-surface wind speed variability. 

 
Table 3. Correlation matrix for the output of the edge detection and high-pass filters used 
in feature extraction. Each cell contains the mean and standard deviation over the set of 28 
images. 

N = 28 
Images 

High-pass 
Gaussian 

Local 
Entropy 

Local 
Standard 
Deviation 

Local 
Median 

Sobel Edge 
Detection 

High-pass 
Gaussian 

1±0 0.01±0.01 0.24±0.14 0.01±0.01 0.02±0.03 

Local 
Entropy 

 1±0 0.40±0.15 0.90±0.15 0.18±0.08 

Local 
Standard 
Deviation 

  1±0 0.39±0.13 0.08±0.05 

Local 
Median 

   1±0 0.15±0.07 

Sobel Edge  
Detection 

    1±0 

 
3.3 Pixel Aggregation 

 
Two different approaches to pixel aggregation are tested: Principle Component Analysis (PCA, [39]) 

and Cluster Analysis [40]. Each is applied to the results of the feature extraction filters described 
above.  PCA is tested because it is a traditional approach for reducing the degrees of freedom in a set 
of correlated variables. For unrotated or orthogonally rotated PCA, it also eliminates colinearity 
between the variables. PCA has two disadvantages for the current application. First, as with the 
clustering method described next, the rotated versions require that one specify the number of patterns 
to be searched for, in this case the number of components to be retained and rotated. Second, the 
rotation algorithms, whether orthogonal or oblique, are designed to maximize simple structure in the 
components, i.e. minimize the number of filter outputs that contribute significantly to each component. 
In this application it would be preferable to optimize instead for the spatial coherence of the resulting 
component scores, i.e. the areas of the image designated as belonging to a distinct mesoscale 
atmospheric phenomenon.  

The output of the five filters described in Table 3 is used as input to the PCA. Experimentation 
suggests that there are usually two to four phenomena present in an image with operationally 
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significant mesoscale near-surface wind speed variability. Therefore, four of the five resulting 
components are rotated. The Matlab functions used in this analysis, as well as the cluster analysis 
described below, are shown in Table 4. Varimax (orthogonal) and Promax (oblique) rotations are 
applied (Richman 1986). Examination of the principle component (PC) score maps (see the Results 
section) reveals that while each component quantifies a different aspect the mesoscale variability of 
the near-surface wind speed, multiple phenomena contribute to each component, even when rotated. 

 
Table 4. Feature aggregation algorithms, the Matlab functions in which they are 
implemented, and the toolbox which contains them. 

Algorithm Function Toolbox 
Principle Component Analysis eig Core 
Component Rotation rotatefactors Statistics 
K-means Cluster Analysis kmeans Statistics 
Despeckling medfilt2 Image Processing 

 
Clustering, in this case via the k-means algorithm, provides a potential solution to this aggregation 

task as it optimizes pixel groupings so that the pixels within each group closely resemble each other 
across the full set of filter outputs. Four clusters are sought, in keeping with the rotation of four PCs 
above. As with the PCA, the input to the k-means algorithm is the output of the five filters described in 
Table 3. A low-pass median filter with an influence area of 5 by 5 pixels is applied to the resulting 
cluster map to improve spatial coherence of the individual clusters. 
 
3.4 Phenomena Identification 

 
Once the individual images have been broken up into discrete regions with different spatial patterns 

of mesoscale near-surface wind speed variability, it is useful to determine which atmospheric 
phenomenon was responsible for each region. If the pattern recognition methods above are fully 
successful, each discrete region will be associated with a single atmospheric phenomenon, at least in 
the situation where no two phenomena overlap in space. Subjective analysis of several thousand 
SDWS images by the authors indicates that this is by far the most common situation, although overlap 
of island wakes and mountain waves do sometimes occur near mountainous coasts. 

There are several approaches one can take to making this link between specific phenomena and 
individual regions of a SAR image. First, the analysis methods described above could be applied to the 
image set as a whole, following which each region (i.e. PC score pattern or cluster) would be manually 
matched with the corresponding phenomena by examination of the original images. This approach 
suffers from two major drawbacks, one computational and one meteorological. On the computational 
side, it requires that the filtered forms of all of the images be retained in memory at once. For the 1200 
by 1200 pixel images used here, this is not practical. On the meteorological side, there are many 
possible atmospheric phenomena, so the analysis would need to be extended well beyond four clusters 
or PCs. 

The second alternative for phenomena identification is to develop a categorical prediction system 
taking as input the statistics of a region in a particular image and returning as output the phenomenon 
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responsible. Given enough training cases, a neural network [41] might provide the most robust results, 
but a simple Classification and Regression Tree (CART, [42]) is less likely to be over fit. This 
approach could be applied using either PC loadings or cluster centroids as input to the classification 
tree. Neither approach is tried here because the limited sample of 28 images provides too small a 
sample of each phenomenon. The third alternative, to manually identify the predominant phenomenon 
in each region can be used alone or as a check on this automated method. While manual phenomena 
identification is possible using only the raw SDWS images, it is easier following feature extraction by 
filtering, and easier still following pixel aggregation. As mentioned above, manual identification is 
tested at both the feature extraction and pixel aggregation stage. The results reported in the next 
section. 
 
4. Results 

 
Examination of the filtered SDWS images, PC score maps, and cluster maps was conducted for the 

28 case study dataset designed to sample the more common mesoscale meteorological phenomena of 
the Gulf of Alaska (see Table 1). The overall results will be discussed via Table 5, which shows the 
fraction of cases of each phenomenon that were successfully highlighted by the various filters, the 
PCA, and the Cluster Analysis (the Sobel edge detection filter is not listed within Table 5 because of 
its relatively poor performance). These assessments were made manually by the authors who are 
seasoned SDWS analysts. At least half of the cases had multiple phenomena, as noted in Table 1, but 
for less than half of these multi-phenomena cases were any of the methods able to automatically 
distinguish between phenomena.  

 
Table 5. Fraction of the occurrences within the 28 case study images for which each 
mesoscale phenomena was enhanced relative to the background flow. Number of cases is 
in parentheses. Each row corresponds to one of the analysis procedures and each column to 
one of the more abundant atmospheric phenomena represented in the set of case study 
images. 

 Gravity Wave 
(8) 

Convection Cells 
(6) 

Synoptic Scale 
Front (9) 

Island Wakes 
and Gap Flow (11) 

Gaussian 1.00 0.50 0.67 0.73 

Local Entropy 0.00 0.17 1.00 0.44 

Local Standard 
Deviation 

0.00 0.17 1.00 
 

0.44 

Local Median 0.25 0.33 0.56 0.27 

PCA 0.50 0.50 0.78 0.36 

Cluster 0.50 0.17 0.44 0.36 

 
Performance characteristics of the individual methods are documented with the case study from 

0533 UTC on December 9, 2007 and with particularly illustrative results from other cases. All images 
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in this section are shown with north to the top of the page. Artifacts at the edges of the filtered images 
have not been removed. Figure 3 shows the SDWS image of the case study, with a front extending 
across the image at the northern edge of a band of large near-surface wind speed. Another, lesser front 
extends diagonally towards the northeast corner of the image. Between the two is an area of small 
near-surface wind speed, probably due to a seclusion of warm air, with the gust and lull patterns of 
convection cells (in this case, open cell convection [43]).  

 
Figure 3. SDWS image for the case study, 0533 UTC on December 9, 2007. Brighter 
shades indicate higher wind speeds. The faint diagonal discontinuities parallel to the lateral 
borders of the image are artifacts resulting from satellite beam seams. 

 
 

These features become much more apparent in the Gaussian low-pass filtered image (see Figure 4) 
because the microscale atmospheric and oceanographic variance (i.e. small-scale noise) have been 
reduced. The Gaussian high-pass filter also highlights these phenomena (see Figure 5), but does so by 
reducing the synoptic scale variance. The sharp gradients along the fronts and open cell squalls are 
depicted as narrow bands of green and adjacent dark blue within Figures 4 and 5.  

Overall, for the 28-case sample, the Gaussian filters do the best job of highlighting the mesoscale 
phenomena, although the filter radius setting used here often splits the mesoscale near-surface wind 
speed variability between the high-pass and low-pass components. The low-pass images typically 
show the synoptic scale flow and a small-scale-noise-free view of the mesoscale phenomena. In 
contrast, the high-pass images show the mesoscale phenomena superimposed on a small-scale noise 
background. This suggests that the mesoscale phenomena would be captured more successfully with a 
band-pass filter having one cut-off between the synoptic and mesoscale (e.g. at around 50 km) and  

another between the mesoscale and microscale (e.g. at around 2 km). Even without this addition, the 
Gaussian filter was the most successful at highlighting gravity waves, convection cells, island wakes, 
and gap flow (see Table 4). 
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Figure 4. Low-pass Gaussian filtered SDWS image for the case study, 0533 UTC on 
December 9, 2007. Brighter shades indicate larger wind speeds with green being the largest. 

 
 

Figure 5. High-pass Gaussian filtered SDWS image for the case study, 0533 UTC on 
December 9, 2007. Brighter shades indicate larger wind speeds with green being the largest. 

 
 

The local entropy and local standard deviation filters generally do a better job of highlighting the 
fronts than do the Gaussian filters, at least for the filter radius tested here (see Table 5). Figure 6 shows 
the local entropy filter output for the case study while Figure 7 shows the local standard deviation filter 
output. The fronts appear as narrow, sometimes meandering bands in these two filter outputs. Other 
features are less apparent, although the convection cells results in a characteristic pattern of 
rectangular splotches in the local standard deviation filter output. Interpretation of this convective 
signature is not as intuitive as that for the front, but it does appear in other open cell convective case as 
well. 
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Figure 6. Local entropy filtered SDWS image for the case study, 0533 UTC on December 
9, 2007. The two meandering darker red bands indicate the fronts. The seclusion appears as 
a green area in between. 

 

Figure 7. Local standard deviation filtered SDWS image for the case study, 0533 UTC on 
December 9, 2007. The two meandering bright blue to red bands indicate the fronts. The 
seclusion appears as dark blue speckled with the cyan rectangles corresponding to the 
mesoscale convective cells. 

 
 
The high-pass output of the local median filter typically captures only small-scale noise, although in 

the case study (Figure 8) it also highlights the fronts to some extent. As alluded to above, the Sobel 
edge detection filter (not shown) is even less successful, typically highlighting only the small scale 
noise in a SDWS image. The problem is that the edge detection filter highlights the very smallest 
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(pixel-to-pixel) scales rather than separating these small-scales from those at which mesoscale near-
surface wind speed variations occur. It may, however, help highlight image artifacts (e.g., beam seams) 
that could otherwise be mistaken for mesoscale near-surface wind speed variability. 

 
Figure 8. High-pass output of local median filter applied to the SDWS image for the case 
study, 0533 UTC on December 9, 2007. The two meandering bands of brighter blue 
speckles are the fronts. 

 
 
For SDWS images with multiple mesoscale phenomena, the rotated PC score maps derived from the 

filter outputs generally provide better discrimination between phenomena than do the individual filters. 
The mesoscale phenomena usually appear on the first two rotated PCs while the third and fourth 
closely resemble the high-pass median and Sobel edge detection filter output. The first rotated PC 
frequently highlights the larger mesoscale phenomenon (e.g., the wakes of large islands) while the 
second rotated PC generally highlights the smaller mesoscale phenomena (e.g., gravity waves and the 
wakes of small islands). Thus, if only two mesoscale phenomena are present, one large and one small, 
rotated PCA serves to discriminate between the phenomena even when they are not separated in the 
raw filter outputs. If two phenomena occur on similar scales, however, they typically appear on the 
same PC score map. For the case study (see Figure 9), the fronts and the largest convection cells 
appear on the first PC score map while the second captures the smaller convection cells and the sharp 
edge of the most intense front. PC rotation is crucial to produce these scale separations, but both 
Promax and Varimax rotations produced similar results. Because the mesoscale near-surface wind 
patterns appear on only the first two rotated PCs and because the last two PCs closely resemble the 
median and edge filter outputs, a potentially useful enhancement of the PCA would be to exclude these 
two filter outputs from the PCA and to rotate only two of the resulting PCs. 
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Figure 9. Each subimage is a Varimax rotated score map for the case study, 0533 UTC on 
December 9, 2007. The first shows the fronts as blue or yellow bands, the second shows 
the sharp edge of the strongest front as parallel blue and red lines. The third and fourth 
subimages show noise. The axes are labeled in pixel numbers. 

 
 
The cluster analysis, whether raw or despeckled, yields results that are similar to those of the PCA 

but generally not as successful. While the cluster analysis does not work well for the case study of 
0533 UTC on December 9, 2007, it does for the case study of 0426 UTC on September 1, 2006. The 
despeckled cluster membership map for that SDWS image is shown in Figure 10 and the 
corresponding SDWS image in Figure 11. The yellow cluster highlights the masked-out land region 
(i.e. the Alaskan Peninsula and Aleutian Islands) while the red cluster captures the background near- 
surface wind speed and the cyan cluster the large near-surface wind speed areas corresponding to 
gravity wave troughs. 
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Figure 10. Despeckled cluster membership image for the case study, 0426 UTC on 
September 1, 2006. Each color represents points belonging to a common cluster. The 
fourth cluster was eliminated by the despeckling operation. 

 

Figure 11. SDWS image for the case study, 0426 UTC on September 1, 2006. Brighter 
blue represents larger near-surface wind speed. Green represents land and 
yellow/orange/red represent mountains. 

 
 
For the control (null) cases (No Significant Features within Table 1), performance of all filters is as 

one would expect: small-scale noise in the high-pass filter outputs and smooth synoptic scale near-
surface wind speed patterns in the low-pass filter outputs. Thus, the filters are not synthesizing 
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misleading patterns from the small-scale noise. As a result, the PCA yields equivalent results with the 
first score map showing the synoptic scale near-surface wind speed pattern and the other three showing 
small-scale noise. The cluster analysis also produces equivalent results with each cluster representing a 
particular near-surface wind speed band. Thus, the method defaults to showing the synoptic scale near-
surface wind speed field if only that is present in the input SDWS image. 
 
5. Summary and Conclusions 

 
The Johns Hopkins University Applied Physics Laboratory, in conjunction with the National Ocean 

and Atmospheric Administration and the Alaska Satellite Facility, has produced an extensive archive 
of SAR-derived wind speed (SDWS) images (10 m above sea level). These images are available on- 
line at http://fermi.jhuapl.edu/sar/stormwatch/web_wind/. The variability of the near-surface wind 
speed observed within these images is often dramatic (e.g., change from breeze to gale/storm force 
over a distance of 1 to 10 km). Moreover, no other sensing system (remote or in situ) provides the 
ability to detect such variability over wide swaths of marine areas. Thus, SDWS images have the 
potential to be of great value to marine interests sensitive to such variability. The present research 
addresses this potential by taking the first steps toward automated detection of operationally-
significant SDWS variability. Namely, the present research tests feature extraction (via digital filtering) 
and pixel aggregation (via PCA and cluster analysis) techniques focused on mesoscale near-surface 
wind speed variability. The meteorological features examined include gravity waves, convection cells, 
atmospheric fronts, island wakes, and gap flows. 

Twenty eight SDWS case study images possessing varying degrees of near-surface wind speed 
variability were selected from the APL archive for use in exploring the performance of these 
techniques and developing recommendations for future research. After applying a land mask (when 
necessary) to each image, the SDWS images were subjected to Gaussian high- and low-pass, and high 
pass local entropy, local standard deviation, local median, and Sobel edge detection filters. The filtered 
images were then assessed manually. The Gaussian filters proved most beneficial in highlighting the 
mesoscale meteorological phenomena outlined above with the exception of atmospheric fronts, for 
which the local entropy and local standard deviation filters performed best. The local median and 
Sobel edge detection filters performed the worst for the task at hand, highlight small-scale near-surface 
wind speed variability rather than that of the mesoscale. Analysis of null cases shows that the filters do 
not produce misleading patterns from the small-scale noise.  

The filtered output for each case was then used as input for the PCA and cluster analysis. 
Assessment was again manually. Promax- and Varimax-rotated PCA generally performed better than 
raw or despeckled cluster analysis for the cases studied. And, rotated PC 1 and PC 2 were the 
components that best highlighted the mesoscale phenomena. PC 1 tended to depict the larger 
mesoscale features (e.g., large island wakes) while PC 2 depicted the smaller scale features (gravity 
waves). PCs 3 and 4 tended to highlight microscale variability. For the null cases, PC 1 shows the 
synoptic scale near-surface wind speed pattern and the other three PCs show small-scale noise. Cluster 
analysis behaves similarly. 

Recommendations for future studies include conducting PCA on only the output from the filters that 
performed best (Gaussian, local entropy, and local standard deviation). Moreover, because PC 1 and 



Sensors 2008, 8              
 

 

7032

PC 2 routinely provided the best results, a two-component rotation (vice four) should be tested. For 
automated phenomenon detection, future studies should develop a categorical prediction system using 
the filter and PCA results as input. Given the large archive of SDWS images available at APL, a neural 
network may prove to be the best approach. These recommendations should undergo testing on this or 
a similarly large set of images. 
 
Acknowledgements 

 
This work was supported by the Office of Naval Research through grants N00014-06-1-0046, 

N00014-07-1-0934, and N0014-07-1-0577. 
 
References and Notes 
 
1. Mourad, P.D. Footprints of atmospheric phenomena in synthetic aperture radar images of the 

ocean surface - a review. In Air-Sea Exchange: Physics, Chemistry, and Dynamics; Geernaert, 
G.L., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 269-290. 

2. Sikora, T.D.; Young, G.S; Beal, R.C.; Monaldo, F.M.; Vachon, P.W. Applications of synthetic 
aperture radar in marine meteorology. In Atmosphere Ocean Interactions, Perrie, W. Ed.; WIT 
Press: Southampton, UK, 2006; 2, pp. 83-105. 

3. McCandless, S. W.; Jackson, C.R. Principles of synthetic aperture radar. In SAR Marine User’s 
Manual; Jackson, C. R., Apel, J.R., Eds.; National Oceanic and Atmospheric Administration: 
Washington, District of Columbia, USA, 2004; pp. 1-23. 

4. Hesbach, H.; Stoffelen, A.; de Haan, S. An improved C-band scatterometer ocean geophysical 
model function: CMOD5. J. Geophys. Res. 2007, 112, C03006, doi:10.1029/2006JC003743.  

5. Stoffelen, A.; Anderson, D. Scatterometer data interpretation: Estimation and validation of the 
transfer function CMOD4. J. Geophys. Res. 1997, 102, 5767-5780. 

6. Holt, B. SAR imaging of the ocean surface. In SAR Marine User’s Manual; Jackson, C.R., Apel, 
J.R., Eds.; National Oceanic and Atmospheric Administration: Washington, District of Columbia, 
USA, 2004; pp. 25-79. 

7. Atlas, D. Origin of storm footprints on the sea seen by synthetic aperture radar. Science 1994, 266, 
1364-1366. 

8. Sikora, T.D.; Young, G.S.; Beal, R.C.; Edson, J.B. Use of spaceborne synthetic aperture radar 
imagery of the sea surface in detecting the presence and structure of the convective marine 
atmospheric boundary layer. Mon. Weather Rev. 1995, 123, 3623-3632. 

9. Zecchetto, S.; Trivero, P.; Fiscella, B.; Pavese, P. Wind stress structure in the unstable marine 
surface layer detected by SAR. Bound-Lay. Meteorol. 1998, 86, 1–28.  

10. Babin, S.M.; Sikora, T.D.; Winstead, N.S. A case study of satellite synthetic aperture radar 
signatures of spatially evolving atmospheric convection over the western Atlantic Ocean. Bound-
Lay. Meteorol. 2003, 106, 527-546. 

11. Vachon, P.W.; Johannessen, J.A.; Browne, D.P. ERS-1 SAR signatures of atmospheric gravity 
waves. IEEE T. Geosci. Remote S. 1995, 33, 1014-1025. 



Sensors 2008, 8              
 

 

7033

12. Winstead, N.S.; Sikora, T.D.; Thompson, D.R.; Mourad, P.D. Direct influence of gravity waves 
on surface-layer stress during a cold air outbreak, as shown by synthetic aperture radar. Mon. 
Weather Rev. 2002, 130, 2764-2776. 

13. Alpers, W.; Brümmer, B. Atmospheric boundary layer rolls observed by the synthetic aperture 
radar aboard the ERS-1 satellite. J. Geophys. Res. 1994, 99, 12,613-12,621. 

14. Mourad, P.D.; Walter, B.A. Analysis of mesoscale linear features observed within the arctic 
atmospheric boundary layer. Mon. Weather Rev. 1996, 124, 1924-1940. 

15. Levy, G. Boundary layer roll statistics from SAR. Geophys. Res. Lett. 2001, 28, 1993-1995. 
16. Chunchuzov, I.; Vachon, P.W.; Ramsay, B. Detection and characterization of mesoscale cyclones 

in RADARSAT synthetic aperture radar images of the Labrador Sea. Can. J. Remote Sens. 2000, 
26, 213-230.  

17. Sikora, T.D.; Friedman, K.S.; Pichel, W.G.; Clemente-Colon, P. Synthetic aperture radar as a tool 
for investigating polar mesoscale cyclones. Weather Forecast. 2000, 15, 745-758. 

18. Friedman, K.S.; Sikora, T.D.; Pichel, W.G.; Clemente-Colon, P.; Hufford, G. Using spaceborne 
synthetic aperture radar to improve marine surface analyses. Weather Forecast. 2001, 16, 270-276.  

19. Katsaros, K.B.; Vachon, P.W.; Liu, W.T.; Black, P.G. Microwave remote sensing of tropical 
cyclones from space. J. Oceanogr. 2002, 58, 137-151. 

20. Du, Y.; Vachon, P.W. Characterization of hurricane eyes in RADARSAT-1 images with wavelet 
analysis. Can. J. Remote Sens. 2003, 29, 491-498. 

21. Ivanov, A.Y.; Alpers, W.; Litovchenko, K.T.; He, M.-X.; Feng, Q.; Fang, M.; Yan, X.-H. 
Atmospheric front over the East China Sea studied by multi-sensor satellite and in-situ data. J. 
Geophys. Res. 2004, 109, C12001 doi:10.1029/2004JC002432. 

22. Young, G.S.; Sikora, T.D.; Winstead, N.S. Use of synthetic aperture radar in fine-scale surface 
analysis of synoptic-scale fronts at sea. Weather Forecast. 2005, 20, 311-327. 

23. Nilsson, C.S.; Tildesly, P.C. Imaging of oceanic features by ERS 1 synthetic aperture radar. J. 
Geophys. Res. 1995, 100, 953-967. 

24. Monaldo, F.M.; Beal, R. SAR imaging of the ocean surface. In SAR Marine User’s Manual; 
Jackson, C.R., Apel, J.R., Eds.; National Oceanic and Atmospheric Administration: Washington, 
District of Columbia, USA, 2004; pp. 305-320. 

25. Monaldo, F.M.; Coauthors. SAR measurement of ocean surface winds: An overview. Eur. Space 
Agen. SP-565 2004, 15–32. 

26. Monaldo, F.M.; Thompson, D.R.; Beal, R.C.; Pichel, W.G.; Clemente-Colón, P. Comparison of 
SAR-derived wind speed with model predictions and ocean buoy measurements. IEEE T. Geosci. 
Remote S. 2001, 39, 2587-2600. 

27. Monaldo, F.M.; Thompson, D.R.; Pichel, W.G.; Clemente-Colón, P. A systematic comparison of 
QuikSCAT and SAR ocean surface wind speeds. IEEE T. Geosci. Remote S. 2004, 42, 283-291. 

28. Horstmann J.; Koch, W. Comparison of SAR wind field retrieval algorithms to a numerical model 
utilizing ENVISAT ASAR data. IEEE J. Oceanic Eng. 2005, 30, 508-515. 

29. Fisher, C.M.; Young, G.S.; Winstead, N.S.; Haqq-Misra, J.D. Comparison of synthetic aperture 
radar-derived wind speeds with buoy wind speeds along the mountainous Alaskan coast. J. Appl. 
Meteorol. Clim. 2008, 47, 1365 – 1376. 



Sensors 2008, 8              
 

 

7034

30. Young, G.S.; Winstead, N.S. Meteorological phenomena in high resolution SAR wind imagery. In 
High Resolution Wind Monitoring with Wide Swath SAR: A User’s Guide; Beal, R. C., Ed.; 
National Oceanic and Atmospheric Administration: Washington, District of Columbia, United 
States of America, 2005; pp. 13-31. 

31. Sikora, T.D.; Young, G.S.; Winstead, N.S. A novel approach to marine wind speed assessment 
using synthetic aperture radar. Weather Forecast. 2006, 21, 109-115. 

32. Loescher, K.A.; Young, G.S.; Colle, B.A.; Winstead, N.S. Climatology of barrier jets along the 
Alaskan coast. Part 1: Spatial and temporal distributions. Mon. Weather Rev. 2006, 134, 437-453. 

33. Pan, F.; Smith, R.B. Gap winds and wakes: SAR observations and numerical simulations. J. 
Atmos. Sci. 1999, 56, 905-923. 

34. Orlanski, I. A rational subdivision of scales for atmospheric processes. B. Am. Meteorol. Soc. 
1975, 56, 527-530.  

35. Monaldo, F.M. APL/NOAA SAR wind retrieval system software documentation version 5.0. 
http://fermi.jhuapl.edu/sar/stormwatch/answrs_v5.pdf 2007.  

36. Hall, D.L.; McMullen, S.A.H. Mathematical Techniques in Multisensor Data Fusion; Artech 
House: Boston, Massachusetts, USA, 2004; pp. 251-295. 

37. Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MATLAB; Prentice 
Hall: Upper Saddle River, New Jersey, USA, 2003; Chapter 11. 

38. Pratt, W.K. Digital Imaging Processing, 4nd Ed.; Wiley InterScience: New York, USA, 2007; pp. 
465-534. 

39. Richman, M.B. Rotation of principle components. J. Climatol. 1986, 6, 293-333. 
40. Hartigan, J.A.; Wong, M.A. Algorithm AS 136—A K-means clustering algorithm. App. Stat. 1979, 

28, 100–108. 
41. Reed, R.D.; Marks II, R.J. Neural Smithing: Supervised Learning in Feedforward Artificial 

Neural Networks; MIT Press: Cambridge, Massachusetts, USA, 1999; pp. 7-30. 
42. Witten, I.H.; Frank, E.; Data Mining: Practical Machine Learning Tools and Techniques, 2nd Ed.; 

Morgan Kaufmann: California, USA, 2005; pp. 189-207. 
43. Young, G.S.; Sikora, T.D.; Fisher, C.M. Use of MODIS and synthetic aperture radar wind speed 

imagery to describe the morphology of open cell convection. Can. J. Remote Sens. 2007, 33, 357-
367. 

 
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 
This article is an open-access article distributed under the terms and conditions of the Creative 
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 
 


