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Abstract: Monitoring outdoor environments through networks of wireless sensors has re-
ceived interest for collecting physical and chemical samples at high spatial and temporal
scales. A central challenge to environmental monitoring applications of sensor networks is
the short communication range of the sensor nodes, which increases the complexity and cost
of monitoring commodities that are located in geographically spread areas. To address this
issue, we propose a new communication architecture that integrates sensor networks with
medium range wireless mesh networks, and provides users with an advanced web portal for
managing sensed information in an integrated manner. Our architecture adopts a holistic ap-
proach targeted at improving the user experience by optimizing the system performance for
handling data that originates at the sensors, traverses the mesh network, and resides at the
server for user consumption. This holistic approach enables users to set high level policies
that can adapt the resolution of information collected at the sensors, set the preferred per-
formance targets for their application, and run a wide range of queries and analysis on both
real-time and historical data. All system components and processes will be described in this
paper.
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1. Introduction

Sensor networks have emerged as an enabling technology for collecting digital samples from physical
spaces, as a result of recent advances in microprocessors, wireless communication, and miniaturization.
The sensors can be deployed in ad hoc fashion in the area of interest, with no requirement for a commu-
nication infrastructure. These nodes, which include tiny processors, memory, low-power wireless radios,
and physical sensors, can self-organize to form a wireless network. The low power transmissions of the
sensor nodes imply that a single node’s transmission has a limited range in the order of tens of meters.
To overcome the limited range issue, nodes closer to the central collection node can relay the sensor
information of nodes that are further away through multiple hops, until the information reaches a base
station that is connected to the Internet. The base station serves as a gateway node for streaming sensor
data to the users.

Researchers predict that tiny sensor nodes will be deployed all over our physical world for terrestrial
and marine monitoring. However, simply covering large areas with tiny sensors using is not feasible
given the extremely limited communication range of these sensors.

We illustrate the challenges of large scale sensor networks through the example of precision agricul-
ture [1], where sensors are deployed in agricultural fields to collect data on soil moisture, temperature,
and light exposure of crops. Current sensor architectures rely on a base station node in each cluster to
relay data from the deployed sensors to the user through a long haul or Internet connection. Because
farmers typically own several fields across a geographic region, they must install a set of sensors (or
sensor clusters) in each field. Connecting each sensor cluster directly to the Internet requires as many
Internet subscriptions and physical connections as there are clusters, which incurs significant cost and
limits the scalability for large-scale agricultural deployments. Another inhibiting factor with legacy
systems resides in the fact that managing geographically-distant sites is done through completely differ-
ent interfaces, where the user has no integrated view of the sites, which hampers the data analysis and
decision-taking processes.

A second challenge arises from static time-driven monitoring each commodity individually, which
provides users with highly detailed information, but it often represents an overkill for their application
needs. Synthesizing measurement information can improve the user’s interpretation of the data and thus
the efficiency of the decision-making process. For example, providing temperature information from
each sensor within the same field is highly redundant. This causes a large energy overhead that speeds
up battery depletion at the sensor nodes, and increases the cost of frequently replacing sensor batter-
ies. Although energy efficient techniques, such as data aggregation, exist, their configuration currently
requires technical know-how that is not accessible to the system end-user.

Finally, using the service provider network for cluster-to-cluster and cluster-to-user communication
also limits the end-user’s ownership of the information paths, which may represent a security risk, as
well as a cause of added cost. In current architectures, any cooperative exchanges between clusters
must traverse the service provider network, which could allow a competitor or a malicious third party to
intercept this information.

To address these challenges, our project on Scalable and Unified Management And Control of geo-
graphically dispersed sensors (SUMAC) aims at enabling unified monitoring multiple dispersed physical
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areas, through an architecture which includes a medium range wireless mesh network that serves as a
bridge between geographically-spread sensor node clusters and the Internet, as shown in Figure 1. The
project involves the design of an integrated communication protocol suite within the architecture to
reduce the required Internet subscriptions in order to provide users with full ownership of data commu-
nicated within their network, that is easily manageable, secure, fast, energy-efficient and inexpensive.

Figure 1. The SUMAC Architecture.

This paper provides an overview of the SUMAC architecture and its main components, including the
sensors plane, the mesh plane, and the server plane. The paper presents the sensor-related optimizations
of SUMAC, including: (1) a unicast reverse routing (downstream) strategy, which builds on a distributed
and unique addressing strategy, for avoiding broadcast dissemination, (2) a versatile user-configurable
cost function that includes energy, delay, and reliability metrics, and (3) an adaptive fidelity feature,
which enables network users to set the data resolution level based on simple high level performance
policies. While the mesh network serves as a communication bridge between the sensors and the server,
the SUMAC server architecture supports historical data collection from large scale deployments, real
time data access, as well as high flexibility in configuring the sensors. The paper also provides empirical
results from our lab testbed that explore the energy/delay tradeoff of the adaptive fidelity mechanism,
and how this tradeoff can translate to autonomous delivery of user performance requirements.

SUMAC provides end-to-end scalable methods that run across the three network planes for user con-
figuration of the sensor node performance settings. These methods enable the setting of high level
policies and performance targets that dynamically adapt the fidelity (resolution) of the incoming sensor
data stream and the routing strategy of packets within the sensor network to events of interest in the
deployment region. The high level settings by the user trigger a background process that sets the default
data aggregation level (data resolution) and that determines conditions and rules for overriding or mod-
ifying the default aggregation level autonomously by the network. For instance, the default aggregation
level could be set to average most of the sensor data in a single cluster, which saves energy. When an
event of interest occurs, the sensors can automatically slide down the aggregation level to enable nodes
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to send their raw packet data in order to monitor this event’s evolution more closely with higher data res-
olution. The background process also sets the routing cost function weights in the sensor clusters, which
determines routing paths in the network and can be tailored to favour system lifetime, data quality, or
high responsiveness. This process also supports a feedback mechanism, by which a change in network
state resulting from a user configuration change is continuously reassessed at the server, and appropriate
reconfiguration adjustments are done accordingly and autonomously by the server. While the user could
set up custom alerts for getting notification of events of interest, all reconfiguration of network metrics
occurs transparently according to the high level policies set by the user.

The remainder of the paper is structured as follows. Section 2. positions the paper with respect
to previous work on large scale sensor architectures, emerging commercial solutions, and aggregation
techniques. Section 3. describes the SUMAC architecture in detail, introduces its components, and
discusses each component’s design features. Section 4. presents our empirical results for adaptive fidelity
sensing, while section 5. discusses the results, future work, and concludes the paper.

2. Related Work

Many research groups and commercial companies are considering the interoperability between wire-
less sensor networks and other network technologies as the viable solution for the large-scale sensing
coverage. The idea of using a hierarchical architecture to achieve this purpose is not novel in and of it-
self, but to the best of our knowledge, a comprehensive large scale monitoring solution that is accessible
to non-specialized users has yet to be provided. Intel’s project on “Heterogeneous Sensor Networks” [5]
adopts an approach similar to SUMAC’s. It uses a two-tier wireless network, including an 802.11 mesh
network comprised of high-end nodes that overlays a sensor network. This project’s use of a similar
architecture to SUMAC confirms the commercial relevance of this approach for real world monitoring
applications. The focus of Intel’s project is on the performance improvements, in terms of energy and
delay, resulting from the use of fixed power supply devices, such as 802.11 mesh nodes. While SUMAC
also focuses on tradeoffs among energy, delay, and data resolution, the focus of our project lies more
on the software side, and in particular, on securing an end-to-end data path that includes intuitive user
access, control, and customization of the network in a unified manner. In addition, the SUMAC architec-
ture targets applications where power supplies are only available at the cluster edges, such as in outdoor
monitoring applications.

Another interesting work is the one proposed in the ART-WiSe networks [6] that provides an overview
of the architectural requirements and behavior of a gateway capable of managing two different interfaces:
IEEE 802.15.4/ZigBee and IEEE 802.11e. They focus their analysis on the QoS provision. The authors
of [7] explore the potential application of a decentralized two-tiered architecture in large scale wireless
sensor networks where the second tier is the basic WLAN that uses the IEEE 802.11 protocol. They
observed that wireless sensor networks with a solid backbone like the one offered by WLAN’s, can better
handle issues like real time performance, reliability, scalability and cost efficiency. The preliminary
performance evaluation of the SUMAC components have also confirmed their conclusions.

Several industry-based solutions have also started addressing the need for large scale sensing through
heterogeneous networks as well. Existing solutions that promote integrated large scale network architec-
tures include both hardware platforms and software packages. Hardware platforms, such as Meshnetics
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ZigBit Ethernet Gateway (www.meshnetics.com), Arch Rock Premier Pack (www.archrock.com) and
Digi Connect Port X (www.digi.com) enable communication between different networks, but simply
integrating multiple wireless interfaces into the same box can cause congestion, delay and loss of impor-
tant data in certain regions of the network, because they do not support transparency of state information
between networks. Our work aims to develop software mechanisms that leverage existing multi-modal
hardware and that provide quicker and more reliable network bridging, avoiding the creation of conges-
tion hot spots in the network. In particular, our user-configurable cost function supports sharing of state
information between the WiFi network and the sensor clusters (which use IEEE 802.15.4 technology), to
enable the sensor nodes to choose the best WiFi gateway to use, based on the congestion level at potential
gateways and on delay, battery level, link quality, and hop count metrics of the forwarding path from the
node to the backhaul. As a result, nodes may sometimes choose a WiFi gateway that is not necessarily
the nearest physical gateway in order to avoid creating congestion hotspots in the WiFi network, or to
spare low-battery sensor nodes, increasing their lifetime.

Other existing solutions for integrated large scale network architectures provide software packages for
streamlining data delivery in the network. ArchRock (www.archrock.com) provides one such solution
that relies on Internet Protocol addressing, in an effort to bring IP technology to every sensor device, so
that any commodity is addressable through the Internet. This work, referred to as 6LoWPAN [11], relies
on address translation at the sensor cluster gateway in order to use short 2-byte IP addresses for the sen-
sors to avoid the overhead of full size IP addresses. While using short IP addresses for each sensor node
is an attractive notion, it involves the drawback that dynamically assigning these addresses for a large
number of sensor nodes through a centralized Dynamic Host Communication Protocol (DHCP) involves
delay and communication overhead. A alternative distributed DHCP implementation risks address over-
laps, as two WiFi gateways that are in different regions of the network may assign the same address to
two different nodes, which causes confusion when the user tries to access one of the nodes. Assigning
IP addresses statically would avoid the drawback of dynamic assignment, but it is not flexible enough
to accommodate varying cluster memberships. SUMAC avoids using a centralized DHCP server, by
using IEEE 802.x MAC addresses for identification of nodes both within the WiFi mesh network and the
sensor clusters. This addressing strategy ensures unique node addresses, as IEEE 802.x address are hard-
coded into each device. It also provides higher flexibility over static IP address assignment, as nodes can
move around different clusters while keeping their addresses, and it avoids the delay and communication
overhead of assigning addresses dynamically through DHCP and of resolving address conflicts.

Other software solutions for sensor networks are openly available. The current state-of-the-art in
sensor networks provides extensive open-source network management mechanisms and protocols at the
cluster level, using operating systems such as TinyOS [8] and Contiki [9]. However, the management
of multiple sensor clusters in an integrated way, which is the focus of the SUMAC project, has not yet
been addressed within these open-source systems. Global Sensor Network (GSN) [10] provides an open-
source middleware java environment that runs on a back-end server of a sensor network. GSN supports
real and virtual sensors, enabling the abstraction and integration of any type of sensor. While the SUMAC
server architecture resembles GSN in some aspects, SUMAC’s server design aims at supporting large
scale deployment of many disjoint sensor clusters that converge to wireless mesh networks. The higher
data volume involves more complex data management strategies at the server that go beyond relational
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database concepts.
One particular optimization technique for large sensor networks is in-network aggregation, which

is crucial for WSN’s where energy resources are limited. Widmer et al. [2] present a comprehensive
review of techniques and protocols for in-network aggregation in wireless sensor networks. There is
evidently no aggregation standard, but aggregation strategies can be differentiated depending on features
like timing and function. Widmer et al. [2] identify three main timing strategies: (1) periodic simple
aggregation, (2) periodic per-hop aggregation, and (3) periodic per-hop adjusted aggregation. While (1)
implies that each node has to wait a predefined period of time before aggregating and sending the packet,
(2) and (3) add the functionality of sending the message before the firing of the timer at the aggregating
node once it has already received all the incoming packets from its children. In (3), the timeout of the
node is managed automatically depending on the position of the node in the tree. Our implementation
uses a strategy similar to (1) to account for potential instability of network topology. As node paternity
varies over time, the node cannot predict the group of motes from which it expect to receive messages.
The aggregation functions defined by [2] include information lossy aggregation and information lossless
aggregation. Our project targets long term operation, so we have opted for lossy aggregation by simply
taking the average, maximum, or minimum value.

Directed diffusion [3] is a simple periodic data collection protocol for sensor networks that targets the
monitoring of events which are typically sensed only by a few nodes. In this algorithm, the base station
broadcasts requests for relevant data and according with the nodes answering, it waits for the information
response. When the node responds it automatically generates a path. A node that belongs to different
data paths is in the right position to aggregate data coming from different sources.

A similar approach is Greedy aggregation [4]. Greedy aggregation differs from Directed aggregation
in path establishment and maintenance. Directed diffusion establishes paths using path reinforcement;
a node may locally decide to draw data from one or more neighbors in preference to other neighbors.
In directed diffusion, exploratory samples have initially and repeatedly been flooded throughout the net-
work. In the Greedy approach, in addition to the normal information (delay), each exploratory sample
also contains an energy cost for delivering this sample from the source to the current node. Each source
on the existing tree also generates an on-tree incremental cost message which corresponds to each new
exploratory sample received. The incremental cost message contains the incremental energy cost re-
quired for delivering the corresponding exploratory sample to the existing tree. In this Greedy approach,
the most preferred neighbor is the one that has delivered one of the two messages at the lowest energy
cost.

Our aggregation approach also considers energy costs for path generation, albeit in a slightly modified
way. Nodes share their energy consumption and buffer size values with immediate neighbors. This local
neighborhood information, in addition to path Etx and delay, drive routing decisions. Furthermore,
our aggregation mechanism is coupled with a powerful yet simple user interface for visually setting
aggregation rules on the basis of several conditions: hop count, resolution, sensor values, sensor tags,
GPS coordinates.
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3. The SUMAC architecture

3.1. Overview

The SUMAC architecture introduces an intermediate network plane, in the form of a wireless mesh
network of IEEE 802.11 (WiFi) nodes, which serves as a bridge between geographically spread sensor
clusters and the service provider network, as illustrated in Figure 1. The proposed network architecture
entails three network planes:

1. Geographically disjoint 802.15.4 [12] sensor clusters that are deployed to monitor the user com-
modities locally. Each sensor cluster forms an independent wireless sensor network that delivers
collected data to a gateway node.

2. An 802.11 [14] WiFi meshed network that relays sensor data to the backhaul network. Because
WiFi technology provides a larger communication range than wireless sensor nodes, the WiFi
mesh network serves as a multi-hop access network for the sensor clusters, acting as a bridge
between the sensors and the backhaul. Certain multi-modal nodes that are equipped with both
IEEE 802.15.4 and WiFi technology serve as a gateway for a sensor cluster.

3. A remote central server that acts as a backend for a web portal that delivers added-value visualiza-
tion, control, storage, and analysis features to the user.

The integration of the above network planes reduces the number of required Internet subscriptions for
a given set of clusters, as the mesh network can relay sensor cluster information to the nearest Internet-
connected node. The one-time deployment cost of WiFi mesh nodes is outweighed by the cost reduction
of using fewer Internet subscriptions. The WiFi mesh overlay also creates an opportunity for reduc-
ing security risks and latency for communication between neighboring sensor clusters. The SUMAC
architecture consolidates these three planes for seamless coordination and information delivery to users.

The remainder of this section discusses each plane, including its design, challenges, and current
development stage, separately.

3.2. Sensors Plane

The sensors plane in SUMAC is responsible for collecting data from physical spaces and relaying
this data towards a central base station in a multi-hop fashion. All nodes that report to the same base
station constitute a sensor cluster. Each cluster of sensors monitors a contained physical space, such as
a building or an agricultural field. The SUMAC architecture supports networks that are deployed in ad
hoc fashion or on the basis of predetermined locations.

A central objective of the SUMAC project is to capitalize on existing developments for intra-cluster
sensor communication and to extend them for supporting the management of multiple sensor clusters
through a unified interface. Achieving this objective demands addressing several challenges, which we
discuss below.
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Collaborative Topology Management

Challenge: The first challenge is the transparency of routing state information between the overlay
WiFi network and the sensor clusters, which can lead to network congestion. For example, sensor
nodes may forward data to a particular WiFi gateway if the gateway seems underused from the clusters
perspective. However, the WiFi network may be highly congested at this particular gateway, but current
techniques hide this information from the sensor nodes. This problem is further exacerbated in ad hoc
deployments where the topologies of the sensor clusters and the mesh network are neither symmetrical
nor known before deployment.

Solution: To address the issues of transparency between networks and of tunable performance set-
tings, SUMAC proposes a collaborative topology management (CTM) strategy that supports scalable,
flexible, and seamless two-way access to the sensors. CTM relies on transmission of periodic beacon
messages that nodes use to notify their direct neighbors about their current conditions. The CTM strat-
egy include an additive cost function in the beacons to compute the routing cost for each neighboring
node, as follows:

CostCTM(N) = αETX(N) + βE(N) + γD(N) (1)

where ETX is the Expected number of Transmissions metric, E is the energy consumption at the send-
ing node N , D is the delay measured by the buffer length at node N , and α, β, and γ are the user-
configurable cost function weights. ETX is a standard routing metric in sensor networks that combines
information on link quality and the number of hops from the base station. The energy and delay metrics
have been added in the periodic beacon messages structure as well as in the routing table. Including these
two metrics in the weighted cost function enables the use of high level policies to change the low-level
logic that selects a routing parent considering these new parameters. Once a node receives and stores its
neighbors’ beacons, a dedicated timer at each node fires periodically and launches a task that selects the
lowest cost neighbor in the neighbor table.

Users can set the cost function weights, α, β and γ through the graphical triangle tool in the web
portal, which is discussed further in section 3.4.. Additionally, the user can adjust higher level policies
to set up relative priority of metrics, which the server translates into cost function weight assignments
that are disseminated to the node, for e.g. energy consumption versus lower delay and high throughput.

The cost function also provides visibility of network state information across gateways, so that a
sensor node can dynamically determine the optimal gateway to use based on a more comprehensive set of
network performance metrics. This CTM scheme exploits the concept of hierarchical beacon propagation
from the WiFi mesh network to the sensor nodes. A sensor node has access to performance metrics
regarding the end-to-end path: from its direct sensor parent to the backhaul connection. Our initial tests
reveal this CTM strategy will significantly improve network throughput by using less congested paths to
the service provider network, and it will reduce queuing delay at the gateways through the selection of
the least congested gateway.

Surgical Node Reconfiguration

During long deployments, specific nodes may detect events of interest to the network operator. The
operator can set high level policies at the beginning of the deployment so that the network can au-
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tonomously react to such events without any human intervention. Alternatively, operators can choose to
receive alerts for events and to manually reconfigure the affected nodes on a case-by-case basis. Both
automatic and manual reconfiguration of specific sensors demand a mechanism that enables the backend
server to communicate with one or few sensors selectively, to avoid the energy and communication over-
head of flooding the mesh and sensor networks with reconfiguration requests that are meant for only a
few sensor nodes.

Challenges: Targeted sensor reconfiguration involves two challenges: (1) Unique addressing; and
(2) Downstream (reverse) routing.The separate addressing strategies at each network plane in the the
integrated network architecture represent a challenge to surgical node reconfiguration. While currently
proposed architectures use Internet Protocol (IP) addresses to abstract out the differences in heteroge-
neous networks [11], IP addresses are assigned dynamically through a central DHCP server, which can
cause latency in the address assignment process especially when sensor nodes are mobile, and they are
not necessarily unique, which can cause address conflicts, prevent unique access to the sensor nodes, and
prompt costly address conflict resolution routines.

Solutions: To tackle the addressing issue, SUMAC uses a distributed and unique addressing strategy
on the basis of the last 16 bits of each node’s IEEE 802.x MAC layer address, rather than conventional
network layer techniques. The use of MAC addresses avoids the overhead and complexity of centrally
assigning and managing network layer addresses for all clusters, and it ensures that each node within
the network is uniquely addressable. As a consequence, network flooding will be avoided when an end-
user wants to configure a specific sensor node. The use of 802.x addressing for both the WiFi plane
and the sensor plane will reduce address translation delays at gateway nodes, and it favours integration
between sensor networks and mesh networks, easing the abovementioned CTM mechanism. Because
some sensor node hide their MAC addresses from the operating system, we have also devised a fall-back
semi-centralized mechanism for unique and dynamic address assignment.

First, we can ensure that the base station node has an accessible MAC address. The base station, upon
starting up, provides its MAC address to the back-end server through the mesh network. The back-end
server, which has a comprehensive view of the network membership, checks whether the last 16 bits
of the new base station’s address conflict with any other node in the network. If so, then the server
assigns a unique 16-bit address to the new base station. Upon receiving the new address, the base station
then becomes a distributed address server for all nodes in its cluster, and uses the new server-assigned
or server-approved address as the base address (BASE) for all addresses within its cluster. When the
first node enters the cluster, the base station assigns the node the address BASE+1. The next node
to join the cluster gets address BASE+2, and so on. All base stations also store the next address in
their non-volatile flash memory, to maintain the state information even in the eventuality of any node
resets or crashes. The address assignment strategy at the server considers other existing addresses in the
deployment and avoids assigning a new address space that is numerically close to or conflicting with
other existing address spaces.

In case even the base station hides its MAC address from the API, the base station requests a BASE
address from the Mesh Server. The Mesh Server can then assign a BASE address to this new base station.
The address assignment process then proceeds within the cluster as described above.

Leveraging this addressing strategy is a unicast reverse routing mechanism that enable unicast trans-
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mission of node reconfiguration requests in the downstream direction, i.e. from the base station to the
sensors. Conventionally, reconfiguration requests in WSN’s are broadcast to all the nodes. Even if the
user requires reconfiguration of a single node, the broadcast dissemination strategies flood the network
with the request. All nodes receive the packet, check if the request targets them, then rebroadcast the
packet. This obviously incurs large transmission and energy overhead. Instead, sensor nodes in the
SUMAC architecture snoop on all upstream messages they forward in order to extract the originating
node ID of the packet and the last forwarder that sent the packet here. This snooping mechanism en-
able each node to construct a reverse routing table of all the nodes below it in the logical topology with
no communication overhead. Having the reverse routing table available locally, when a node receives
a downstream request, it checks the destination ID of the request. If the destination is available in its
reverse routing table, the node forwards the packet in unicast. Otherwise, the node discards the packet.
This reverse routing strategy aims at reducing control overhead of broadcasting requests all over the
network. For the user, reverse routing enables surgical reconfiguration of specific sensor nodes with
minimal overhead to other nodes.

Figure 2. Reverse routing example.

Figure 2 provides an example of the reverse routing strategy. Each packet includes the originator ID
and the current sender ID. When node 15 receives packets from nodes 5 and 25, it can add them to its
reverse routing table, indicating that these nodes are located in branches downstream of node 15. Since
they are direct neighbors of node 15, the next hops to reach nodes 5 and 25 are simply nodes 5 and
25 respectively. At node 0, packets from node 5 arrive with an originator ID of 5, and a sender of 25.
Node 0 creates an entry for node 5 in its reverse routing table indicating that node 25 is the next hop
to reach node 5 in the downstream sense. Through this strategy, nodes only store next downstream hop
information locally, which scales well with large topologies.
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Adaptive Fidelity

Challenge The final challenge is the sheer traffic flow to and from the sensors, which can cause chan-
nel saturation at some nodes and quick depletion of battery energy. As the network includes more sensor
nodes, the traffic requirements for accessing and controlling each node individually grows exponentially.
This challenge is due to the inflexibility of a static reporting policy, where nodes can only report data or
respond to user requests individually.

Solution: To provide a more flexible and efficient means to communicate with the sensors, the
SUMAC architecture enables the system user to adapt sensing fidelity from the Web portal on the basis
of any combination of the following metrics:

• Hop count: users set an aggregation level based on a certain hop count H . Packets originating at
nodes that at least H hops away from the nearest base station are aggregated.

• Data resolution: users set a data resolution level DR indicating how many sensor values should
be aggregated. Each node in the network then checks whether it has at least DR descendants in
the routing tree, and if so, the node does not aggregate its packets. Otherwise, the node aggregates
its packet with all other packets awaiting forwarding in its buffer.

• Sensed values: users set minimum and maximum thresholds for each sensed value. If the sensed
value exceeds this range at some node, the node sets a flag in its packets to override the active
aggregation policy. Furthermore, users can set policies that specify whether only the node that
detects an exceeded threshold, the set of neighboring nodes around it, or all the nodes in the
cluster should override aggregation to deal with this event.

• Sensor labels: users can set tags or labels to each sensor node. For example, users can assign a
label of A to a set of nodes in a vineyard and a label B to another set of nodes in a nearby forest.
Users can then configure nodes with label A to aggregate their packet at a hop count of 5 or more,
while setting a data resolution of 10 data points per aggregated value for label B.

• GPS coordinates: users set aggregation policies on the basis of geographic coordinates of the sen-
sor nodes, by selecting nodes through the Google Maps interface of SUMAC, which is discussed
further in Section 3.4.

Figure 3 illustrates adaptive fidelity monitoring on the basis of hop count. In this example, the user
sets a policy that nodes at one hop or more from the base station should aggregate their data. This
effectively means that all nodes in the cluster are aggregating their data when no interesting events occur
in the network. The user also determines that in case any node exceeds a temperature of 70 ◦C, the
aggregation level should slide down to hop 4, as this may indicate a fire. Upon detecting that the sensed
value exceeds 70 ◦C, a group of nodes begin overriding the aggregation policy, which in turn causes the
base station to broadcast a message to all nodes instructing them that the new aggregation level is hop 4.
At this point, each node that is at 4 hops or fewer from the base station stops aggregating its data, while
the remainder of nodes continue to aggregate their data.

The idea here is to dynamically slide the aggregation level when nodes detect events of interest, so
that the user can have more detailed information about these events, and to return to the original level
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when measurements return to normal values, which promotes energy efficiency, as our empirical results
in Section 4. confirm. These results indicate that the energy savings of adaptive fidelity access and
control of the sensors can double the operative lifetime for these battery-operated devices even in small
clusters of 20 nodes. Yet another major advantage of the adaptive fidelity resides in the automation of
monitoring tasks with reduced user administration; a user may set-up high level alerts and policies, so
the network is configured to dynamically re-adjust the resolution of the measurements based on specific
events.

Figure 3. Adaptive fidelity: how it works.

Auto-reconfiguration through Feedback

A final feature of the sensors plane is the feedback mechanism that constantly monitors the state of
the network at the server and sends reconfiguration requests to the sensor nodes to maintain adherence
to the user-set policy. Figure 4 illustrates this feedback mechanism at the server. Users initially set
performance policies in relative or absolute terms. Setting performance policies in relative terms entails
setting the relative importance of energy, delay, and quality through the graphical triangle tool shown in
Figure 8(a), which we discuss further in Section 3.4.. To set an absolute performance policy, the user
can simply select a target battery lifetime or maximum delay for the system through the sliders available
in the Web interface. The user also set the sampling period and duty cycle for the sensor nodes. These
settings trigger a background analytical process that sets the aggregation (fidelity) level, and the weights
for the CTM cost function. The server then sends configuration requests to the selected sensors through
the Mesh network plane. Upon receiving the requests, the sensors process these requests and adjust their
aggregation rule and cost function weight settings accordingly, as shown in Figure 5.

Note that both relative and absolute performance settings can adapt to dynamic topology changes,
including ad hoc deployment of nodes. For relative performance settings, the server remains agnostic
to the network topology, as it only needs to set relative metrics. For absolute performance settings, the
server considers the current topology of the network, which determines delay and energy consumption
for the nodes, by examining the database. Based on the current network topology, the background
process at the server determines the new network configuration and informs the sensor nodes.

Sensor nodes distinguish between two types of aggregation rules: static, and dynamic. With static
aggregation, the user selects nodes based on GPS coordinates, label, or ID, and sets the selected node to
aggregate or to forward their data. In this case, the node aggregation rule is statically set from the server,
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and the node need only follow this rule until a new server request arrives for this node.

Figure 4. The feedback mechanism at the SUMAC server.

With dynamic aggregation, the user sets thresholds (maximum and minimum) for the sensed values,
which in the current implementation are temperature, light, and humidity. If the temperature, humidity,
or light value exceeds a user-set threshold at a particular sensor, the sensor node then autonomously
decides to stop aggregating the packets and it instructs neighboring nodes to do so as well, in order
to monitor the region around this event of interest. This represents region-based aggregation, which
users can choose to enable or disabled. If disabled, then only the sensor node that detects the event will
override aggregation, while neighbors follow their normal aggregation policy.

The server then notices that some sensors have detected an event of interest, and autonomously reeval-
uates the settings for this region in the network. If the user had set absolute performance targets (ABS=1),
the server first determines a new aggregation level L1, and then determines the corresponding cost func-



Sensors 2008, 8 7506

tion weights α, β, and γ. Otherwise, if the user had initially set relative performance targets (ABS=0),
the server determines new values for α, β, and γ and then a new aggregation level L1. The rules for
setting the aggregation level based on the cost function weights or vice versa are determined on the basis
of empirical experiments that provide rules of thumb for the delay/energy tradeoffs involved. Note that
the new aggregation level L1 instructs the nodes of the new number of hops from the base station beyond
which all data packets are aggregated. If L > L1, setting the new aggregation level as L1 effectively
means sliding the aggregation level up, or reducing the data fidelity. In contrast, if L < L1, then setting
the new aggregation level as L1 effectively means sliding the aggregation level down, or increasing the
data fidelity. This is what is meant by adapting the aggregation level, or adaptive fidelity.

Figure 5. The effect of the feedback mechanism at the sensors.

Once it determines L1 and α, β, and γ the server then issues a reconfiguration request to the selected
sensor nodes with these new parameters. The sensor nodes receive the reconfiguration request and adapt
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their settings accordingly. When the sensor nodes in the region of the event of interest no longer detect
any sensor values that exceed the threshold, they return to their default aggregation/forwarding rule,
as initially set by the user. This return to the default configuration is done automatically, as the sensors
check whether their sensed value exceeds the threshold periodically, in particular, every time they sample
the sensor values. At the first instant that a node detects that the sensed values have returned to normal,
it reverts to its original configuration almost immediately.

3.3. Mesh Plane

The mesh network plane serves as a medium range overlay that extends the coverage region of the
sensor clusters and enables data convergence from multiple clusters towards a single back-end server.
Gateway mesh nodes, which interface the mesh and sensors plane, can be deployed uniformly or ran-
domly, depending on application requirements. For instance, outdoor monitoring applications provide
limited, if any, access to outlet power supply for mesh nodes, which in turn constrains the placement of
the gateway nodes.

There is currently a lot of ongoing activity on providing quality-of-service guarantees within mesh
networks, such as in the EU CARMEN project [13]. The SUMAC project complements these and
is concerned with the communication at the edges of the mesh network, in particular the interaction
of the mesh network with the sensor clusters, and with the back-end server. SUMAC currently uses
MikroTik RB600 router boards (www.mikrotik.com), which incorporate a PowerPC architecture and
supports up to 3 802.11 a/b/g interfaces. SUMAC relies on gateway nodes that integrate a sensor mote
(the Tmote Sky [15]) with a mesh box through a Tmote Connect device [15] that provides USB to
Ethernet conversion and runs a serial forwarder).

When a mesh box is connected to a TMoteConnect device, we refer to it as a Clusterhead, which
means than a java daemon is launched, called ClusterheadForwarder, and this daemon is responsible for
connecting the serial forwarder on the TmoteConnect and grouping incoming sensor packets into larger
UDP packets for forwarding to the server.

As the mesh plane is the bridge between the sensor plane and the server plane, we have verified the
full two-way data communication path starting from the sensors, through the base station, traversing
the mesh network, and reaching the server. Currently, we are performing stress simulation tests on the
buffering and forwarding mechanisms at the Clusterhead with thousands of sensors.

3.4. Server Plane

The SUMAC server plane is the convergence point of the incoming data from all clusters of a single
deployment. Each group of mesh network nodes report their data to a Mesh Portal. Mesh Portals in turn
report the data to a single Mesh Server, that represents the bridge between the Mesh Plane and the Server
Plane. The connection between the Mesh Server and Mesh Portal uses Secure Socket Layer (SSL), as it
usually traverses third party long haul networks or the Internet. The Mesh Server receives streaming data
from the Mesh Portals and stores it in a temporary table for provision to the client Web browser. It also
forwards the packets to the database for long term storage through the DataStorage Component. The
Comet [16] component within the Mesh Server provides streaming real time data to the Web Browser



Sensors 2008, 8 7508

through a secure SSL Internet connection. Comet builds on the HTTP protocol handshake and it ensures
that the HTTP connection remains open for a long time between client and server for continuous data
streaming. This enables us to provide a live Google Map display of the sensor data in the Web Browser,
where the user can graphically select one or a group of sensors, check their status, receive real-time
alerts, or select and modify the behavior of a group of sensors. The Web Browser uses JavaScript
to communicate with Comet over the Internet. The Web Browser also communicates with the Web
Portal. The Web Portal provides the Web Browser with access to historical data stored in the Database.
Sensor selection queries from the Web Browser, which can be map-based or query-based, also request
the sensor information from the database through the Web Portal. When the Web Browser receives the
sensor information from the Web Portal, it then generates the request and sends it to the sensors through
the Mesh Server to the Mesh Portals and eventually to the sensor nodes.

Figure 6. The SUMAC server architecture.

A central feature of the SUMAC Web interface is the map-based tool, shown in Figure 7, which
leverages GoogleMap’s open interface. This tool illustrates the sensor node locations on the satellite
or street map. Obtaining the nodes’ locations requires the collection of GPS coordinates of the sensors
while or after deploying them. This can be done with a PDA and GPS receiver connected through a
wireless Bluetooth interface. At each sensor node, a user click on the GPS receiver to get the GPS
coordinates of the node. The coordinates are sent from the GPS receiver to the PDA through the wireless
Bluetooth connection. The PDA then stores the GPS coordinates of the current node in an XML file that
links each set of GPS coordinates to a unique sensor node ID. Repeating this step at every node ensures
that the XML file contains the GPS coordinates of all the nodes. The XML file is then loaded into the
Database, which can then provide the location of each node to the Web Portal.

Through the map-based tool, users can click on the balloons on the map, which represent the sensor
nodes at the selected location. Clicking on specific sensor nodes in the map opens a callout box that
displays the current sensor readings at that node. In Figure 7, the node with ID 2007 is selected. The
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callout that appears upon clicking on this node displays the current temperature, humidity and light
readings at that location. Every time the server receives a new reading from this node, these reading are
updated automatically in the callout on the map through the open Comet connection. Users can select
any subset of these readings to view through the check boxes next to each reading. If a user is only
interested in humidity data, the user can uncheck the boxes for temperature and light, which reduces the
effective streaming load on the Comet connection. Clicking on the link for one of the metrics displays
additional menus for automatically selecting nodes that belong to the same group or that share similar
reading patterns as the selected node. In the example in Figure 7, the user graphically selects nodes
or groups of nodes that have had higher temperature than node 2007 in the past hour. The IDs of the
selected nodes then appear in the “Selected Sensors” box at right hand side of the screen.

Figure 7. Map-based monitoring and node selection.

The graph tab in the callout also allows the user to view the recent sensor reading plotted versus time.
To select a group of sensors in the map tool, users can also click on the “Select” button at the upper left
corner of the map. The user then clicks, holds, and drags their pointer to create a rectangle around the
target group of nodes on the map. The selected nodes then change color to yellow, and the ID’s of these
nodes appear in the box on the right titled “Selected Sensors”. Buttons for unselecting one or all sensors
are also available in this tab.

Once a group of sensor nodes are selected, the user can set the performance metrics for the selected
nodes, by clicking the “Settings” tab in the right box of the main GoogleMaps tab. The “Settings” tab
is shown in Figure 8(a). The triangle tool within this tab allows the user to graphically set the relative
importance of the three cost function metrics from equation 1 for tailoring the network performance
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to their application needs. By simply dragging the cursor closer to energy, the user indicates a higher
preference for energy efficiency, as the example in Figure 8(a) shows. Note that the user can also set
absolute performance metrics (not shown here), such as the desired system lifetime or maximum delay,
which are then mapped by a background process to appropriate cost function metrics and aggregation
policy. The user also sets the reporting frequency (sampling period) and the duty cycle through the
sliders below the graphical triangle. Finally, the user can select whether to place the selected sensors
in Auto (time-driven reporting) or Query (query-driven reporting) modes, before proceeding to the next
step in the “Thresholds” tab, which is shown in Figure 8(b).

Figure 8. (a) performance settings; (b) threshold and reporting frequency settings.

The “Threshold” tab enables the user to set maximum and minimum thresholds for each of the sensor
readings. These settings are used by the sensors to detect anomalies in the monitored area. Whenever a
sensor value exceeds its thresholds, the affected node stops aggregating data and wakes up its neighbors
to report this potential event of interest (see Figure 4). The balloon corresponding to this node in the map
also turns red to indicate this event to the user. The server also learns of this event and decides, based
on the setting that the user had initially entered, how to adapt the aggregation level and cost function
metrics in response to this event.

The “Threshold” tab also allows the user to visually verify and adjust the aggregation level in the
network. By clicking and dragging the horizontal line up or down the network tree shown at the bottom
right of Figure 8(b), the user can vary the portion of aggregated data in the network. Manually adjusting
the aggregation value overrides the nominal aggregation value set automatically by the system based
on the cost metrics selection in the triangle tool. For example, in Figure 8(b), the system has set the
aggregation level to 100%, which means that all reading from within the selected group of nodes are
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aggregated and only one averaged reading arrives at the server. This is a consequence of assigning
energy a high weight (74%) in the triangle tool at the earlier step (see Figure8(a)). If the user is not
satisfied with this aggregation policy, the user can simply slide down the aggregation level to reduce
the portion of aggregated data, bearing in mind that this reduces the weight for energy efficiency in the
routing policy.

After selecting all these parameters, the user is prompted to confirm these settings, after which the
server sends the corresponding configuration requests to the selected sensor nodes.

The SUMAC Web portal also supports query-based selection of sensor groups through a powerful yet
intuitive interface within the “Group Selection” tab, on the basis of hop count, data resolution, sensed
values, GPS coordinates, and sensor tags, as shown in Figure 9. Through this interface, users can set
the first rule by selecting a field to check, with the associated condition, and value. The user then clicks
the “Add” button to include this rule in the query to the Database. Users can then add as many rules
as required by repeating this process, and they can select “And” or “OR” to determine how the rules
should be checked in the database. Once all the rules have been entered, clicking the “Search” button
runs the composite query from the Web Browser to the Database through the Web Portal to get a list of
all the nodes that satisfy these rules, which appears in the Group Selection tab as well. If the results are
satisfactory, the user can issue a request to configure this group of nodes through the Google Maps tab,
or add this list of nodes to the main Portal tab, so it will appear every time the user logs on.

In the example of Figure 9, the user has created a query to select sensors that are located in the public
area of the CASL building, which is indicated by the label ‘CASL Public’, and whose temperature
reading is greater than 24.2oC. Clicking the “Search” button generates a query to the Database through
the Web Portal. The query results in a list of sensor node ID’s to be sent back to the Web Browser and
displayed in the “Results” box of the Group Selection tab. In the current example, the query returns three
node ID’s, which the user can add to the Web Portal or view the live sensor measurements.

Figure 9. Sensor group selection interface.

Real-time viewing of sensor data in the SUMAC Web portal is available by selecting a subset of nodes
or a subset of sensors for selected nodes, either through the map-based tool, the group selection tool, or
the “Measures” tab. Figure 10 shows a screenshot of the Measures feature. In this simple example, six
motes are available for viewing. The user has selected three nodes, with ID’s 10004, 10007, and 10018.
Although these nodes include temperature, humidity, and light sensors, the user has opted to view only
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temperature and light values by selecting the corresponding check boxes in the sensors box. The selected
sensor values from these 3 motes appear in the measures box on the right. The left-most column in the
measures box includes the node ID. The second column includes the node label, which in this example
groups nodes according to their physical location. The third column includes a timestamp of the reading.
The next 2 columns contain the temperature and the light reading of the node respectively. Both these
columns are color-coded. For temperature, warm values are shown in red, where the brighter the redness
of the value, the warmer the temperature. The same applies for light, where different shades of brown
indicate the level darkness, and brighter yellow shades indicates stronger light.

Figure 10. Real-time viewing of sensor data.

The historical plot tab in the SUMAC Web interface enables the user to view stored sensor samples
from any past interval. The user can specify the desired starting time for the plot, the time window into
the past for which to show the readings, and the sensor node of interest. Clicking the “Draw” button
generates the plot. Figure 11 shows an example plot that was generated on October 6, 2008, for the last
48 hours in the entrance of UCD’s CSI building, showing the light variation trend between night and
day, as well as other short term luminance variations due to varying cloud cover outside in Dublin.

4. Performance Evaluation

This section focuses on the performance evaluation of SUMAC’s adaptive fidelity mechanism. To
evaluate the adaptive fidelity mechanism, we have performed empirical testbed experiments at our lab
at UCD’s Computer Science and Informatics Centre using a single cluster of 20 Tmote Sky nodes. The
same network scenario was used for all the experiments. The software implementation uses nesC and
leverages TinyOS version 2.

The 20 nodes are placed in an indoor area spanning two floors. Through TinyOS’s low power listening
feature, the duty cycle for all nodes is set to 30%. All nodes sample their sensors every 4 seconds and
send their data towards the base station. Although our routing cost function from the CTM strategy
supports energy and delay metrics, the experiments here use only ETX for better benchmarking by other
TinyOS developers. Of course, the collected results would inform future experiments on setting cost
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Figure 11. Historical plotting feature.

Figure 12. Percentage of packets transmitted and aggregated versus aggregation levels.
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function weights, mainly for managing the energy/delay tradeoff. Each test lasted for fifteen minutes.
The network diameter varied between 5 to 6 hops, depending on interference conditions.

Figure 12 illustrates the traffic load effect of setting different aggregation levels, i.e. on the basis of
hop count from the base station. The figure only shows aggregation levels up to 5 hops, as there were
not always nodes at the sixth hop. When aggregation occurs at hop 5, 25% of the generated packets are
aggregated, while 75% of them are received at the base station. As expected, setting a lower aggregation
level causing a higher percentage of the packets to be aggregated, and a smaller percentage of them to
be received at the base station. This trend is steady, and at an aggregation level of 1 hop, more than 70%
of the generated packets are aggregated while only 30% are actually received at the base station. These
values are obviously topology dependent, but they also confirm that the trend of traffic savings for lower
aggregation levels.

Figure 14(a) shows the resulting average number of radio transmissions to deliver a single packet
from its source to the base station as the aggregation level varies. This metric is averaged over all the
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nodes in the network. For an aggregation level of 5, which is the closest case to having no aggregation,
the average radio transmissions per packet is almost 3, which is equivalent to the median hop count in
the network. This effect is intuitive as a node at hop 5 requires 5 transmissions to reach the base station
with no aggregation, just like a node at hop 1 requires a single transmission. As the aggregation level
moves closer to the base station, the average number of radio transmissions per packet decreases steadily
to reach 1.2 transmissions at an aggregation level of 1 hop. In large networks with hundreds to thousands
of nodes per cluster, the reduction in radio transmissions per packet can have substantial energy savings.

Figure 13. Traffic and Energy Savings at different aggregation levels.
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(b) Power consumption for 1-hop nodes

To put the traffic reduction effects in perspective, Figure 14(b) shows the averaged power consumption
of nodes that are 1 hop away from the base station for different aggregation levels. These nodes, often
referred to as critical nodes, actually determine the network lifetime since they must forward the packets
of all other nodes, so their energy consumption is critical for the network lifetime. As the aggregation
level moves closer to the base station, the power consumption of critical nodes decreases significantly.
Recall from Figure 12 that an aggregation level at hop 5 leaves 75% of the packets unaffected by ag-
gregation, while that value shrinks to 30% for an aggregation level of 1. This reduction in traffic load
accounts for the reduction of power consumption of critical nodes by a factor of half when the aggrega-
tion level is shifted from hop 5 to hop 1. This effectively corresponds to doubling the network lifetime.
In addition, Figure 14(b) also reveals that, in the specific topology of our experiment, the difference in
power consumption of critical nodes for aggregation levels 2, 3, and 4 is less pronounced, though the
trend of lower power consumption for a lower aggregation level holds. These results have an impact on
the energy/delay tradeoff. For example, aggregating at level 2 or at level 3 does not change the power
consumption of critical nodes much, but aggregating at level 3 may incur significantly less delay on
aggregated packets than at level 2. The delay behavior of our aggregation is explored next.

The traffic and energy savings of our aggregation come at the cost of increased delay, which is il-
lustrated in Figure 14. This figure plots delay versus the aggregation level and the packet generation
hop. The packet generation hop is the hop count of the node that generated the packet, while aggrega-
tion level is the hop count setting for aggregation. An aggregation level at hop count 1, which provided
the highest traffic reduction, also yields the highest delay. In fact, packets generated at hop 5 have the
highest delay, as they have to await the timer firing at each intermediate hop. As the aggregation level
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increases, the delay steadily decreases, while maintaining the trend that packets generated deeper in the
network experience higher delay for the same aggregation level. We also note that the delay at the first
hop after the aggregation level is not zero. For example, the delay for packets generated at hop 5 and
an aggregation level at hop 5 yields almost a delay of 1 second. Similar situations occur for packets at
hop 4 with aggregation level 4, and at lower hops as well. In fact, the plot exhibits symmetry for all
delay for packets generated at one hop higher than the aggregation level, at two hops higher than the
aggregation level, and so on, regardless of the aggregation level setting. These symmetries can be used
to set guidelines for delay consequences of aggregating data, which can in turn be combined with user
delay constraints to set cost function weights autonomously.

Figure 14. Observed delay for different aggregation levels and observation hops.

5. Discussion and Conclusion

This paper has presented the SUMAC system for large scale sensor networks that targets monitoring
of geographically dispersed sensor clusters. The SUMAC architecture introduces a mesh network over-
lay to extend the range of sensor clusters in order to cover larger geographic areas and to maximize user
ownership of the data path. The data from the mesh network then reaches the server, which supports
both real-time data access, visualization, and network control as well as running historical queries and
analysis. All components of the SUMAC architecture have been implemented and integrated, and the
verification of the end-to-end performance, robustness and scalability of the system has revealed that the
system performs well, and additional experiments are ongoing to validate this further.

SUMAC adopts an end-to-end approach to large scale monitoring applications, which includes the
sensors, mesh, server planes. At the sensors plane, SUMAC introduces a suite of mechanisms for cus-
tomization of the network performance through high level policies set by the user. These mechanisms
include adaptive fidelity, which dynamically adapts the level of aggregation in the network to the current
conditions, and a user-configurable cost function that determines routing paths in the network on the ba-
sis of application requirements. SUMAC also provides a feedback mechanism between adaptive fidelity
and the cost function, to ensure that reconfiguration requests to the sensors jointly consider aggregation
and routing topology, and adapt the network configuration autonomously to changing conditions without
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further user intervention.
The mesh network plane serves as a medium-range overlay for the sensors. Gateway nodes between

the sensor and mesh plane merge several sensor packets into a single UDP packet and forward through
the Mesh network until the packet reaches a Mesh Portal, which then forwards the packet to the Mesh
Server in the server plane.

The SUMAC server design targets scalable data management for supporting tens of thousands of
sensors nodes in a large number of clusters and deployments. The server provides live streaming data
to the user through the Web browser, as described in Section 3.4., as well historical data storage and
querying through a sharded, cloud-based relational database.

Work on SUMAC is ongoing to refine the feedback mechanism that autonomously manages the net-
work setting according to high level policies set by the user. We are conducting extensive testbed ex-
periments to establish the relationships between aggregation, the cost function, and data delivery to the
user.

We have implemented and verified the functionality of all the server components for 2 clusters of
20 sensor nodes each located at the Computer Science and Informatics Centre and at the Complex and
Adaptive Systems Laboratory. We are currently running extensive simulations on the server to test its
scalability and delay constraints. To perform these simulations, we are using the Amazon Elastic Com-
pute Cloud service (http://aws.amazon.com/ec2/) where we can simulate deployments of tens of thou-
sands of nodes and the resulting delay behavior and resource usage of the server components. Our initial
results indicate that a query to access historical data from the Web Browser for a network deployment of
1,000 nodes requires about 5 seconds delay on a Pentium 4 dedicated PC. Similar queries for a network
of 10,000 nodes incurs a delay of about 5 minutes, and a network of 20,000 nodes results in a delay of
about 20 minutes. We expect that our ongoing simulations will further reduce delay and reveal further
trends which can be later generalized to data management and storage of large sensor deployments. Note
that access to live real-time data streams is much shorter, in the order of a few seconds.

In addition, we are improving the front-end interface by adding features to graphically indicate to
the user the current state of nodes on the map. For example, features under development include color
coding of nodes in the map which are aggregating, and another color to indicate nodes whose neighbors
have detected an event of interest. The improved interface will also provide more advanced grouping
functionality for easier manipulation of node configuration. It will also include an additional advanced
option in to enable users to specify maximum cluster sizes, so that the server can allocate addresses
accordingly to each base station.

As a representative optimization mechanism developed within SUMAC, this paper has introduced
the concept of adaptive fidelity by which users can set elaborate policies for specifying conditions for
enabling aggregation and overriding it. The results in this paper have explored the energy/delay tradeoff
and have determined that shifting the aggregation level from the 5th hop to the 1st hop from the base
station can double the network lifetime at the cost of higher delay.

The results also provide initial guidelines for enabling the system to autonomously manage the en-
ergy/delay with aggregation. The user can set bounds and requirements through the graphical interface
on energy and delay requirements, and the system could then determine the appropriate aggregation
level, and the weights of the cost function of the CTM, in order to optimally configure the network for
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achieving the user-specified performance requirements.
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