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Abstract: In this paper the static pressure field of an annular swirling jet is measured in-
directly using stereo-PIV measurements. The pressure field is obtained from numerically
solving the Poisson equation, taken into account the axisymmetry of the flow. At the bound-
aries no assumptions are made and the exact boundary conditions are applied. Since all source
terms can be measured using stereo-PIV and the boundary conditions are exact, no assump-
tions other than axisymmetry had to be made in the calculation of the pressure field. The
advantage of this method of indirect pressure measurement is its high spatial resolution com-
pared to the traditional pitot probes. Moreover this method is non-intrusive while the insertion
of a pitot tube disturbs the flow. It is shown that the annular swirling flow can be divided into
three regimes: a low, an intermediate and a high swirling regime. The pressure field of the low
swirling regime is the superposition of the pressure field of the non-swirling jet and a swirl
induced pressure field due to the centrifugal forces of the rotating jet. As the swirl increases,
the swirl induced pressure field becomes dominant and for the intermediate and high swirling
regimes, the simple radial equilibrium equation holds.
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1. Introduction

The most widely used direct method to measure the static pressure in a flow field is by insertion of
a Pitot tube. However this method has some disadvantages. It disturbs the flow field and the probe
dimensions are in the order of a few mm. In order to obtain sufficient spatial resolution, the flow field
dimensions have to be very large compared to the probe dimensions. Since pressure and velocity are
linked by the Navier-Stokes equations, the static pressure can also be measured indirectly by measuring
the velocity field. The Navier-Stokes equations form a set of non-linear partial differential equations,
consisting of a continuity equation, three momentum equations and an energy equation. The momentum
equations are the link between the static pressure in the flow field and the velocity field. There exist
2 strategies to measure the pressure field indirectly. The first strategy is direct spatial integration of
the momentum equations [1, 2]. The pressure gradients are integrated directly, starting from reference
points in the flow field. In these reference points the pressure is known (Dirichlet boundary conditions)
and they are usually situated in the outer part of the flow field. The second strategy is solving a Poisson
equation for the pressure field [2, 3]. By taking the divergence of the momentum equations they can be
rewritten as a Poisson equation, with the source terms known from measurements. The pressure field is
then computed by solving the equation using the appropriate boundary conditions on each boundary of
the domain (Neumann or Dirichlet conditions).
In this paper a study is made of the static pressure field of a swirling annular jet. Three components
of velocity in a plane through the central axis are measured using stereoscopic PIV measurements. The
pressure field is computed by solving the Poisson equation using exact boundary conditions based on
the momentum equations. The mean flow field is found to be axisymmetric and hence all the source
terms in the Poisson equation could be determined. This approach differs from previous studies found
in literature which could not measure all source terms and additional assumptions had to be made for
the unknown values or for the boundary conditions. Four different swirl cases were investigated: a non-
swirling, a low, an intermediate and a high swirling jet. For a low swirling jet, the static pressure field
is the superposition of the pressure field of a non-swirling jet and a swirl induced pressure field. This
swirl induced pressure field originates as a balance of the centrifugal forces due to the rotating jet. As
the swirl is increased, it’s induced pressure field dominates and the radial momentum equation can be
simplified to the simple radial equilibrium equation, which is a balance between pressure gradients in
the radial direction and centrifugal forces.

2. Experimental procedure and flow measurement

2.1. Experimental setup

A schematic view of the experimental setup is shown in Fig. 1. Swirling air comes from a moveable
block swirl generator [4] and enters an annular channel with outer radius Ro = 13.5 mm, inner radius
Ri = 0.65 Ro and length 4 Do. The area blockage ratio B of the jet, defined as the ratio between the
inner and outer surface of the annular channel or B = R2

i /R
2
o, is 0.42. The channel expands into

the quiescent surroundings (free jet). More details concerning the air supply and swirl generator can be
found in the study of Vanierschot et al. [5]. The x-axis of the cylindrical polar coordinate system (x, r, θ)
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Figure 1. Schematic view of the experimental configuration, the measurement domain
(dashed line) and the boundary conditions for solving the Poisson equation for pressure.
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is coincident with the central axis of the annulus and the origin is located at the exit of the channel. The
Reynolds number is 15500 and is based on the mean axial velocity U0, the hydraulic diameter of the
annular channel, Do − Di, and the viscosity of air at 20oC, ν = 15.1 mm2/s. The dimensionless swirl
number S, first proposed by Beér et al. [6], expresses the amount of rotation of the flow. It is defined as

S =

∫ Ro

Ri
UWr2dr

Ro

∫ Ro

Ri
U2rdr

, (1)

with U and W the local mean velocities in the axial and azimuthal direction respectively. In this paper,
a total of 4 different swirl numbers S are investigated: one at zero swirl, one at low swirl (S = 0.18), one
at intermediate swirl (S = 0.37) and one at high swirl (S = 0.74).

2.2. Velocity measurement technique

The flow field is measured using the stereoscopic particle image velocimetry (PIV) technique. A
photo of the experimental configuration is shown in Fig. 2. A Dual Cavity Nd:YLF Pegasus-PIV laser
from NewWave, with a wavelength of 527 nm and a pulse energy of 10mJ @ 1000Hz, generates a green
light sheet perpendicular to the exit of the annular channel. The sheet lies in a (xr)-plane through the
central axis. This allows for the simultaneous measurement of the axial (U), radial (V) and azimuthal
(W) velocity components. The flow is seeded with small droplets of oil (diameters between 0.2 and 1
µm), generated by a Palas type AGF 10.0 Liquid Nebulizer. The separation time between the two pulses,
15 µs, is chosen as large as possible fulfilling the conditions that the maximum out-of-plane displacement
is less than 1/4 of the light sheet thickness and the maximum in-plane pixel displacement is within 1/4 of
the interrogation window size [7]. The PIV images are taken using 2 ’HighSpeedStar 5’ CMOS cameras,
with a resolution of 1024 x 1024 px, mounted in the forward scatter direction under an angle of about 45
degrees with the laser sheet plane. The dimensions of the measurement plane are shown in Fig. 1. The
recording technique used is ’double frame / double exposure’ meaning that the 2 light pulses are recorded
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Figure 2. Photo of the experimental configuration.
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on 2 different images. The correlation peak is determined using cross-correlation of these two images.
The calculation of the velocity vectors is done using the DaVis 7.1 Software of LaVision GmbH. This
software is used only for this purpose and all the other post-processing is done using in-house developed
software. In order to obtain a good spatial accuracy and a minimization of spurious data, the velocity
vectors are calculated iteratively using window deformation. The process starts at an interrogation area
of 32x32 pixels and after 5 iterations convergence is reached with a final interrogation area of 12x12
pixels with 50% overlap. The amount of spurious vectors is well below 1%. They are detected and
removed by a median test as first proposed by Westerweel [8]. Calibration of the PIV system is done
by means of fitting a camera pinhole model to the two cameras using a 3D calibration plate [9]. The
obtained scale factor of the images yields a distance of 0.5 mm between two neighboring vectors in both
streamwise and transverse direction. Compared to the typical dimensions of a pitot tube, this is a factor
of four smaller in spatial resolution.
When calculating time averaged properties of a flow, an error is introduced by computing statistical
quantities from a finite number of data samples. In this study N = 1024 measurements are taken for
each swirl case. The acquisition frequency of the measurements is 125 Hz in order to obtain statistically
independent samples. Using the theory of signal analysis, as described in Bendat et al. [10], the relative
errors on the mean velocities are around 2% and the errors on the rms and shear stresses 4.3% and 6.1%
respectively in the entire measurement domain. More details concerning the measurement errors and a
validation of the PIV measurements can be found in the study of Vanierschot et al. [5].

3. Indirect pressure measurement using stereoscopic PIV data

3.1. Equations of motion

The Navier-Stokes equations who describe the motion of an incompressible, newtonian fluid are given
by the continuity equation,

∇ · U = 0, (2)
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and the momentum equations

∂U
∂t

+ U · ∇U = −1

ρ
∇p + ν∇2U, (3)

with U the velocity vector, ρ the density and ν the kinematic viscosity of the fluid and p the static
pressure. For turbulent flows, the velocity field can be decomposed into a mean flow U and a fluctuating
component u. For the annular jet flow in this study, the viscous terms in Eq. 3 can be neglected. As
confirmed by the measurements, these terms are several orders of magnitude smaller than the other ones.
Filling into Eq. 3 and taking the time average of the momentum equations results into the following
expression in cylindrical coordinates (the bars are left out for the time-averaged quantities)

− 1

ρ

∂P

∂x
= U

∂U

∂x
+ V

∂U

∂r
+

∂uu

∂x
+

1

r

∂ruv

∂r
(4)

for the momentum equation in the axial direction and

− 1

ρ

∂P

∂r
= U

∂V

∂x
+ V

∂V

∂r
+

∂uv

∂x
+

1

r

∂rvv

∂r
− W 2

r
− ww

r
(5)

for the momentum equation in the radial direction. In these expressions U, V and W are the mean ve-
locities in the axial (x), the radial (r) and the azimuthal (θ) direction. The terms uu, uv, vv and ww arise
from the time averaging of the turbulent fluctuations and are called Reynolds stresses.
The above momentum equations in the axial and radial direction describe a relation between the pressure
field and the velocity field. By taking the divergence of Eqs. 4 and 5 and taking into account the continu-
ity equation, one obtains an expression for the Laplacian of the pressure field for an axisymmetric flow
as

− 1

ρ
∇2P =

(
∂U

∂x

)2

+2
∂U

∂r

∂V

∂x
+

(
∂V

∂r

)2

+
V 2

r2
+

∂2uu

∂x2
+

2

r

∂2ruv

∂r∂x
+

1

r
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∂r2
− 1

r

∂

∂r

(
W 2 + ww

)
, (6)

where ∇2P in cylindrical coordinates is given by

∇2P =
∂2P

∂x2
+

1

r

∂

∂r

(
r
∂P

∂r

)
. (7)

The assumption of axisymmetry is validated as the measurements confirm the velocity profiles are sym-
metric within measurement accuracy for all swirl cases. Equation 6 expresses the relation between
the time averaged pressure field and the time averaged velocity field and the Reynolds stresses. Since
stereo-PIV measures the three velocity components at the same time, all terms on the RHS of Eq. 6 can
be determined. Using the propagation of errors, the measurement uncertainty on the RHS of Eq. 6 is
estimated to be around 4%. In order to solve the Poisson equation, a boundary condition needs to be
specified for each boundary of the measurement domain. An overview of the applied boundary condi-
tions is shown in Fig. 1. The first boundary lies in the quiescent environment at r/Ro = 1.6. In this
region, the pressure is very close to the environmental pressure [11]. Equation 6 calculates the pressure
relatively to an arbitrary value, so if one wants to calculate the pressure difference with the surroundings,
the pressure on this boundary is taken to be zero. For boundary two and four the pressure is not known
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and a Neumann boundary condition is applied. On these boundaries ∂p/∂x can be calculated, based on
Eq. 4. On boundary three (the central axis) a symmetry condition is applied in the radial direction, given
∂p/∂r = 0.

3.2. Discretisation schemes

The velocity is measured in Np = 2183 equidistant points, 37 in the radial and 59 in the axial direction.
To determine the static pressure pi,j in an internal point (point not on a boundary of the measurement
domain) with coordinate i in the axial and j in the radial direction, the first and second order gradients
in Eq. 6 need to be calculated. These gradients are approximated by a second order central difference
scheme. The first and second order derivatives of the pressure pi,j are calculated as

∂p

∂x

∣∣∣∣
i,j

≈ pi+1,j − pi−1,j

2∆x
, (8)

∂2p

∂x2

∣∣∣∣
i,j

≈ pi+1,j − 2pi,j + pi−1,j

(∆x)2 , (9)

where ∆x is the axial distance between two measurement points. A similar expression can be found for
the gradients in the radial direction ∂p/∂r and ∂2p/∂r2.
The boundary condition for boundary 1 gives the equation pi,j = 0 (Dirichlet condition). On boundary
two, Eq. 4 is applied (Neumann condition). The LHS on boundary 2 is calculated using a second order
upwind discretisation scheme which yields:

∂p

∂x

∣∣∣∣
i,j

≈ 3pi − 4pi−1,j + pi−2,j

2∆x
. (10)

For the central axis on boundary 3 the partial derivative of the pressure is discretised using a second
order upwind scheme giving for a symmetry boundary condition

∂p

∂r

∣∣∣∣
i,j

≈ −pi,j+2 + 4pi,j+1 − 3pi,j

2∆r
= 0. (11)

Finally, the LHS of Eq. 4 on boundary 4 is calculated using a second order upwind scheme as

∂p

∂x

∣∣∣∣
i,j

≈ −pi+2,j + 4pi+1,j − 3pi,j

2∆x
. (12)

Using a grid study in combination with Richardson extrapolation, the discretisation error is estimated to
be around 5%. The discretisation of Eq. 6 in combination with the boundary conditions leads to a set of
algebraic equations with the pressure in the measurement points as the unknowns. This set of equations
can be written in matrix notation as C ·P = S, where C (Np×Np) is the coefficient matrix, P (Np×1)
is a vector with the unknown pressures and S (Np × 1) a vector with the source terms of the poisson
equation or the RHS of the boundary conditions. The unknown pressures can then be determined by
multiplying the matrix inversion of C with S.
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Figure 3. Flowfield of the annular jet at S = 0.
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4. Results and discussion

4.1. Non swirling jet, S=0

The flow field of the non-swirling jet is shown in Fig. 3. The central tube of the jet acts as a bluff
body to the flow, creating a central recirculation zone (CRZ) behind it. As shown in Fig. 4(a), this CRZ
is an axisymmetric standing vortex with two centers. Downstream the CRZ closes at the stagnation
point on the central axis at x/Do ≈ 0.6. The axial velocity profile behind the central tube is wake like
with a static pressure inside the CRZ which is sub-atmospheric. Figure 4(b) shows the normalised static
pressure P/(ρU2

0 )). A local pressure minimum is situated at the centers of the CRZ. Local pressure
minima that exist at the center of vortices can be used as a vortex identification criterion [13]. Near

Figure 4. Normalised static pressure profile along the central axis. ¥: data from Ko et
al. [11], •: data from Chigier et al. [12], ¤: data from this study.
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Figure 5. Normalised static pressure P/(ρU2
0 ) of the annular jet at S = 0.18.
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the stagnation point a pressure maximum is situated due to the decrease of velocity at the stagnation
point according to the law of Bernouilli. Further downstream the pressure evolves towards atmospheric
conditions. The non-swirling annular jet is a well known flow case in literature [5, 11, 12]. Figure 4
shows the normalised static pressure profile at the central axis of the geometry. This profile depends on
the inlet velocity profile and the area blockage ratio B of the jet. For the geometry in this study, B =
0.42. The obtained pressure profile agrees very well with the one in the study of Chigier et al. for which
B was 0.43 [12]. The small differences are most likely attributed to the different inlet velocity profiles
in both studies. The study of Ko et al. differs significantly. The difference is attributed to the value of B

= 0.20 in their study.

Figure 6. Decomposition of the pressure field of the annular jet at S = 0.18.
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4.2. Low swirling jet, S=0.18

The pressure field of the swirling jet with swirl number S = 0.18 is shown in Fig. 5. At the central
axis a large region of sub-atmospheric pressure originates from a balance of the centrifugal forces by
radial pressure gradients. The centrifugal forces are described by the term ρW 2/r in the radial mo-
mentum equation, Eq. 5. Downstream of the CRZ the streamlines are turned towards the central axis
(Fig. 4(a)) and little downstream of the stagnation point, the jet streamlines reach their minimum radius.
Since the conservation of angular momentum states that rW is constant along a streamline, a region of
high azimuthal velocity exists immediately downstream of the stagnation point [5]. The high tangential
velocities at low radius create large pressure gradients in the radial direction which yields the region of
low pressure in Fig. 5.
To study the influence of swirl on the static pressure field, let us now consider a decomposition of the
pressure field into a swirl induced component PS and a non-swirl component P0 as P = PS + P0. Filling
this decomposition into Eq. 6 results into an expression for PS as

1

ρ
∇2PS =

1

r

∂W 2

∂r
. (13)

Both pressure fields are shown in Fig. 6. Comparing Fig. 5 with Fig. 6 shows that near the nozzle P0

is dominant. Further downstream, x/Do > 0.5, PS is dominant and P0 is negligible. Comparing P0 in
Fig. 7(a) with P of the non-swirling jet in Fig. 4(b) shows that both pressure fields are very similar. The
mean relative error between the two pressure fields, defined as (P0 − P )/P , is 2 %. In other words, the
static pressure field of a low swirling annular jet without the swirl induced pressure term in the poisson
equation is approximately the same as the pressure field of the corresponding non-swirling jet. This was
also shown in a study by Vanierschot et al. [5]. Hence the pressure field of a low swirling jet is the linear
superposition of the pressure field of a non-swirling jet and a swirl induced pressure field.

Figure 7. Normalised static pressure P/(ρU2
0 ) of the annular jet at S = 0.37.
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Figure 8. Decomposition of the pressure field of the annular jet at S = 0.37.
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4.3. Intermediate swirling jet, S=0.37

As the swirl is further increased, the static pressure in the low pressure region decreases as the az-
imuthal velocities increase (Fig. 7). The centrifugal forces create large pressure gradients near the central
axis. Moreover the decrease of azimuthal velocity downstream yields to a positive pressure gradient in
the axial direction. When this pressure gradient is sufficiently large, a region of recirculation along the
central axis appears, called vortex breakdown. A comprehensive review on vortex breakdown can be
found in the review article of Lucca-Negro and O’Doherty [14]. The decomposition of the pressure field
in Fig. 8 shows that PS is dominant in the entire flow field and P0 is much smaller. As a result, Eq. 5 can
be simplified to

Figure 9. Normalised static pressure P/(ρU2
0 ) of the annular jet at S = 0.74.
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Figure 10. Decomposition of the pressure field of the annular jet at S = 0.74.
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∂P

∂r
= ρ

W 2

r
. (14)

This equation is called the simplified radial equilibrium equation as it is the balance between pressure
gradients and centrifugal forces [15].

4.4. High swirling jet, S=0.74

As the swirl is further increased, the centrifugal forces increase the radial expansion of the jet. The
vortex breakdown bubble grows as the region of recirculation along the central axis increases. This
yields a decrease of the azimuthal velocities near the central axis, which in turn decreases the pressure
gradients in this region. Hence the sub-pressure near the nozzle decreases as can be seen by comparing
Fig. 7 with 9. For the high swirling jet the largest pressure gradients are situated inside the jet, close
to the nozzle and not further downstream around the central axis as was the case for the intermediate
swirling jet. A decomposition of the pressure field in P0 and PS as in Fig. 10 shows the former is
negligible compared to the latter. For high swirling jets, the radial momentum equation is dominated by
the centrifugal forces and the simple radial equilibrium equation, Eq. 14, is valid.

4.5. Conclusions

In this paper the static pressure field of an annular swirling jet is measured indirectly using veloc-
ity field measurements. The pressure is computed by numerically solving the Poisson equation with
the appropriate boundary conditions. The source terms of the Poisson equation are measured using
stereoscopic-PIV. The advantages of this indirect method compared to the direct measurement by pitot
tubes are an increased spatial resolution and the non-intrusive character of the technique. Four different
swirl cases were investigated: a non-swirling, a low, an intermediate and a high swirling jet. For a low
swirling jet, the static pressure field is the superposition of the pressure field of a non-swirling jet and



Sensors 2008, 8 7607

a swirl induced pressure field. This swirl induced pressure field originates from the creation of radial
pressure gradients to balance the centrifugal forces of the rotating jet. As the swirl is increased, the swirl
induced pressure field dominates and the radial momentum equation can be simplified to the simple ra-
dial equilibrium equation, which expresses the balance between pressure gradients in the radial direction
and centrifugal forces.

Acknowledgements

The authors gratefully acknowledge the funding of this work by the Onderzoeksfonds K.U.Leuven/
Research fund K.U.Leuven.

References and Notes

1. van Oudheusden, B.; Scarano, F.; Roosenboom, E.; Casimiri, E.; Souverein, L. Evaluation of
integral forces and pressure fields from planar velocimetry data for incompressible flows. Exp.
Fluids 2007, 43, 153–162.

2. de Kat, R.; van Oudheusden, B.; Scarano, F. Instantaneous planar pressure field determination
around a square-section cylinder based on time-resolved stereo-piv. In 14th Int. Symp. on Applica-
tions of Laser Techniques to Fluid Mechanics. Lisbon, Portugal, (July 07-10 2008).

3. Gurka, R.; Liberzon, A.; Hefetz, D.; Rubinstein, D.; Shavit, U. Computation of pressure distribution
using piv velocity data. In 3rd Int. Workshop on PIV. Santa Barbara, CA, 1999, pp. 101–106.

4. Leuckel, W. Swirl intensities, swirl types and energy losses of diffe-rent swirl generating devices.
Technical Report G02/a/16, International Flame Research Foundation, Ijmuiden, The Netherlands,
1969.

5. Vanierschot, M.; Van den Bulck, E. Influence of swirl on the initial merging zone of a turbulent
annular jet. Phys. Fluids 2008, 20, 1–18.

6. Beér, J.; Chigier, N. Combustion Aerodynamics. Robert E. Krieger Publishing Company Inc.,
Malabar, FL, 1983.

7. Raffel, M.; Willert, C.; Kompenhans, J. Partical Image Velocimetry, A practical Guide. Springer-
Verlag, Heidelberg, Germany, 1998.

8. Westerweel, J. Efficient detection of spurious vectors in particle image velocimetry data. Exp.
Fluids 1994, 16, 236–247.

9. Willert, C. Stereoscopic digital particle image velocimetry for application in wind tunnel flows.
Meas. Sci. Technol. 1997, 8, 1465–1479.

10. Bendat, J.; Piersol, A. Random Data: Analysis and Measurement Procedures. Wiley, New York,
NY, 3rd Ed., 2000.

11. Ko, N.; Chan, W. The inner regions of annular jets. J. Fluid Mech. 1979, 93, 549–584.
12. Chigier, N.; Beer, J. The flow region near the nozzle in double concentric jets. Trans. ASME, J.

Basic Engng. D 1964, 86, 797–804.
13. Jeong, J.; Hussain, F. On the identification of a vortex. J. Fluid Mech. 1995, 285, 69–94.
14. Lucca-Negro, O.; O’Doherty, T. Vortex breakdown: a review. Prog. Energy Combust. Sci. 2001,

27, 431–481.



Sensors 2008, 8 7608

15. Gupta, A. K.; Lilley, D. G.; Syred, N. Swirl Flows. Tunbridge Wells, Kent, UK, 1984.

c© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.
This article is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution license (http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Experimental procedure and flow measurement
	Experimental setup
	Velocity measurement technique

	Indirect pressure measurement using stereoscopic PIV data
	Equations of motion
	Discretisation schemes

	Results and discussion
	Non swirling jet, S=0
	Low swirling jet, S=0.18
	Intermediate swirling jet, S=0.37
	High swirling jet, S=0.74
	Conclusions

	References and Notes

