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Abstract: In this paper a novel feature extraction method for image processing via PCNN 
and Tsallis entropy is presented. We describe the mathematical model of the PCNN and the 
basic concept of Tsallis entropy in order to find a recognition method for isolated objects. 
Experiments show that the novel feature is translation and scale independent, while rotation 
independence is a bit weak at diagonal angles of 45° and 135°. Parameters of the 
application on face recognition are acquired by bacterial chemotaxis optimization (BCO), 
and the highest classification rate is 72.5%, which demonstrates its acceptable performance 
and potential value. 
 
Keywords: Pattern recognition; feature extraction; pulse coupled neural network; Tsallis 
entropy. 

 
 
1. Introduction 

 
Face recognition is a hot problem in image processing [1]. It has many potential applications, for 

example, for security systems, man-machine interfaces, and searches of video database or the WWW. 
Therefore, many researchers are actively working in this filed and many face recognition methods are 
proposed. 

Since face image data are usually high-dimensional and large-scale, it is crucial to design an 
effective feature extraction method. Researchers have developed many algorithms, such as the 
Eigenface method [2], the Fisherface method [3], the direct LDA method [4], the uncorrelated optimal 
discrimination vector (UODV) method [5], the Kernel PCA method [6], etc.  

However, such models are either subject to problems determined by geometric transforms (scaling, 
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translation or rotation) or to high computational complexity [7]. Moreover, it is known that parallel 
processing could solve computational complexity but in order to take advantage of it we need 
parallelizable models [8]. 

Neural networks (NN) have been widely employed in face recognition applications. It is feasible for 
classification and results in similar or higher accuracies from fewer training samples. It has some 
advantages over traditional classifiers due to two important characteristics: their non-parametric nature 
and the non-Gaussian distribution assumption. 

Pulse coupled neural network (PCNN) is called the 3rd generation NN since it has the following 
advantages: (i) global optimal approximation characteristic and favorable classification capability; (ii) 
rapid convergence of learning procedure; (iii) an optimal network to accomplish the mapping function 
in the feed-forward; (iv) no need to pre-train. Hence, in this article, we present a novel face recognition 
approach based on PCNN. 

The structure of this article is as follows. Section 2 introduces the architecture of our proposed 
novel model. Section 3 gives a brief overview on PCNN. Section 4 discusses how to obtain TNF by 
PCNN. Section 5 introduces the Tsallis entropy. Section 6 brings forward the MLP. Section 7 is the 
experiment which checks the Translation, Scaling, and Rotation Independence of our proposed feature. 
Section 8 is the face recognition system. This proposed method can achieve as high as 72.5% 
classification rate on a given database. Finally Section 9 concludes this paper. 

 
2. Architecture of the Model 
 

The model proposed in this article is based on three modules: the PCNN, the Tsallis entropy, and the 
MLP classifier (Figure 1). Information flow is feed-forward but there are also lateral interactions 
between the PCNN. 

 
Figure 1. The architecture of the recognition system. 
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Pulse coupled neural network (PCNN) is a result of research on artificial neuron model that was 

capable of emulating the behavior of cortical neurons observed in the visual cortices of animal [9]. 
According to the phenomena of synchronous pulse burst in the cat visual cortex, Eckhorn developed 
the linking field network. Since it does not need to pre-train, and inherits the advantages of artificial 
neural network (ANN), PCNN has been used for various applications, such as image feature extraction 
[10], and image segmentation [11], etc. 

Total number of firing (TNF) is an important parameter obtained in PCNN. It is almost unique and 
has strong anti-noise ability. How to measure the information obtained in TNF? Communication 
systems are less well defined in PCNN. Thus traditional Shannon entropy is not fit for measuring. R. 
Sneddon discussed the Tsallis entropy of neurons and found it is more accurate and useful [12]. Hence, 
we use Tsallis entropy to measure the TNF.  

Thus, the novel feature of image is extracted now. We put the Tsallis entropy of the TNF into the 



Sensors 2008, 8  
 

7520

multi-layer perceptron (MLP). After training, the MLP will automatically classify the images 
successfully. 
 
3. PCNN: A Brief Overview 
 

A typical PCNN neuron consists of three parts: the receptive field, the modulation field and the 
pulse generator. This is shown in Figure 2. 

 

Figure 2. PCNN neuromime. 
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Suppose NP is the total number of iterations and n is current iteration, the neuromime of PCNN can 

be described by the following equations. 
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 [ ] exp( ) [ 1] [ 1]ij ij ijn n V Y nθ θθ α θ= − − + −    (5) 
where the (i, j) pairs presents the position of a neuron. F, L, U, Y and θ are feeding inputs, linking 
inputs, internal activity, pulse output, and dynamic threshold, respectively. αF , αL and αθ  are time 
constants for feeding, linking and dynamic threshold. VF, VL and Vθ are normalizing constants, M and 
ω are the synaptic weights, and Iij and Jij are external inputs. β is the strength of the linking. 

Firstly, the neuron (i, j) receive input signals from other neurons and from external source through 
the receptive fields. Then the signals are divided into two channels. One is feeding channel (F), the 
other is linking channel (L). Secondly, in the modulation part the linking input L is weighted with β 
and added a constant bias, then multiplied with the feeding input F. The internal activity U is the 
output of the modulation part. Finally, in the pulse generator part U compares with the threshold θ. If U 
is larger than θ, the neuron will emit a pulse. Otherwise it will not emit. Y is the output. The threshold 
will be adjusted every step. If the neuron has fired, θ will increase; otherwise θ will decay. 
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4. Obtain TNF via PCNN 
 
There exists a one-to-one correspondence between the image pixels and network neurons, which 

means, each pixel is associated with a unique neuron and vice versa.  
The exponential decay is too time-consuming for fast realization, so an improvement to 

conventional PCNN is proposed here: the external input I and the dynamic threshold θ are simplified 
into corresponding pixel values and an accelerated decrease model, respectively:  

 [ ]ij ijF n I=    (6) 

 
0

0 1
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where j[n] presents a monotonically decreased function. The whole process is as follows: the dynamic 
threshold θ descends linearly from its original θ1 to the terminal θ0, and thus all neurons were initially 
inhibited (guaranteed by θ1, meanwhile Y=0), and then transformed gradually to be activated. Once a 
neuron is activated, namely Yij=1, it will never be activated again (guaranteed by θij= inf+ ).  

During the simulation, each iteration updates the internal activity and the output for every neuron in 
the network, based on the stimulus signal from the image and the previous state of the network. For 
each iteration the TNF over the entire PCNN is computed and stored in a global array G. The following 
describes the details: 

 
Step 1. Initialize the range [θ0, θ1] of dynamic threshold. 
Step 2. Simplify the external input F into a corresponding gray value I, and set the inner linking 

matrix W to a 3 by 3 square matrix with the value of its elements being the reciprocal of square of the 
Euclidian distance between the central pixel and corresponding pixel. 

Step 3. Determine the expression of f(n) as follows: 

 1 0 0 1( )
( )

1
n NP

f n
NP

θ θ θ θ− + −
=

−
   (8) 

where NP presents the whole steps of PCNN which is usually at the range [10, 50]. 
Step 4. Perform the PCNN. Accumulate Y[i] and get 

 
1
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since Y[i]  are not overlapped, S[n] is also binary. With n augmented, the areas of “1” in S[j] will also 
be enlarged. 

Step 5. Obtain the TNF from S[n] 
 [ ] [ ], 1, 2, ,ij

ij

G n S n n NP= =∑ L    (10) 

G[n] is then used at next stage of the system. 
 
5. The Tsallis Entropy 
 

Entropy is usually used to describe the information contained in the system. Shannon defined the 
concept of information and described the essential components of a communication system as the 
following: a sender, a receiver, a communication channel, and an encoding of the information set. 

However, communication systems are less well defined when they occur in nature, such as the 
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neurons. Neurons appear to both senders and receivers of information. Another question is what are the 
communication channels for neurons. They might be the synaptic gaps between the axon and dendrites 
or not. The answer is not acceptable for neurophysiologists. A more question is what is the encoding of 
the information. There is no clear and obvious answer. 

In general, traditional Shannon entropy is not fit for measuring the information contained by PCNN. 
Thus, Tsallis entropy T is chosen for measuring the information contained in TNF. 

1
1 ( )

1

N q
ii

p x
T

q
=

−
=

−
∑           (11) 

where, q is a parameter that is greater than 0. x is a random variable with a domain of N informational 
symbols, x1 x2 L , xn. Note that, in the limit that q goes to 1, this reduces to the standard 
Boltzman-Gibbs-Shannon measure. 

In R. Sneddon’s work, he set q =2. However, in Section 8 we use an optimization algorithm to 
computer the optimal value of q. 
The information contained in TNF is calculated as in the following equation: 

 1 [ { [ ] 0} { [ ] 1}][ ]
1

q qp G n p G nT n
q

− = + =
=

−
  (12) 

where n stands for the current iteration. 
 

6. The MLP Classifier 
 

The classifier is basically a MLP. The neural architecture consists of one input layer, one hidden 
layer and one output neuron (Figure 3). The input layer contains a number of inputs equal to NP. Then, 
the hidden layer has an extension of about 10-20% of the input layer, here we suppose there are m 
neurons at the hidden layer, and the maximum steps is s. 

Because of the specific task, the output layer contained only one neuron. An output value of 1 is 
equivalent to target detection whereas a value of 0 means no target detection. A standard 
back-propagation algorithm is used for supervised training. 

 
7. Feature extraction and analysis experiments 
 

The experiments consist of three stages. Firstly we give an example of obtaining Tsallis entropy of 
TNF. Secondly we check the property of position, scale and rotation independence. 
 
7.1. Attaining the Tsallis entropy 
 

Take Lena as an example. First, we normalize the pixel values into the range [0, 1]. Then we 
perform PCNN with NP=20. Figure 3 shows s[n] at each step. 
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Figure 3. s[n] of each step of PCNN on Lena. (a) Step 1. (b) Step 2. (c) Step 3. (d) Step 4. 
(e) Step 5. (f) Step 6. (g) Step 7. (h) Step 8. (i) Step 9. (j) Step 10. (k) Step 11. (l) Step 12. 
(m) Step 13. (n) Step 14. (o) Step 15. (p) Step 16. (q) Step 17. (r) Step 18. (s) Step 19. (t) 
Step 20. 

(a)             (b)            (c)             (d) 

    
(e)            (f)             (g)             (h) 

    
(i)            (j)             (k)             (l) 

    
(m)            (n)             (o)             (p) 

    
(q)            (r)             (s)             (t) 

    
 
Hence, from Figure 4 it is easy to obtain TNF and the Tsallis entropy, which are shown in Figure 4. 

The values of TNF vary too large, which is not suitable for directly sended into MLP. And after 
transforming it to Tsallis entropy, the range of values is compressed to a small interval [0, 0.5]. 

The T[n] is not linear with the pattern of Figure 4(a). The maximum point of T[n] from Figure 4(b) 
is at 14. Then it is obvious that the 14th subimage in Figure 4 is the most obvious and has the largest 
contrast. Thus, T[n] can be understood as the measurement of pattern obviousness. 
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Figure 4. Feature extraction. (a) G[n]. (b) T[n]. 
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7.2. Translation, Scaling, and Rotation Independence 
 

We use the Tsallis entropy T[n] as the feature to classify different patterns. At this experiment we 
will check whether it is a translation, scaling and rotation invariant feature. We use simple geometric 
shapes as input images, two of them were shown in Figure 5. 

 
Figure 5. Shapes used for testing. (a) A rectangle. (b) A triangle. 

           
(a)                           (b) 

 
As expected, the system showed total translation independence. Then seven different scales of the 

rectangle were selected for testing scaling independence (Figure 6). We find that the T[n] obtained 
from these seven scales are quite similar to each other, which demonstrates that this proposed feature is 
scaling independent. Table 1 shows the feature extracted from different scales of the rectangle. Here 
MSE is the shortened form of “mean square error”. 
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Table 1. The impact of scaling (Size of the origin image is 200 pixels). 
Size T[n] MSE 

50 
0.0016, 0.0361, 0.1247, 0.2414, 0.3714, 0.4608, 0.4969, 0.4920, 0.4548, 
0.3875, 0.3233, 0.2516, 0.1813, 0.1100, 0.0612, 0.0423, 0.0245, 0.0135, 

0.0096, 0.0000 
3.9524e-3

100 
0.0006, 0.0280, 0.1163, 0.2376, 0.3657, 0.4581, 0.4967, 0.4930, 0.4539, 
0.3887, 0.3148, 0.2509, 0.1818, 0.1119, 0.0612, 0.0380, 0.0243, 0.0139, 

0.0086, 0.0000 
1.1543e-3

150 
0.0004, 0.0287, 0.1143, 0.2368, 0.3629, 0.4577, 0.4967, 0.4926, 0.4536, 
0.3908, 0.3169, 0.2482, 0.1809, 0.1098, 0.0603, 0.0379, 0.0239, 0.0142, 

0.0085, 0.0000 
7.59e-4 

200 
0.0006, 0.0288, 0.1167, 0.2371, 0.3634, 0.4579, 0.4968, 0.4925, 0.4533, 
0.3913, 0.3162, 0.2480, 0.1818, 0.1106, 0.0618, 0.0377, 0.0238, 0.0141, 

0.0090, 0.0000 
0 

250 
0.0004, 0.0285, 0.1165, 0.2381, 0.3635, 0.4583, 0.4967, 0.4926, 0.4539, 
0.3921, 0.3167, 0.2484, 0.1815, 0.1110, 0.0629, 0.0378, 0.0242, 0.0142, 

0.0088, 0.0000 
4.6218e-4

300 
0.0007, 0.0290, 0.1168, 0.2384, 0.3638, 0.4582, 0.4967, 0.4926, 0.4538, 
0.3923, 0.3165, 0.2487, 0.1817, 0.1116, 0.0627, 0.0377, 0.0240, 0.0143, 

0.0090, 0.0000 
5.2731e-4

350 
0.0006, 0.0294, 0.1168, 0.2389, 0.3639, 0.4584, 0.4967, 0.4925, 0.4537, 
0.3923, 0.3163, 0.2482, 0.1819, 0.1120, 0.0631, 0.0379, 0.0242, 0.0145, 

0.0090, 0.0000 
6.6282e-4

 
Figure 6. Seven different scales of the rectangle. (a) Size=50 pixels. (b) Size=100 pixels. 
(c) Size=150 pixels. (d) Size=200 pixels. (e) Size=250 pixels. (f) Size=300 pixels. (g) 
Size=350 pixels. 

      

 

  
 
As for the rotation independent, the triangle had been rotated at different angles and the MSE had 

been computed for each rotation. Results shown in Figure 7 prove that the maximum MSE is obtained 
for the two principal diagonals (45° and 135°), which seems the rotation independence is a bit weak 
especially at those two angles, but may be a clue indicating that the MSE is caused by pixel 
discretization [13]. Test on other hundreds of images also demonstrate the conclusion. 
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Figure 7. MSE for different rotation angles. 
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8. Face Recognition 
 

From Section 7 it is obvious that the features extracted via our model is effective. Hence, we apply 
this method to face recognition. The datasets come from the University of Essex School of Computer 
Science and Electronic Engineering website (http://cswww.essex.ac.uk/mv/allfaces/faces96.html). A 
sequence of 20 images per individual was taken. During the sequence the subject takes one step 
forward towards the camera. This movement is used to introduce significant head variations between 
images of same individual. There is about 0.5 s between successive frames in the sequence. Figure 8 
shows several typical faces used in this experiment. 

 
Figure 8. Several typical faces in the database. 

    

    
 
Each individual is averagely split into training and testing sets, namely, 10 images are used for 

training while the other 10 images are used for testing. The optimal parameters (q, NP, m, S) are 
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acquired by the guidance of bacterial chemotaxis optimization (BCO) described in Ref. [14]. The final 
values are as listed in Table 2. 

 
Table 2. The optimal parameters used in face recognition. 

Parameters q NP m S CR 
Value 1.86 20 4 50000 72.5%

 
The highest correct classification rate (CR) of our proposed algorithm has of 72.5%. Although it is 

not as ideal as some other mature face recognition algorithms, we consider it more potential since 
research on pattern recognition via PCNN is currently progressing. 

Firstly we adjust one parameter while fix others to check the robustness of our method. Firstly, the 
parameter q is tuned. The result is shown in Figure 9. 

 

Figure 9. The curve of CR with q. 
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From Figure 9, the classification rate remains an acceptable level (>70%) while q is in the interval 
[1.63 - 2.23]. It indicates that the algorithm is robust with q. The best value of q is 1.86. 

Secondly, the parameter NP was tuned while others remained unchanged. From Figure 10 it is 
obvious that when NP is less than 20, the CR improves with NP. As NP increases to 20, the CR 
remains nearly steady. Hence, NP is set as 20 taking calculation time into account. 

Finally we changed the value of m; the results are listed in Figure 11, which implies that the best 
value of m is 4. 

The three important parameters are analyzed above. It can conclude that the parameters are essential 
to the performance of this model. Hence, it is important for researchers to tune these parameters before 
the network works. 
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Figure 10. The curve of CR with NP. 
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Figure 11. The curve of CR with m. 
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9. Conclusion 
 

In this study, a novel feature extraction method was described and applied for face recognition. This 
paper is just the first attempt to explore the potential of Tsallis entropy of TNF obtained by PCNN to 
handle the face recognition problems. 

Experiments demonstrate that this new feature is unique, translation and scale independent. The 
future work shall focus on combining this proposed feature with others to improve the classification 
rate. Another possible research topic is to simplify the procedures in this model. Actually, PCNN does 
not need pre-training, so the calculation time is expected to decline faster. 

Furthermore, this proposed approach is new and potential. It can be applied on all sorts of 
recognition fields. 
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