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Abstract: Ten cities with different population and urban sizes located in the Pearl River 

Delta, Guangdong Province, P.R. China were selected to study the relationships between 

the spatial extent of surface urban heat islands (SUHI) and five urban characteristic factors 

such as urban size, development area, water proportion, mean NDVI (Normalized 

Vegetation Index) and population density, etc. The spatial extent of SUHI was quantified 
by using the hot island area (HIA). All the cities are almost at the same latitude, showing 

similar climate and solar radiation, the influence of which could thus be eliminated during 

our computation and comparative study. The land surface temperatures (LST) were 

retrieved from the data of Landsat 7 Enhanced Thematic Mapper Plus (ETM+) band 6 

using a mono-window algorithm. A variance-segmenting method was proposed to compute 

HIA for each city from the retrieved LST. Factors like urban size, development area and 

water proportion were extracted directly from the classification images of the same ETM+ 

data and the population density factor is from the official census. Correlation and 

regression analyses were performed to study the relationships between the HIA and the 

related factors, and the results show that HIA is highly correlated to urban size (r=0.95), 

population density (r=0.97) and development area (r=0.83) in this area. It was also proved 

that a weak negative correlation existed between HIA and both mean NDVI and water 

proportion for each city. Linear functions between HIA and its related factors were 
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established, respectively. The HIA can reflect the spatial extent and magnitude of the 

surface urban heat island effect, and can be used as reference in the urban planning. 

 

Keywords: Enhanced Thematic Mapper plus (ETM+); Surface urban heat island (SUHI); 

Land surface temperature (LST); Variance segmenting; Thermal infrared image; Hot island 

area. 

 

 

1. Introduction 

 

Land surface temperature (LST) has a direct impact on air temperature and it is also one of the key 

parameters in the physics of land-surface processes on regional and global scales. As a phenomenon 

modifying regional microclimate, urban heat island (UHI) effect has been studied for a long time. UHI 

can be described for different surfaces based on different methods and air temperature is widely used 

to measuring UHI. Two types of UHI are generally classified such as canopy layer (UCL) heat island 

and the boundary layer (UBL) heat island [1]. Voogt and Oke gave a detailed description about the 

UHIs for different surfaces and pointed out that thermal remote sensors could be used to observe the 

surface urban heat island (SUHI) [2]. 

Traditionally, temperature data for UHI study are mainly collected from weather stations or 

gathered along traverses with thermometers mounted on automobiles, which proves to be difficult to 

acquire the detailed spatial distribution of the temperature due to the limited locations for temperature 

measurement. Comparatively, thermal remote sensing technology can acquire LST distribution over 

the entire urban area, which has been used to study SUHI widely. Streutker studied the growth of 

SUHI of Houston in a 12-year’s interval using the infrared channels of the Advanced Very High 

Resolution Radiometer (AVHRR) [3]. Weng performed a fractal analysis of SUHI of the city of 

Guangzhou by using Landsat TM data for the years of 1989, 1996 and 1997 [4]. Some other 

researchers investigated the impact of SUHI and found many related factors that affected the SUHI, 

such as the vegetation abundance, soil moisture and roughness properties of the land surface [5-7]. 

Weng investigated the impact of urban expansion on surface temperature in the Pearl River Delta, 

China and turned out several constructive suggestions concerning management of the adverse effects 

of urban development [8]. Lo, Quattrochi and Luvall used high-resolution thermal infrared remote 

sensing and GIS to assess the urban heat island effect [6]. It is clear that the UHI effect is different at 

different seasons or even at different time of a day. Klysik and Fortuniak found that the greatest 

differences of UHI occurred during summer nights when the sky was clear [9]. In the study of [10], the 

maximum temperature differences were measured in the early noon hours while the minimal 

temperatures were observed just before sunrise. In some studies, much attention has been paid to the 

relationship between land surface temperature and vegetation abundance [11-13]. Oke measured the 

urban heat islands based on air temperature data for ten settlements in the St. Lawrence Lowlands and 

demonstrated that the heat island intensity under cloudless skies was related to the inverse of the 

regional wind speed, and the logarithm of the population [14]. Streutker studied the urban-rural 

temperature differences by modeling the urban heat island as a two-dimensional Gaussian surface 

superimposed on a planar rural background using surface temperature maps derived from satellite 
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sensed data [15]. Zhang and Wang studied LST changes based on robust statistics in Pearl River area 

after calculating the urban compactness by the method proposed by Zhang and Wang [16-18]. García-

Cueto et al. used the data of air temperature and surface temperature retrieving from both NOAA’s 

AVHRR and Landsat thermal images to study the relationship between UHI and land use at different 

spatial and temporal resolutions [19]. Lougeay et al. studied the intra-urban temperature patterns and 

associated land covers on the other hand [20]. 

In the paper of [19], two associated processes that affect UHI are pointed out: the first one is the 

alteration of land cover during the urbanization, which will inevitably result in the modification of the 

surface atmospheric energy balance; the second one is the activities that take place in the cities, which 

generate waste energy that contribute to the urban heating. In this paper, we study the relationship 

between UHI and land cover factors on the other hand, and try to explore a method to compute the 

spatial extent of SUHI in ten cities, namely the hot island area (HIA), directly from ETM+ data and 

study the relationships between HIA and five urban characteristic factors, i.e., urban size, development 

area and water proportion extracted directly from the classification images derived from the same 

ETM+ data, vegetation abundance expressed by mean NDVI and population density from the official 

census. As the UHI has important implications for human comfort and health, urban air pollution, 

energy management, and urban planning, the study for the quantified relationship between SUHI and 

related factors will be a suitable approach for the city administrators to conduct the urban planning. 

It has long been known that strong correlations exist between the traditional UHI air temperature 
metric (Δ T u‐r) and urban-extent indicators such as population [1, 21]. LST however is quite 

different from meteorological station air temperatures and so, in this paper, we wish to correlate 

statistics on LST with urban extent. Thermal remote sensing image has been used to express the UHI; 

however, the high LST area cannot be regarded as a high UHI area due to the strong heterogeneities of 

the urban land. It is necessary to circle the UHI area in the image and the determination of the 

threshold is critical. The proposed method in this study can be used to extract the HIA of a single city 

as well as to compare HIA of multiple cities. And the surface temperature in this paper was used in 

different way from the traditional study, to extract HIA on the basis of robust statistical method 

beyond measuring the intensity of UHI. This is another object of this study. 

 

2. Study area 

 

Ten cities selected for this study are Guangzhou, Boluo, Dongguan, Panyu, Foshan, Gaoming, 

Huadu, Huizhou, Nanhai and Sanshui in Guangdong Province, China. They are in one scene of 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) image (Path/Row: 122/44) and situated around 

the same latitude. The whole study area (22.5- 23.5°N, 112.75-114.5°E) lies in the Pearl River Delta 

and enjoys a subtropical climate (Figure 1). The average annual temperature is between 18.7 and 23.4
℃ and the average annual rainfall reaches 1,500 to 2,000 millimeters. Guangzhou, with the total area 

of over 7000 square kilometers and the population of more than seven millions, is the largest city in 

the study area [22]. With only 270 persons per square kilometer, Boluo has the lowest population 

density, while Guangzhou has the highest population density among then cities, reaching 17282 

persons per square (Table 1). 
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The study area has experienced great changes in the past 20 years and undergone a quick 

urbanization process since 1978 when the economic reform campaign initiated [23-25].  With the 

quick progress of the economy, especially the rapid industrialization, a great amount of agriculture 

land has been converted into construction area and development sites. According to the previous study, 

more than 21,000 km2 of the cropland was lost in a single city (Dongguan) from 1988 to 1993 [24, 26-

27]. The population and urban size have grown tremendously and the UHI effect in this area has 

become more serious in the study area. The rapid urbanization drive in the Pearl River Delta resulted 

in a city group characterized by different urban sizes, different population densities and different 

vegetation abundances etc., which makes it a very typical area for studying the UHI effect and the 

relationships between spatial extent of the UHI and some urban characteristic factors such as urban 

size and vegetation abundance. Particularly, these cities are located in the same ETM+ scene and have 

very similar latitudes and climates, which can help to eliminate the uncertainties for retrieving surface 

temperature from the ETM+ data. 

 

Figure 1. Map of the Pearl River Delta, showing the ten cities selected for the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Materials and methods 

 

3.1. Image and Pre-processing 

 

One scene of Landsat 7 ETM+ image, cloud-free and dated on January 17, 2003, around 10:30 a.m. 

local time was acquired from China Remote Sensing Satellite Ground Station in Beijing (detailed 

information is available at http://www.rsgs.ac.cn). A systematically geometric and radiometric 

correction were performed to the image data using the calibration parameter file (CPF) released by the 
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Earth Resources Observation Systems (EROS) Data Center (EDC), USGS before the satellite image 

was delivered, and the quality of Landsat image was in 1B level. The Landsat image, including the 

thermal band, was further rectified to Universal Transverse Mercator coordinate system and was re-

sampled using the nearest neighbor algorithm with a pixel size of 30 by 30 m for all bands and the 

resultant root mean square error (RMSE) less than 0.5 pixels. The air temperature and moisture data 

were collected from the weather stations distributed in the ten cities as references for retrieving land 

surface temperature from the thermal remote sensing image. 

 

3.2. Estimation of Vegetation Abundance 

 

NDVI is commonly used as an index to show the vegetation abundance. Fung and Siu used NDVI 

to monitor the environment quality and its changes, and Gallo and Tarpley used NDVI to study the 

relationship between vegetation abundance and thermal remote sensing surface temperature [28-29]. 

Weng et al. used vegetation fraction derived from a spectral mixture model as an alternative indicator 

of vegetation abundance to study its relationship with LST [11]. Huete used the factor of soil-adjusted 

vegetation index (SAVI) to correct the impact of soil reflectance on NDVI [30]. In this study, we used 

the NDVI data computed from the red (0.63-0.69μm) and near-infrared (0.76-0.90μm) bands of the 

ETM+ image to estimate the vegetation abundance and study the relationship between the urban mean 

NDVI and the spatial extent of SUHI expressed by HIA. The urban mean NDVI is the average NDVI 

value of urban pixels, expressed by the ratio of sum of the NDVI value and the total pixel numbers of 

the city. NDVI for Landsat ETM+ images is calculated through: 

 

34

34

TMTM

TMTM
NDVI




  (1) 

 

3.3. Factors Extracted from Classification Images 

 

Among these 5 factors chosen for this study, except that the population density was drawn from the 

official census, all the other 4 factors were derived from the ETM+ data. The urban size, development 

area and water proportion were extracted directly from the classification images. Here the urban size 

and development area of each city can be easily calculated from the sum of corresponding land 

use/cover pixels in the classification images, while the water proportion is the ratio of water area again 

the total area of urban area (including both land and water areas), and can be computed by the 

following equation: 

)( urbanwater

water
SS

SP   (2) 

where P is the water proportion, Swater is the pixel area of water; Surban is the pixel area of urban-used 

land. The values of these factors extracted from the classification image and mean NDVI are listed in 

Table 1. 
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Table 1. Factors extracted from the classification image and mean NDVI 1). 

City name 
Population density 

(Persons / km2) 

Urban size 

(Km2) 

Urban mean 

NDVI value 

Water 

proportion 

Development 

area (Km2) 

Boluo 270 6.01 -0.0613 0.3167 2.37 

Dongguan 1326 71.10 -0.1115 0.1283 25.07 

Panyu 1242 24.67 -0.1054 0.0920 4.38 

Foshan 9815 81.75 -0.1168 0.2207 8.14 

Gaoming 315 9.60 -0.0937 0.6614 3.08 

Guangzho 17282 226.76 -0.1089 0.1507 88.28 

Huadu 742 16.23 -0.1072 0.2422 3.22 

Huizhou 955 21.40 -0.0707 0.4090 8.79 

Nanhai 1854 10.49 -0.1134 0.2210 0.91 

Sanshui 542 14.58 -0.0773 0.3514 4.20 

1) The population data are drawn from Report of the Fifth Census of China (2000). 

 

3.4. Estimation of Ground Surface Emissivity 

 

Ground surface emissivity is very critical for determining the surface temperature, but it is 

particularly difficult to measure for the influence of a variety of factors such as ground wetness, 

structure and roughness, etc. For the Landsat ETM+ data, one pixel covers an area of 30 by 30 m on 

the ground, which is probably contain multiple land covers. Therefore, the emissivity from a pixel is 

determined by land objects and their emitting directions [31]. Different techniques have been designed 

to estimate the emissivities of ground objects, separate temperatures from emissivities and mitigate the 

effect of emissivity on estimated LST [32-34]. In some studies, ground surface emissivity was 

estimated by NDVI value and the land surface was divided into vegetated and non-vegetated areas 

with a threshold established to the NDVI image, so that corrections for emissivity can be performed [5, 

11].  

According to the study of [35], the relationship between emissivity and NDVI can be expressed by 

the following equation: 
)ln(*047.00094.1 NDVI  (3) 

when the NDVI value ranges from 0.157 to 0.727. 

Valor and Caselles [36] developed another method to calculated emissivities from NDVI values 

according to the following equation: 
  )1(41 vvvgvv PPdPP    (4) 

where εis ground emissivity; εv is emissivity of full vegetation cover area; εg is emissivity of bare 

ground area; <dε> is revised parameter and averagely value 0.01; Pv stands for the percentage of 

vegetation abundance in a pixel. Usually, the Pv can be determined by the following equation: 

sg

s
v NDVINDVI

NDVINDVI
P




 (5) 

where NDVIg is NDVI value of full vegetation cover area and NDVIs is the NDVI value of bare ground. 

In the study of Valor and Caselles, it was also pointed out that the relationship between emissivity and 
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NDVI is complex and the emissivities calculated by NDVI are just approximate values. After 

comparing two methods of calculating emissivity from NDVI, Valor and Caselles’s method was found 

more suitable, which was chosen to retrieve the ground emissivities from NDVI in this study. 

 

3.5. Retrieving of Land Surface Temperature 

 

The signals received by the thermal sensors can be converted to at-sensor radiance (Lλ). Radiance 

values from the ETM+ thermal band and then be transformed to radiant surface temperature, namely 

brightness temperature, according to Eq. (6) using thermal calibration constants supplied by the 

Landsat Project Science Office [37]: 

)1ln( 1

2




L

K
K

Ts  
(6) 

where Ts is the effective at-satellite temperature in K, K1 and K2 are the pre-launch calibration 
constants (For Landsat 7 ETM+: K1=666.09 W/(m2· sr·μm) and K2=1282.71 K). 

The temperature calculated by Eq. (6) is not the actual LST, but the at-sensor brightness 

temperature. To obtain a reasonably high quality of LST, four stages of correction process are required: 

(1) spectral radiance conversion to at-sensor brightness temperature; (2) correction for atmospheric 

absorption and re-emission; (3) correction for surface emissivity; and (4) correction for surface 

roughness [2]. Traditionally, the retrieval of LST from Landsat TM6/ETM+6 was mainly completed 

through the method of atmospheric corrections. The principle of atmospheric corrections is to subtract 

the upward atmospheric thermal radiance and the reflected atmospheric radiance from the observed 

radiance at satellite level so that the brightness temperature at ground level can be directly computed 

[38-39]. Several programs such as LOWTRAN, MODTRAN and 6S have been designed for the 

atmospheric corrections, but the atmospheric corrections therefore prove to be difficult to complete 

because of many necessary parameters, and this is especially the case when the corrections have to be 

performed for the image at the time when the satellite passed. Base on the thermal radiance transfer 

equation, a mono-window algorithm for retrieving LST from thermal band of Landsat TM and ETM+ 

data was designed and only three parameters were required for the algorithm: emissivity, transmittance 

and effective mean atmospheric temperature [38-39]. Being used to calculate the land surface 

temperature in this paper, the mono-window algorithm was expressed as follows: 

6

6666666666 ])1([)1(

C

TDTDCDCbDCa a
s




 
(7) 

where Ts is the land surface temperature in K, T6 is the brightness temperature computed from Eq. (6), 

Ta is the effective mean atmospheric temperature in K; a6 and b6 are constants with values of –

67.355351 for a6 and 0.458606 for b6 when the LST is between 0-70 0C [38-39]. C6 and D6 can be 

calculated by the following equations: 
C6=ε6τ6 (8) 

D6=(1-τ6)[1+(1-ε6)τ6] (9) 
whereε6 is the ground surface emissivity andτ6 is the atmospheric transmittance. Ta ,ε6, τ6 are three 

parameters needed to covert the brightness temperature to LST. Atmospheric transmittance (τ6) could 

be estimated according to the near-surface air temperature and the water vapor data from the local 
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meteorological observatories because there exists a linear relationship betweenτ6 and water vapor. 

The effective mean atmospheric temperature (Ta) was calculated by the linear equations corresponding 

to the four standard atmospheres (Eq. (10)): 

 

Ta=25.9396+0.88045T0  (For USA 1976)                                    (a) 

Ta=17.9769+0.91715T0  (For tropical)                                         (b) 

Ta=16.0110+0.92621T0  (For mid-latitude summer)                     (c) 

Ta=19.2704+0.91118T0  (For mid-latitude winter)                        (d) 

(10) 

 

where Ta is the effective mean atmospheric temperature in K, T0 is the near-surface air temperature in 

K; both of them could be acquired from the local meteorological observatories. The four standard 

atmospheres were provided by atmospheric simulation model LOWTRAN 7 and more detailed 

information about the linear equations could be found in the paper written by Qin et al (2001) [38]. In 

this paper, the second equation (Eq. (10b)) was used. 

 

3.6. Method to Calculate The HIA 

 

Most previous studies are focused on the spatial distribution or temporal changes by equally 

segmenting the urban surface temperatures from thermal remote sensing images, however, this equally 

segmenting method is not suitable when threshold values are selected arbitrarily, and the results may 

not well represent the high-temperature area. In this study, a standard deviation segmenting method 

was proposed to calculate the HIA from the LST image for seeking a more suitable threshold value. 

With standard deviation segmenting method, both the hot island and cold island can be extracted by 

determining a threshold from the standard deviation of the surface mean temperature for each city. In 

order to calculate the HIA, five steps maybe needed as following: 

Step 1. Calculate the mean surface temperatures for the cities and their standard deviation. 

Step 2. Use the following equation to calculate the temperature threshold values. 
T = a ± χ*sd (11) 

where T stands for the temperature threshold value, a is the mean value of the surface temperature for 

each city, χ (χ = -2.5, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 2.5, 3) is the times of standard deviation, while sd 

is simply the standard deviation. Here eleven values were prepared for χ and eleven  temperature 

thresholds were calculated according to the different values of χ ranging from –2.5 to 3 by the interval 

of 0.5. 

Step 3. Divide the surface temperature into eleven scales according to the threshold values 

calculated in the above step.  

Step 4. Calculate the percentages of urban pixels in different surface temperature scales and their 

distribution in each city is plotted in Figure 2. 

It can be found from Figure 2 that the urban LST follows the Gaussian distribution mode and most 

of the urban pixels (>80%) are within the scale of ±1 times of the standard deviation. As a result, the 

mean surface temperature ± 1 times of standard deviation can be determined as the background value 

for urban LST according to the robust statistical rule, and can thus be recognized as the threshold value 

for extracting the hot or cold island. 
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Figure 2. Percent of urban-used land within different LST scales for the ten cities in Guangdong. 
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The last step is to calculate the HIA. The threshold of (a + sd) was used to extract the outlines of 

the hot island and then determine the HIA by calculating the total number of pixels that the 

temperature is higher than (a + sd). HIA could reflect the spatial extent and the seriousness of SUHI 

and could be used to quantify the SUHI effect. The calculated HIA of each city are listed in Table 2, 

from which, it can be discovered that Guangzhou shows the largest spatial extent with the HIA value 

of 20.05Km2, while the smallest value (0.58Km2) of HIA was found at Boluo, which is a small city 

with a population of 25,000 and the location of the eastern part of the Pearl River Delta. It should be 

emphasized that this standard deviation segmenting method was based on the statistic knowledge and 

was more suitable to extract the hot island compared with the density equally-slicing method. 

 

Table 2. The statistical results of surface temperature for the ten cities. 

 

City name 

Minimum 

temperature 

(K) 

Maximum 

temperature 

(K) 

Mean 

temperature 

(K) 

Standard 

deviation 
Variance 

HIA 

(Km2) 

Boluo 283.3 292.6 288.9 0.974 0.948 0.58 

Dongguan 284.2 294 289.1 1.303 1.699 6.46 

Panyu 283.1 294.8 288.8 1.564 2.447 2.77 

Foshan 281.7 294.1 288.4 1.687 2.845 13.91 

Gaoming 284.7 292.6 288.0 1.255 1.575 1.00 

Guangzhou 281.3 294.2 288.4 1.454 2.115 20.05 

Huadu 282.5 291.7 287.8 1.145 1.312 1.44 

Huizhou 283.2 292.4 288.3 1.159 1.344 1.18 

Nanhai 282.8 294.1 289.0 1.654 2.737 1.76 

Sanshui 284.4 292.9 288.2 1.371 1.881 1.32 
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4. Results and Discussions 

 

4.1. Retrieved LST of Each City and Error Analysis 

The LSTs of ten cities selected for this study were retrieved from ETM+ Band 6 by Eq. (7) and the 

LST images for three cities with different sizes are shown in Figure 3 as examples. The statistical 

results of surface mean temperature of urban-used land in each city are listed in Table 2. As shown in 

Figure 3, the LST ranges from 281.3 to 294.2 K for Guangzhou, from 284.4 to 292.9 K for Sanshui 

and from 282.8 to 294.1 K for Nanhai, respectively. The LST ranges of other cities can be found in 

Table 2. Generally, the surface temperature fluctuates between 281.3 K and 294.9 K at the time of the 

day. Both the minimum (281.3 K) and maximum surface temperatures (294.9 K) in 10 cities were 

found in Guangzhou, which has the largest population and urban area among all these cities. 
 

Figure 3.  LST images retrieved from ETM Band 6 of three cities in Guangdong. 
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The best method to evaluate the accuracy of the LST is to compare it with the actual surface 

temperature measured at the time when the satellite passed, which proves very difficult to be acquired. 

For the method used to derive the LST, there are two types of errors: the absolute error and the relative 

one. The absolute error arisen from the computation process and was found to range approximately 

from 0.2-0.3 K [38-39]. The relative errors were mainly due to the three aspects: (1) the estimation of 

atmosphere transmittance, (2) the estimation of emissivities of different land covers and the precision 

of classification, and (3) the estimation of effective mean atmospheric temperature. The precision can 

be quantified by the following equation: 

δTs =| Ts(χ + δχ) - Ts(χ) | (12) 

where δTs is the error of temperature, δχ is the error from estimating parameter χ, Ts(χ + δχ), and Ts(χ) 

are the temperatures computed from Eq. (7) using the data of (χ + δχ) and χ. Results demonstrate that 

the relative errors for ten cities of this study are 1.2 K on average. 

 

4.2. Correlation Analysis between HIA and 5 Factors 

 

Firstly, we performed a correlation analysis and the results are listed in Table 3. The coefficients of 

correlation demonstrate that the HIA is highly correlated to the urban size, population density and 

development area. These three factors are all positively correlated with the HIA, therefore 

demonstrating remarkable influences on the latter. Although the negative relationships found between 

HIA and water proportion or urban mean NDVI are not very significant, the impacts posed by water 

proportion and urban mean NDVI on the SUHI effect of a city are still very strong due to their high 

thermal capacity and large proportion values. Obviously, water area and vegetation abundance should 

be well preserved and be greatly increased for an effective control of the SUHI effect. 

 

Table 3. Results of correlation analysis between HIA and five factors for ten cities in Guangdong. 

Factors Coefficient of correlation with 

HIA 

P-value for T-test 

Urban size 0.950 0.000 

Population density 0.971 0.000 

Water proportion -0.418 0.206 

Urban mean NDVI value -0.515 0.128 

Development area 0.833 0.003 

 

4.3. Regression Analysis between HIA and 5 Factors 

 

The SUHI effect is a phenomenon resulted from urbanization. The characteristics of a city such as 

the city size, population density, water and vegetation abundances have a direct and obvious influence 

on the SUHI. Consequently, it is critically important to research the relationships between the SUHI 

effects and the associated city characteristics. In this section, the regression analysis between the HIA 

and these factors were conducted, and the results were plotted in Figure 4. 
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Figure 4. (a) Relationship between HIA and urban size in 10 cities in Guangdong, China. 

(b) Relationship between HIA and development area in 10 cities in Guangdong, China. (c) 

Relationship between HIA and urban population density in 10 cities in Guangdong, China. 

(d) Relationship between HIA and water proportion in ten cities in Guangdong, China. (e) 

Relationship between HIA and mean NDVI value in ten cities in Guangdong, China. 
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From the results showed from Figure 4, it can be found that the regression functions between HIA 

and urban size, population density are very significant, and both the R square values are as high as 0.9. 

Development area is also an important factor affecting the SUHI effect in this area. Development area 

mainly refers to those construction sites and it is very common in this area for the rapid economic 

development and quick urban sprawl. By comparing the slope of the three regression functions, it can 

be found that the growth of the development area has the most distinct relationship with HIA. As far as 

the correlation analysis is concerned, the coefficient with urban size is the greatest. 

Water proportion and urban mean NDVI are all associated with the properties of ground surface in 

the urban regions, and they will both influence the surface temperature significantly. Here water 

proportion and mean NDVI were used to represent the quantities of water and vegetation of a city. 

Their relationships with the HIA are plotted in Figure 4 (d) and (e). The regression analysis was also 

performed, but the R square values for both water proportion (r2=0.23) and mean NDVI value 

(r2=0.39) are very small, demonstrating weak relationships between the HIA and these two factors. 

From the above analysis, it can be found that three factors: urban size, population density and 

development area are positively relevant with HIA. For further understanding the control of these 

factors to HIA, a multiple linear regression model based on these three significant factors was built and 

the regression equation was as follows. 

HIA=0.183*urban-size - 0.265*development-area - 0.304   (r2=0.998) (13) 

The R square value of the model is as much as 0.998 and the test value for the coefficients of urban 

size and development area are smaller than 0.001. Though the population density is an important factor, 

test value shows that it is not significant in the equation, so the multiple-regression model contains 

only two factors. 

 

5. Conclusions 

 

The surface temperature is of prime importance to the study of urban climatology. The effect of 

SUHI is affected by many urban characteristic factors, such as water proportion, roughness of ground 

surface, urban size, urban population density and vegetation abundance, etc. In this paper, the land 

surface temperatures (LST) were retrieved from the data of Landsat 7 Enhanced Thematic Mapper 

Plus (ETM+) Band 6 using a mono-window algorithm. The error analysis indicates that the precision 

of this algorithm is less than 1.2 K, which proves to be sufficient for studying the regional SUHI. A 

standard deviation segmenting method was proposed to retrieve the outline of hot island in each city, 

and the results demonstrated that this method could be used to extract the hot island area directly from 

the LST images and to describe the spatial extent of the SUHI. 

In this study, five urban characteristic factors were selected (four of them were calculated directly 

from the ETM+ images and one of them was calculated from the official census), and their 

relationships with the HIA were analyzed. Results of regression analysis performed for the 10 cities 

show that the HIA is highly correlated to the urban size (r=0.90), population density (r=0.94) and 

development area (r=0.73) of a city, and a weak negative relationship exists between the HIA and the 

mean NDVI or water proportion for the ten cities in Guangdong. Linear functions describing the 

relationships between the HIA and the five related factors were established respectively, and a 

multiple linear regression model was constructed. 
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The SUHI effect is a product of urbanization. The urban size is one of the most distinct 

characteristics for a city, and the effect posed by urban size on SUHI will be worth further study. 

Additionally, urban population also plays a key role on SUHI. 

Some uncertainties still remain when retrieving LST from the Landsat 7 ETM+ Band 6, and they 

are mainly due to the effect of the atmosphere. The effect of SUHI was affected by many factors, but 

only five factors were selected for this study. Therefore, further studies should be continued and some 

other factors, taking the roughness of ground surface for example, in a city should be taken into 

account. 
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