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Abstract: A new signal processing algorithm for absolute temperature measurement using 

white light interferometry has been proposed and investigated theoretically. The proposed 

algorithm determines the phase delay of an interferometer with very high precision (<< one 

fringe) by identifying the zero order fringe peak of cross-correlation of two fringe scans of 

white light interferometer. The algorithm features cross-correlation of interferometer fringe 

scans, hypothesis testing and fine tuning. The hypothesis test looks for a zero order fringe 

peak candidate about which the cross-correlation is symmetric minimizing the uncertainty 

of mis-identification. Fine tuning provides the proposed algorithm with high precision sub-

sample resolution phase delay estimation capability. The shot noise limited performance of 

the proposed algorithm has been analyzed using computer simulations. Root-mean-square 

(RMS) phase error of the estimated zero order fringe peak has been calculated for the 

changes of three different parameters (SNR, fringe scan sample rate, coherence length of 

light source). Computer simulations showed that the proposed signal processing algorithm 

identified the zero order fringe peak with a miss rate of 3 x 10-4 at 31 dB SNR and the 

extrapolated miss rate at 35 dB was 3 x 10-8. Also, at 35 dB SNR, RMS phase error less 

than 10-3 fringe was obtained. The proposed signal processing algorithm uses a software 

approach that is potentially inexpensive, simple and fast. 

Keywords: Phase delay estimation, white light interferometry, signal processing algorithm, 

fine tuning 
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1. Introduction  

 

Although fiber optic interferometric sensors offer the possibility of performing measurements with 

very high sensitivity and resolution [1], they suffer from problems such as complex signal processing 

techniques, quadrature point stabilization, and uncertainty as to whether an increase or decrease in the 

value of measurands has occurred. In order to fully utilize the capability of fiber optic sensors, a 

different sensing principle termed as “white light interferometer” or “white light interferometry (WLI)” 

was developed [2].  

 

Figure 1. All Fiber White Light Interferometer. 

Light 
source

SLD

PZT2

PZT1

PD1

PD2

Sensing FFPI

Reference FFPI

Data acquisition
and 

signal processing

time

Photodetector

AFMZI

Directional 
coupler

SAWV

SAWV

Light 
source

SLD

PZT2

PZT1

PD1

PD2

Sensing FFPI

Reference FFPI

Data acquisition
and 

signal processing

time

Photodetector

AFMZI

Directional 
coupler

SAWV

SAWV

 
 

From the beginning of this research, an all fiber white light interferometry (AFWLI) absolute 

temperature measurement system as shown in Figure 1 was selected as the application area of the 

proposed signal processing algorithm. White light interferometry departs from the conventional 

interferometry in that it uses a broadband light source. SLD in Figure 1 represents a superluminescent 

diode (SLD) used as a broadband light source and PD1, PD2 denote photodetectors 1 and 2, 

respectively. In the AFWLI two fiber Fabry-Perot interferometers (FFPI, sensing FFPI and reference 

FFPI in Figure 1) and a Mach-Zehnder Interferometer as a processing interferometer (scanning 

interferometer in Figure 1, hereafter termed as MZI), which has two piezoelectric transducers 

(hereafter termed as PZT) in its two arms, are connected in tandem. The sensing and the reference 
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interferometer output signals from PD1 (Equation 1 for PD1) and PD2 (Equation 2 for PD2) are given 

respectively by: 
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where LC is the coherence length of light source, ΦP is the OPD (Optical Path-length Difference) 

between two arms of Mach-Zehnder processing interferometer and ΦS, ΦR are the round trip phase 

shifts for the sensing and reference FFPIs, respectively. In Equation 1 and Equation 2 it is assumed that 

light source has a Gaussian power spectrum. A constant d.c. voltage VDC (100~150 volt, Figure 1) is 

applied to the PZT1 in one arm to coarsely match the OPD of the MZI to that of the sensing FFPI. And 

an alternating ramp voltage VSAW  (Figure 1) is applied to PZT2 in the other arm to scan the processing 

interferometer so that OPD ΦP between two arms of MZI can be varied over a certain range.  

 

Figure 2. Output of sensing and reference FFPI from AFWLI. 
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This AFWLI for temperature measurement produces two fringe scans, one from the sensing FFPI 

and another one from the reference FFPI, as shown Figure 2. In AFWLI, the sensing FFPI is exposed 

to the temperature TS to be measured and the reference FFPI is protected from environmental 

disturbances but exposed to the known reference temperature TR. Now, assume that the known 

temperature of the sensing FFPI and the reference FFPI are TS and TR, respectively. When the phase ΦP  

of MZI is scanned and exactly matched to that of the sensing FFPI (the reference FFPI), a zero order 

fringe peak of the sensing FFPI (the reference FFPI) is produced at certain ΦP = ΦP,S  (ΦP = ΦP,R), as 

shown in Figure 2. In Figure 2, ΦP,S (ΦP,R) denotes the phase of the processing interferometer 

producing the zero order fringe peak of the sensing FFPI (the reference FFPI). If we can identify the 

phase difference Φd = ΦP,S – ΦP,R (this is possible by the proposed signal processing algorithm which 

will be shown later in this article) then Φd is mapped to the temperature TS and absolute temperature 
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measurement is possible. This problem has been known as “Time Delay Estimation (TDE) [3] (or 

Phase Delay Estimation)”. In this article, a new signal processing algorithm to estimate the phase delay 

Φd of AFWLI is proposed. This article consists of five sections. Section 2 describes the previous 

related works for time delay estimation methods. In Section 3, a signal processing algorithm to 

measure the phase difference Φd of AFWLI is proposed. In Section 4 the performance of the proposed 

signal processing algorithm has been demonstrated using computer simulations. Section 5 shows the 

comparison to the previous literature and Section 6 is the conclusion of this article.  

 

2. Previous works 

 

Two major classes of signal processing algorithms for WLI are the hardware approach and the 

software approach. Both approaches have a more or less “tracking zero order fringe peak” feature. 

Gerges proposed a hardware approach which locks the zero order fringe position of interferometer by a 

feedback loop [4]. An improvement of the sensitivity up to 1/240 fringe was claimed. To the author’s 

best knowledge this method, while still dependent on the incremental characteristic of laser 

interferometry and not fully taking advantage of WLI’s potential to identify the interference fringe, 

demonstrated the feasibility of locking and tracking the fringe peak for absolute measurement for the 

first time. 

There are many software algorithms to estimate phase delay Φd [3, 5]. Among many detection 

methods, the cross-correlation method dominates the field of phase delay estimation in practice due to 

its easier implementation [6]. Many other TDE methods are based on this algorithm. The cross-

correlation method cross-correlates the two fringe signals iS (n) and iR (n), which are sampled versions 

of IS(ΦP) and IR(ΦP) respectively, into i (n) and considers the sample number argument n=nd that 

corresponds to the maximum peak in cross-correlation i (n) as the estimated time delay [7].  
While WLI has the potential to identify the interference fringe order from the output pattern of an 

interferometer [8], it is difficult to distinguish the zero order fringe peak from its adjacent first order 

fringe peaks when noise is present in the interferometer output, as shown in Figure 3. From Equations 

1 and 2, the amplitude difference ∆I between the zero order fringe peak and the first order fringe peaks 

is represented as:  
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Clearly, if a system has a noise level which is equal or greater than ∆I  the zero order fringe peak 

cannot be identified directly, simply through inspection of its amplitude. If the normalized zero order 

fringe peak value is defined as unit signal, a minimum signal-to-noise ratio SNRmin required to identify 

the zero order fringe peak [9] is given by 
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Representative values of the coherence length of different light sources like white light lamp, light 

emitting diode (LED), superluminescent diode (SLD), are about 10, 20, and 40 in terms of optical 

fringes. The SNRmin required to identify the zero order fringe peak by amplitude difference ∆I  is given 
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from Equation 3 as 28 dB, 40 dB, and 52 dB respectively [9]. One disadvantage related to cross-
correlation is the broadening of envelope (or peak) (hereafter termed as envelope) from LC to CL2  

due to the cross-correlation of two almost identical Gaussian envelope signals [17]. This results in 

higher SNRmin in Equation 3 requiring 6 dB more than before cross correlation. Then, with this 

broadening, the attainable resolution is often not better than one fringe and a precise peak location may 

be somewhat questionable. This difficulty has inhibited the application of fiber optic sensors using 

WLI, for example, absolute OPD determination [9]. 

 

Figure 3. Output of white light interferometer ( IS in Equation 1 or IR in Equation 2). 
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Additionally, once the zero order fringe peak is identified, then for a more accurate sub-sample 

resolution time delay estimation we will have to use interpolation which is possible by either quadratic 

interpolation in time domain or frequency domain zero-padding [10, 11]. But quadratic interpolation 

uses three cross-correlation values centered at the estimated peak of cross-correlation. This method has 

a shortcoming of bias caused by time domain sample rate [12, 13] and the difference between true 

peak shape and the fitted quadratic polynomial. In frequency domain zero-padding, the number of 

zeros are padded in the middle of Fourier Transform of cross-correlation i(n). Notice that zero-padding 

in frequency domain increases the discrete frequency by a certain factor which eventually results in 

time-domain interpolation in cross-correlation signal i(n). Zero-padding in frequency domain is a 

useful tool to improve the peak location accuracy, but it increases the computational complexity [14] 

and storage requirement associated with inverse Fast Fourier Transform (FFT) operations [15]. 

Notwithstanding the above mentioned shortcomings, cross-correlation is a still useful tool for time 

delay estimation as shown that cross-correlation with no pre-filtering is an optimal maximum 

likelihood estimator to estimate the time delay between two similar signals if the noise processes wR 
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(n), wS (n) of signal iR (n), iS (n) are white noises and at least one of signals has high signal-to-noise 

ratio greater than 10 dB [16]. 

The outcome of the time delay estimation depends on the combined performance of coarse 

estimation (zero order fringe peak identification) and sub-sample resolution estimation of time delay. 

In this article, a new signal processing algorithm which can accurately identify the zero order fringe 

peak of cross-correlation i (n) of two fringe scan output signals of a WLI is proposed. This algorithm 

still uses a cross-correlation technique taking advantage of simple implementation. But this algorithm 

combines the hypothesis test as a coarse estimation to reduce the possibility of mis-identification of 

peak with fine tuning algorithm as a sub-sample resolution peak estimation to overcome the 

shortcomings of quadratic interpolation or frequency domain zero-padding. 

The proposed signal processing algorithm uses a software approach, which is potentially 

inexpensive, simple and fast. And, this proposed signal processing algorithm has a low peak mis-

identification rate of 3 x 10-4 at 31 dB SNR and has a high precision fine tuning capability down to 5 x 

10-4  fringe as will be shown from the computer simulation results. 

 

3. Proposed Signal Processing Algorithm 

 

The proposed signal processing algorithm consists of five steps applied to sampled signal of WLI 

fringe scans. They are: 

1) Normalization and cross-correlation 

2) Peak and zero crossing detection 

3) Matched filtering  

4) Hypothesis test 

5) Fine Tuning 

Each procedure is explained briefly below. 

 

3.1. Normalization and cross-correlation 

 

As a preliminary procedure, the output of photodetector signals IS (ΦP) and IR (ΦP) are sampled and 

normalized respectively into fringe scan iS (n) and iR(n): 
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where nS  is zero order fringe peak sample number for sensing FFPI, nR  is zero order fringe peak 

sample number for reference FFPI,  fS is the sample rate in samples per fringe (or samples/fringe). A 

normalization procedure is carried out by removing the d.c. component (constant “1” in Equation 1 

and Equation 2) of each fringe scan. wS(n) and wR(n) are the white noise related to the fringe scan iS (n) 
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and i R(n) respectively with zero mean and variance 2
w . The phase delay between the sensing FFPI 

and the reference FFPI is defined in terms of samples as: 

  RSd nnn     (6) 

After normalization, iS (n) and iR (n) are cross-correlated into i(n) and normalized again. Cross-

correlation i(n)  can be expressed in mathematical form with its zero order fringe peak p0 at n=nd as 

shown in Equation 7.  
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In Equation 7 the effective coherence length LC,eff  is given as CL2  [17] and )(nw  is a white noise 

of )(ni . Exponential term in Equation 7 is termed as “the envelope” of cross-correlation i(n). This 

cross-correlation improves SNR at zero order fringe peak up to 14 dB [17]. One disadvantage related to 

cross-correlation is the broadening of peak from LC to CL2  due to the cross-correlation of two 

(almost) identical Gaussian envelope signals [17]. For example, this results in higher SNRmin in 

Equation 6 requiring 6 [dB] more than before cross-correlation when LC=26λ, but this will be 

compensated by 14 dB SNR improvement at the zero order fringe peak [17]. After cross-correlation, 

the task of the signal processing algorithm becomes to find a zero order fringe peak p0=nd (global 

maximum) of cross-correlation i (n) correctly. 
 

3.2. Peak and Zero-crossing Detection  

 

At this stage, all the peaks pi, all the minima qi  and all the zero crossings zi  of the cross-correlation  

i(n) are detected and registered. Every peak is labeled as pi  where its value p0=nd  is zero order fringe 

peak position, p-1 is negative first order fringe peak position, p1 is positive first order fringe peak 

position in terms of sample number and so on. Also every zero crossing between peak pi and minimum 

qi is detected and labeled as zj  where j=1,2,3…in terms of sample number. Then zero crossing position 

zj  with sub-sample resolution is calculated [9] by using interpolation formula as shown in Equation 8, 

Equation 9 and Figure 4. 
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Linear interpolation is the reasonable method because the cosine function crosses the zero 

essentially as a straight line as shown in Figure 4. 
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Figure 4. Linear Interpolation and zero crossing. 
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Table 1 shows one example of peak and zero crossing table. Note that in this table peak position is a 

integer number but zero crossing is not necessarily a integer number due to the interpolation 

calculation shown in Equation 8 and Equation 9. 

 

Table 1. Example of peak and zero crossing table ( fS =20  [samples/fringe]). 

Peak and zero crossing label 0p  100z  1q  101z  1p  

Position 35 39.34 45 50.13 55 

 

Figure 5. Least Square Fit of zero crossing positions. 
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Then the zero crossing period b is calculated by fitting all the zj  into the form of:  

 abnny )(  ZN...,3,2,1nfor    (10a) 

by applying least square fitting to the distance between all pairs of zero (zj and zj+1) as shown Figure 5 

where NZ is the total number of zero crossings in i(n). In Figure 5 the slope b of the y (n) is the 

estimated number of samples inside half fringe (or half the sample rate) and the estimated sample rate 

is given by: 

 Sf̂  b2  (10b)  

where [2b] is the closest integer number of 2b. 

 

3.3. Matched Filtering  

 

A matched filter is the optimum filter to maximize the SNR of signal out of the matched filter in the 

presence of additive stochastic noise at input signal [18]. Consider the case where the input signal is 

s(t) and n(t) is the white noise with zero mean, variance 2
N  related to s(t). In this case, matched filter 

theory states that the maximum SNR at the output will occur when the matched filter has an impulse 

response h(t)=s(t0-t) that is equal to the time-reversed version of the signal waveform s(t) to which 

matched filter is matched and time-delayed by certain t0 [second]. When input signal s(t) is time-

limited signal existing only when 0< t <T  then the matched filter is defined by [18]: 
)()( tTsth    (11a) 

Note that the output s0(t) of the matched filter, which is the convolution of s(t)  and h(t)=s(T-t), is 

given by: 
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Figure 6. Matched filtering. 

 

T t T t T t0 2T

A A

)(ts )()( tTsth 

TA2

)()()( tsthtso 

T t T t T t0 2T

A A

)(ts )()( tTsth 

TA2

)()()( tsthtso 

 
 

In Equation 11b s0(t) is the cross-correlation of the time-reversed version of input signal s(t) (i.e. s(-

t)) with h(t)=s(T-t), which is denoted as Rs(-t)h(t)(t). But s(-t) and h(t) are identical two waveforms with 

time distance T separated and s0(t)=Rs(-t)h(t)(t) becomes Rss(t-T) when Rss(t) denotes the autocorrelation 

Rss(t) of input signal s(t). Then s0(t) has its maximum value when t=T and this maximum value is same 

as the Rss(0) of autocorrelation Rss(t) of input signal s(t). 

Thus if we process a signal-plus-noise with a matched filter, the largest peak outputs due to the 

signal will correspond to Rss(0) and the SNR [18] of the largest peak output of matched filter is given 

by: 
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If we define the SNR of input signal s(t) as the ratio between the largest value a  of input signal s(t) 

and σN, then SNR  improvement due to the matched filtering is given as: 
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At this stage, following the concept of matched filter, only one fringe of cross-correlation signal i 

(n) (i.e. signal between i(pi) and i(pi+1) of i (n)) is considered as the signal to be matched and one 

period of cosine function, 
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Then, for a given one fringe of cross-correlation signal i(n), signal out of the matched filter is 

maximized when the time delay between two signals is Sf̂  and maximum value is calculated as in 

Equation 15. 
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for given Ji’s (i=0, ±1, ±2,…). The envelope function of i(n) is slowly changing in the vicinity of the 

zero order fringe peak of i (n) and Equation 15 can be rewritten as: 
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where hi  in Equation 16 is the average value of exponential envelope function between pi and pi+1 as 

shown in Equation 16b.  
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For the case of a zero order fringe peak i(p0) of i(n), average value h0 of envelope between p0 and  

p1 is approximately “1” because i (p0) =1 and i (p0) ≈ i (p1). Then, Equation 13 becomes: 
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and SNR of i(p0) is improved by the factor of:   

    ]dB[5log20    (18) 

In the above Equation 16a any Ji  value is the weighted integration of one fringe between two peaks 

of  i(n) and also can be considered as maximum value out of matched filtering which has a improved 

SNR  over i(pi) as shown Equation 13. So, Ji values will be used in the hypothesis test instead of peak 

value i(pi) of i(n) as will be shown later (see Section 3.4.). One useful property of Ji is J0= J-1, J1= J-2 

… (Ji= J-i-1) due to the even symmetric property of i (n) about n=p0= nd. 
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3.4. Hypothesis Test 

 

In hypothesis test, signal processing algorithm chooses the nine biggest peaks of i (n) as zero order 

fringe peak candidates. Ideally, pj’s of j=0, ±1, ±2, ±3, ±4 are selected. Hypothesis test presumes that 

each candidate peak is the zero order fringe peak and calculates the parameter g(pj): 

    







 

00
1 ),()(

ii
ijijj ijdJJpg  for 4,3,2,1,0 j  (18) 

where j of notation d(j,i) corresponds to the candidate peak pj on the hypothesis test and i is the 

distance from the zero order fringe peak candidate in terms of fringe. Then g(p0) is expressed as: 
      ...)2,0(1,00,0)( 0  dddpg   

        ...322110   JJJJJJ  (19) 

Ideally all the values of d(j=0,i) for the zero order fringe peak p0 is zero (Figure 7) due to the 

symmetric property of Ji= J-i-1 and the zero order fringe peak candidate producing│g(pj)│=0 is 
announced as the estimated zero order fringe peak p0 . But, practically the zero order fringe peak 

candidate producing minimum │g(pj)│ is announced as the estimated zero order fringe peak p0 . Note 

that ideally zero order fringe peak p0 happens at n= nd, first positive order fringe peak p1 at n= nd + fS 

and so on. 
 

Figure 7. Distribution ),( ijd  of noise-free cross-correlation. 
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3.5. Fine Tuning 

 

Figure 8 shows the vicinity of zero order fringe peak of cross-correlation i(n). From Figure 8 it is 

clear that the discrete sample zero order fringe peak position pd of the cross-correlation i(n) identified 

by the hypothesis test is not necessarily same as the “true zero order fringe peak position”, pt and the 

goal of fine tuning algorithm is to find the distance between pd and pt.  
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Figure 8. Illustration for true zero order fringe peak and discrete sample zero order fringe 

peak of i(n). 
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First, fine tuning algorithm assumes that the cross-correlation i (n) is represented as: 
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Note that pt in Equation 20 is not necessarily a integer sample number. Also, fine tuning algorithm 

generates test cross-correlation, itest (n) defined by: 
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  (21) 

 

In Equation 21 it is assumed that the discrete sample zero order fringe peak position pd happens 

ideally at n= nd  and also that the approximate value of the coherence length of the light source, CL̂  is 

known priori to us. This is possible by counting the number of fringes within full width at which the 

intensity of interferogram using a particular light source decreases down to e-1 of its maximum value. 

And value of Sf̂  is given from  bfS 2ˆ   as shown in Section 3.2. 

Then, the distance between pd and pt can be found by calculating J(M) for varying integer number 

M:  
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where itest (n-MΔn) is a computer-generated test cross-correlation with its zero order fringe peak at pd 

+MΔn and Δn is the desired fine tuning resolution in sample. 
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In Equation 23 Nsub is the number of sub-divisions in one fringe (the desired fine tuning resolution 

in fringe). Then J(M) becomes: 
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Interpretation of Equation 24 is that fine tuning algorithm generates its own test cross-correlation, 

itest (n) with the true zero order fringe peak positioned at nd +MΔn and calculate J(M) for varying M. 

Then J(M) has a peak value at the certain Mf which makes Mf Δn ≈ pt - nd because the best similarity 

between i (n) and itest (n) is attained when nd +Mf Δn ≈ pt. Then, fine tuning algorithm announces (nd 

+Mf Δn) as the estimated true zero order fringe peak location tp̂ .  

    Calculating J(M) for the range of - ∞ ≤ M ≤ + ∞ takes many calculations and is time-consuming. 

The true zero order fringe peak pt normally is within several samples of the discrete sample zero order 

fringe peak pd. Especially, when SNR of the fringe scans is high enough, the true zero order fringe 

peak pt is ideally within the half sample of the discrete zero order fringe peak pd. So, for the above case 

J(M) is calculated only for the range of 
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  (25) 

Additionally it must be emphasized that the principle of fine tuning in Equation (24) and Equation 

(25) can be used for matched filtering in order to obtain the best similarity between the signal inside 

the one fringe of cross-correlation (signal between any peak i(pi) and i(pi+1)) and the matched filter  

iM (n) and to maximize the SNR improvement at peaks by matching the phase between the discrete 

sample i-th order fringe peak i(pi) and the very first value of the matched filer iM (n). 
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4. Computer Simulations 

 

The proposed signal processing algorithm was verified using computer simulations. To see the shot-

noise limited performance of the proposed signal processing algorithm, the normalized AFWLI fringe 

scans, iS(n) and iR(n) were computer-generated using Equation 4 and Equation 5 respectively and shot 

noise was added to the AFWLI fringe scans, iS(n) and iR(n) instead of white noise. In the computer 

simulations the zero order fringe peak position p0,S (and p0,R) for iS(n) (and iR(n)) were randomly 

selected as real number. iS (n) and iR(n) were cross-correlated into i(n). Then, pt  is calculated as (p0,S- 

p0,R) and zero order fringe peak pd = nd  of i(n) becomes the integer part of pt. The coherence length of 

iS(n) and iR(n) were chosen as LC=26λ to simulate the coherence length of the commercially available 

SLD like OKI OE350S from Oki semiconductor. For all the computer simulations presented in this 

article parameters are fixed as follows, unless the specified parameter is varied for a certain range and 

circumflex notation   on the top of the parameter denotes the estimated value of that particular 

parameter calculated by the proposed signal processing algorithm. 

 

 Sample rate fS =16 [samples/fringe] 

 SNR=30 dB 

 Effective Coherence length LC,eff =  36262   

 Size of fine tuning step Δn=1/1000 [fringe] 

 

4. 1. Simulation: Miss rate simulation 

 

In the first simulation miss rate (misidentification rate) of the proposed signal processing algorithm 

was tested at different shot noise levels. The SNR was varied from 1 dB to 28 dB with 1 dB separation 

and a set of 10000 simulations was carried out at different SNR. When the position difference between 
the estimated zero order fringe peak dp̂  and the computer-generated zero order fringe peak pd is 

bigger than half fringe (8 samples), the zero order fringe peak is considered to have been misidentified. 

Table 2 shows the miss rate of the proposed signal processing algorithm and miss rate is defined as the 

ratio of number of miss to 10000. 

In Figure 9, miss rate was plotted along with Bit Error Rate (BER) of binary fiber optic 

communication system [19]. In Figure 9 (or Table 2) we have a rule of thumb that every dB 

improvement in SNR (over the range of 26 ~ 31 dB) produces approximately one order of magnitude 

improvement in error rate. This kind of behavior is also the case for binary fiber optic 

communication system (two orders of magnitude improvement in error rate for the binary fiber optic 

communication system). 

To extrapolate the miss rate beyond the range of 10-4 on the BER curve, data points in abscissa in 

Figure 9 were left-shifted by ~14.2 dB (by trial and error) until data points of miss rate between 16 dB 

~ 31 dB were visually fitted on the BER curve. Then four more data points were extrapolated beyond 

the data point of miss rate at 31 dB SNR on the BER curve as shown in Figure 10. It is predicted that 

miss rate will be 3 x 10-8  at SNR  of 35 dB.  
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Table 2. Miss rate of the proposed signal processing algorithm as a function of SNR. 

 

SNR [dB] Miss rate SNR [dB] Miss rate 

1 0.95 17 0.46 

2 0.94 18 0.40 

3 0.93 19 0.34 

4 0.91 20 0.30 

5 0.89 21 0.23 

6 0.87 22 0.19 

7 0.85 23 0.14 

8 0.83 24 0.10 

9 0.80 25 0.066 

10 0.76 26 0.041 

11 0.73 27 0.019 

12 0.69 28 0.009 

13 0.64 29 0.004 

14 0.60 30 0.001 

15 0.56 31 0.0003 

16 0.51 32 0 

 

 

Figure 9. Comparison between miss rate and BER. 
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Figure 10. Extrapolation of miss rate on BER curve. 
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4.2. Simulation: Root mean square (RMS) error of the zero order fringe peak identification 

 

 After the zero order fringe peak was identified, fine tuning was calculated for resolution 

enhancement. Phase error Φerror,i between computer generated zero order fringe peak pt (or p0) and 
fine-tuned zero order fringe peak tp̂  (or 0p̂ ) was calculated. Phase error Φerror,i  was averaged over 30 

simulations at a given SNR and this average gives out the root mean square (RMS) error of the zero 

order fringe peak identification.  
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Figure 11. Change of RMS error as a function of  SNR (10~40 dB). 
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Figure 11 shows the change of RMS error along with the SNR in the range of 10 dB to 40 dB and 

Figure 12 shows the change of RMS error along with the SNR in the range of 30 dB to 40 dB. It is 

shown that the minimum SNR required to achieve RMS error less than 10-3 [fringe] (which is the fine 

tuning step size) must be greater than 35 dB SNR. 

 

Figure 12. Change of RMS error as a function of SNR (30~40 dB). 
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4.3. Simulation: High Precision Performance of Fine Tuning  

 

In this simulation, the SNR was fixed at 30 dB and RMS error was compared between two cases. 
One is the case where the estimated zero order fringe peak p0  was fine-tuned for resolution 

enhancement and the other case was where the estimated zero order fringe peak p0  was not fine-tuned.  

 

Figure 13. Comparison between RMS error with fine tuning and RMS error without fine 

tuning. 
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As shown in Figure 13, without fine tuning, RMS error of p0  is approximately 0.3/fS fringe and 

RMS error of p0  totally depends on the sample rate. But this RMS error was reduced down to ~0.0015 

fringe when p0  was fine tuned. Note that RMS error was not sensitive to the sample rate fS over the 

range between 10~20 samples/fringe. This feature predicts that signal processing algorithm can use 

lower sample rate fS for the faster signal processing, but still maintain lower RMS error by using fine 

tuning, which is comparable to the error of higher sample rate fS. In the proposed algorithm, the cross-

correlation between iS (n) and iR(n) is most time-consuming part of signal processing algorithm, but the 

sample rate fS can be lowered to speed up the signal processing without losing higher sample rate RMS 

error. One strong benefit of the proposed algorithm is that once zero order fringe is identified correctly 

then the resolution of the fine tuning can be adjusted as low as desired simply by changing the value of 

Nsub and high precision phase delay estimation can be obtained. 

 

4.4. Simulation: Effects of b̂  ( Sf̂ ) 

 

In this simulation, estimated effective coherence length effCL ,
ˆ  was set as 36 fringes, SNR=30 dB 

and estimation error of the zero crossing period b̂  was varied from -10 % to 10 % when b=10 (fS =20 

samples/fringe) to see the effect of estimation error of the zero crossing period b̂  on the performance 

of the proposed signal processing algorithm. The estimation error of the zero crossing period b̂  is 

defined by: 

 Estimation error of [%]100
ˆ





b

bb
b  (27) 

where b is the half the sample rate fS. In Figure 14, it can be shown that RMS error of fine tuning was 

not sensitive to the estimation error of b̂  within the range of 6 % estimation error of b̂  and 

especially, RMS error of 0.001 [fringe] was obtained within the range of 2% estimation error of b̂ . But, 

on the range of 7  % ~ 10  % estimation error b̂  RMS error increased dramatically to 0.25 fringe.  

 

Figure 14. Change of RME error as a function of estimation error in zero crossing period. 
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This is presumably due to the fact that i(n) and test cross-correlation itest(n) (Equation 24 or 

Equation 25) started to be out of phase and RMS error increased fast.  

 
4.5. Simulation: Effects of CL̂   

 
This simulation is to show the effect of estimated coherence length CL̂  on RMS error assuming that 

bb ˆ , LC=26λ(LC,eff ≈ 36λ) and SNR was fixed as 30 dB. Estimated coherence length CL̂  was varied 

from 21λ to 30λ . In other words, estimated effective coherence length effCL ,
ˆ  was varied from 30λ to 

42λ and RMS error was observed. Figure 15 shows that RMS error turned out to be not sensitive to the 

estimation error in coherence length effCL ,
ˆ . This is due to the property of cross-correlation. Cross-

correlation is maximized when pt and pd +MΔn are in phase as long as both cross-correlation i (n) and 

test cross-correlation itest (n) are symmetric. 

 

Figure 15. Change of RMS error as a function of estimation error in light source coherence 

length. 
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5. Comparison to the literature 

 

In this section a comparison to the previous literature data regarding the resolution of zero order 

fringe peak detection is given. Interestingly enough, reference [20] calculated the theoretical limit of 

scanning white light interferometry signal evaluation algorithm. In this reference the theoretical limit 

of resolution of the fringe order detection was given as: 

 
2/1

2' )(
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  iciii zNzzIzSS  )()( , ni .....,0  (29) 

where Si=S(zi) consists of a fixed number of intensity values, typically taken at equidistant positions zi, 

I(z) is the ideal input signal (i.e. fringe scan) to be subject to intensity noise N(z), zc of I(z) is the 
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position to be found using the evaluation algorithm (signal processing algorithm). And it is assumed 

that intensity noise N(z) is the constant noise value N over all samples. In our case, cross-correlation  

i(n) can be represented as the generalized equation as follows again: 

 


































 n

l

z
Ini

effc

2
cos4exp1)(

2

,
0  (30) 

Then, the derivative of i(n) becomes: 
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and (i' (z))2 is given as: 
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Then, substituting Equation 32 into Equation 28 produces: 
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I0 /N in denominator in Equation 33 is the signal-to-noise ratio and Equation 33 becomes: 
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effc
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263.1353.0

0

, 
  (34) 

As can be seen from the Equation 34, theoretical limit of fringe order detection is the function of 

sample rate, effective coherence length and SNR. Theoretical limit of resolution for the computer 

simulation shown in Figure 11 and Figure 12 can be calculated using the parameters of 16 sample per 

fringe (∆z= λ/16), effective coherence length  36262, effcl . Then theoretical limit of 

resolution of zero order fringe detection in Figure 11 and Figure 12 is given as: 

 

 
  

SNRSNR
zc

 





669.0263.1353.03616/
(without fine tuning) (35) 

 

 
  

SNRSNR
zc

 0846.0263.1353.0361000/



 (with fine tuning) (36) 

 

Figures 16 and 17 are the comparison of the computer simulation results and the theoretical limit of 

fringe order detection calculated by Equation 35 and Equation 36. As shown in Figure 16, computer 

simulation results produce a much bigger RMS error than the theoretical limit over low SNR range 

(10~30 [dB]). In comparison to the literature, it seems like that theoretical limit of reference [20] is 

more optimistic over low SNR range than the computer simulation performance. But, the proposed 

signal processing algorithm has proven to reach the theoretical limit of fringe order detection over the 
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higher SNR range (30~40 [dB]). This is not a surprising result because in higher SNR fine tuning 

algorithm will enhance the fringe order detection resolution down to the theoretical limit once zero 

order fringe peak is identified correctly. But, over low SNR range, fine tuning algorithm is not 

effective in enhancing the fringe order detection resolution because probably zero order fringe peak is 

misidentified and fine tuning is searched within the half sample of the misidentified zero order fringe 

peak. 

 

Figure 16. Comparison of computer simulation and theoretical limit (SNR: 10-40 [dB]). 
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Figure 17. Comparison of computer simulation and theoretical limit (SNR: 30-40 [dB]). 
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Increasing the fine tuning range will help to locate the zero order fringe peak correctly and lower 

the RMS error down to the theoretical limit, although this is time consuming. Optimum fine tuning 

range of M over low SNR range to find the correct zero order fringe peak will be the subject of further 

research. 
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6. Conclusions 

 

A new signal processing algorithm for white light interferometry has been proposed. The goal of 

signal processing algorithm was to find the time delay (phase shift) between two fringe scans which 

makes it possible to measure the absolute optical path length of a sensing interferometer. This new 

signal processing algorithm can be used for absolute temperature measure measurement by mapping 

the zero order fringe peak position of cross-correlation i(n) to the time delay between two fringe scan. 

Cross-correlation between two fringe scans utilizes all the photons in fringe scans effectively and the 

uncertainty of the zero order fringe peak mis-identification was reduced. Monte-Carlo simulations 

showed that the proposed signal processing algorithm identified the zero order fringe peak with a miss 

rate of 3x10-4 at 31 dB shot noise and the extrapolated miss rate at 35 dB shot noise was 3x10-8. Also 

resolution of less than 10-3 fringe was obtained at 35 dB shot noise (Figure 12). The fine tuning of 

signal processing algorithm requires some prior knowledge on the coherence length LC of the SLD and 

sample rate fS. But the performance of proposed signal processing algorithm turned out to be not 

sensitive to the estimation error in CL̂  and Sf̂  (within the range from –6% to 6% estimation error of 

b̂ ). Also the proposed signal processing reached the theoretical limit of fringe order detection over the 

higher SNR range (30~40 [dB]). The proposed signal processing algorithm uses a software approach 

which is potentially inexpensive, simple and fast. As a whole, the proposed signal processing 

algorithm has proven to be a high precision signal processing algorithm for AFWLI phase (time) delay 

estimation.  
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Appendix A 

In this appendix, SNR improvement at the peak of cross-correlation i(t) is derived. First, iS (Φ) and  

iR (Φ) are given respectively as: 
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Here LP, LS, LR are the path length difference of the Mach-Zehnder processing interferometer, 

sensing FFPI (twice the Fabry-Perot cavity length), reference FFPI and n  is the effective refractive 

index of core of the optical fiber (not to be confused with sample number n in i(n)). Notation 
  ,  and are reserved to denote the cross-correlation, convolution and Fourier transform 

relationship.  
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When LP is scanned LP is a function of time t and also ΦP is a function of time t. Then:  
 twftP 02    (A-3) 

where f (or w0) is a modulation frequency (or angular velocity) of fringe scan. Following the same 

token, ΦS, ΦR  are given by: 
 SSS twft 02    (A-4) 

 RRR twft 02    (A-5) 

and the relation between tS and tR is given by: 
 dRS ttt   (A-6) 

where td is the time delay between sensing FFPI fringe scan and reference FFPI fringe scan. 

Using the following substitutions: 
 )()( 00 dRSSP tttwttw   (A-7) 

 )(0 RRP ttw   (A-8) 

 L NC f   (A-9) 

and considering the noise in iS (ΦP) and iR (ΦP), time domain representation of the Equation A-1 and 

Equation A-2 can be rewritten as: 
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In Equation A-10 and A-11 we used a substitution a = (w0/πNf)
2 and it is assumed that ΦR=0  

without loss of generality and that wS(t), wR(t) are white noise with zero mean and variance 2
N  of iS(t), 

iR(t) respectively and independent each other. Also, w0 was set to “1” for normalization in order to 

make iS(t) = e-1 at t = (Nf /2) x 2π. 

The first part of Appendix A shows that the increase of coherence length from LC  to CL2  due to 

cross-correlation. We know that cross-correlation and convolution are identical operations for the case 

where either iS (t) or iR (t) is an even symmetric function. Then, the cross-correlation i(t) of iS (t) and 

iR(t)  is given as follows: 
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The first term in Equation A-12 is the cross-correlation of noise free interference signal 

)cos()(
2

teti at
NF

 and its delayed version )cos()(
2)(

d
tta

dNF ttetti d   , which is calculated as 

follows: 

    )cos(cos)()()()(
22 )(

d
ttaat

dNFNFdNFNF ttetettitittiti d    (A-13) 

 



Sensors 2008, 8  

 

 

7632

Well-known Fourier transform relationships useful for the calculation of Equation A-13 are: 

 
  A t B t A w B w( ) ( ) ( ) ( )    (A-14) 
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and w is the frequency domain variable. 
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then Fourier transform of Equation A-13 becomes: 
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Then )()( ,, denvNFenvNF ttiti  is the inverse Fourier transform of djwta
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Before cross-correlation, from Equation A-10 and Equation A-11, peak value of iS (t) is 1 and iS (t) 

reduces down to e-1 of its peak value at: 

  t
a

 
1

(for Equation A-10 ) and 
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tt d
1

 (for Equation A-11) (A-21) 

After cross-correlation, from Equation A-20, e-1 of i i tS S ( )  happens at: 

  
a

tt d
2

   (A-22) 

And the coherence length of the cross-correlation(effective coherence length) has increased by a 

factor of 2 . In other words, CeffC LL 2,   

The second part of appendix A shows that 14 dB SNR improvement is obtained at zero order fringe 

peak after cross-correlation. Peak value (zero-order fringe peak) of cross-correlation i(t) happens when 

t = td  and its value iS* iR (t=td) is calculated by substituting  t = td  in Equation A-12 as follows: 
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The first term of Equation A-23 is the signal component which is the energy of noise free 

interference signal )cos()(
2

teti at
NF

  and the other three terms of Equation A-23 are noise terms. 

Then the variance of three noise terms are given as: 
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Then SNR at the peak of cross-correlation i (t) is given as the ratio between magnitude of peak 

signal to the standard deviation of noise as shown in Equation A-25.  
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By assuming that the variance of the noise is much smaller than the power of signal: 
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Equation A-25 can be approximated to: 
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Again, SNR of iS (t) (or iR (t)) before the cross-correlation is: 
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so cross-correlation has improved the SNR by less than a factor of: 
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It can be shown that energy of the (noise-free) interference signal 
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in Equation 
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  as follows: 
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Useful relations are given by: 
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Then Equation A-30 becomes: 
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But, the second term in Equation A-29 is negligible because ae 2

1


 has a negligible value and 

Equation A-33 becomes: 
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Then, finally iNF, MAX is “1” and combining Equation A-29 and Equation A-34 we get: 
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which is 14 dB when Nf  = 26 
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