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Abstract: Improvement of satellite sensor characteristics motivates the development of 

new techniques for satellite image classification. Spatial information seems to be critical in 

classification processes, especially for heterogeneous and complex landscapes such as 

those observed in the Mediterranean basin. In our study, a spectral classification method of 

a LANDSAT-5 TM imagery that uses several binomial logistic regression models was 

developed, evaluated and compared to the familiar parametric maximum likelihood 

algorithm. The classification approach based on logistic regression modelling was 

extended to a contextual one by using autocovariates to consider spatial dependencies of 

every pixel with its neighbours. Finally, the maximum likelihood algorithm was upgraded 

to contextual by considering typicality, a measure which indicates the strength of class 

membership. The use of logistic regression for broad-scale land cover classification 

presented higher overall accuracy (75.61%), although not statistically significant, than the 

maximum likelihood algorithm (64.23%), even when the latter was refined following a 

spatial approach based on Mahalanobis distance (66.67%). However, the consideration of 

the spatial autocovariate in the logistic models significantly improved the fit of the models 

and increased the overall accuracy from 75.61% to 80.49%. 
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1. Introduction 

 

A major part of research in satellite remote sensing is dedicated to the optimization of computer-

aided classification processes for identifying and mapping various land cover/use types [1]. Land cover 

classification, which associates pixels or objects of remotely sensed data with specific land cover 

classes, is used for a plethora of applications including land resource planning, environmental change 

assessment, biodiversity conservation, and estimation of biophysical variables [2]. The classification 

results are organized into digital geo-databases and provided at multiple contents and scales. The 

recent improvements of satellite sensor characteristics (i.e. spatial, radiometric resolution) facilitate 

visual identification and recognition of various features and entities on the earth’s surface. Apart from 

spectral information, experienced photo interpreters exploit spatial patterns and object arrangement 

based on the skills of the human brain to evaluate and recognize elements such as shape, size, pattern, 

shadow, colour tones, texture, association and site [3]. However, quantitative automatic digital 

classification techniques prevail over qualitative ones (i.e. photointerpretation), since the former utilize 

all the available range of spectral and spatial resolution that the human eye cannot easily recognize [4]. 

Ideal classification approaches cannot exist due to process complexity and a number of factors 

affecting classification outputs, such as the adopted classification scheme, spectral and spatial content 

of the imagery, the method of making class decision, and the classification unit. For example, different 

outputs could result from adopting different classification algorithms for the same training sets [4, 5]. 

Therefore, several efforts have been made in recent years to develop new classification techniques or 

adapt older ones [6-8]. 

Multispectral classification approaches that rely only on information extracted from single pixels 

(known as per-pixel spectral classifiers), allocate each pixel to an output classification class on the 

basis of a relative similarity (distance) of pixel’s vector x to the mean vector of each class derived after 

user-selected training data. The range of spectral classifiers is extensive, including methods like the  

k-nearest neighbour [9], neural networks [10], regression models [11, 12], classification or decision 

trees [13, 14], and support vector machines [2]. Nevertheless, the Maximum Likelihood (ML) 

classifier is one of the most commonly used within the remote sensing community, and is also used as 

a standard for comparing other classifiers [15, 16]. The ML is a parametric classifier presupposing 

normal distributions, and is based on the variance-covariance matrix of the spectral responses of land 

cover classes for classifying a pixel. Unfortunately, insufficient, non-representative, or multimodal 

distributed training samples can introduce uncertainties resulting to misclassification when the ML is 

used. Another major drawback is the difficulty to integrate ML with other ancillary information, 

however this limitation is overcome by the use of modified prior probabilities [7]. 

Recently, progress achieved in the improvement of satellite sensor characteristics has lead to the 

existence of high resolution scene models (H-resolution) [17]. The increased ability of the spatial 

discriminator reveals the internal variability within targets causing occasional decrease in 

classification accuracy [18]. In the H-resolution scene model, the presence of spatial autocorrelation, 

which is the tendency of neighbouring pixels to present similar characteristics, is a potential problem. 

This problem promoted the development of new classification methods, known as contextual methods, 

which in addition to spectral information also consider the spatial information of the surrounding 

region of each pixel. The spatial information inherent in satellite data can be incorporated into the 
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classification process either during the pre- and post-processing or prior to pixel labelling by using a 

contextual classifier [19]. The use of contextual classifiers usually results in a reduction of 

classification error rates [20-24]. However, contextual classification techniques involve a more 

complex decision process and tend to be more computationally intensive than spectral pattern 

recognition procedures [25]. 

In our study, a spectral land cover classification method of a LANDSAT-5 TM image that uses 

several binomial logistic regression models was developed, evaluated and compared to the familiar 

parametric Maximum Likelihood (ML) algorithm. The classification approach based on logistic 

regression modelling was extended to a contextual one by using autocovariates to consider spatial 

dependencies of every pixel with its neighbours. Autologistic regression modeling has been already 

introduced in remote sensing studies as a classification approach of satellite data, however it has been 

limited to binary classification schemes as for instance in flood zonation and burned land mapping [26, 

27]. Finally, the ML classified image was upgraded to contextual by considering typicality, a measure 

which indicates the strength of class membership [28]. 

 

Figure 1. Location of the study area and colour composite (RGB: TM-743) of the Landsat 

TM image used in the study. 

 

 
 

2. Study Area 

 

The study area is located in the uppermost part of the Kassandra Peninsula in NC Greece (Figure 1). 

Although each place is unique, depending on how environmental parameters and human actions are 
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spatially integrated, our study area seems to be characteristic and representative of many landscape 

types found across Greece. The fragmented landscape consists of small patches of forested land, 

interchanged with agriculture and rangelands. The forested land mainly consists of Aleppo pine (Pinus 

halepensis) and dense shrubs (maquis), the latter which occasionally dominate the overstory within the 

stands. In these ecosystems, the main species present in the understory are Quercus conferta, Quercus 

ilex and Pistacia lentiscus. As in the majority of Mediterranean forests, the landscape is quite 

heterogeneous with regards to stand structure and composition. 

The study area belongs to the Mediterranean type climate and the bioclimate is characterized as 

semi-arid with severe summer droughts and relatively high humidity throughout the year. The study 

area is subject to strong human influence and high tourist pressure which justifies the fragmented 

character of the landscape. The relief of the area is rather gentle with mild slopes resulting in non-

severe topographic shading. 

 

3. Materials and Methods 

 

3.1. Image Data Preprocessing 

 

A Landsat-5 Thematic Mapper image (path 184; row 032) was acquired on 11 May 1997. Haze 

removal was applied to the LANDSAT TM image by subtracting the amount by which each band’s 

histogram is shifted from the origin due to atmospheric scattering. Following this dark pixel 

subtraction approach, the minimum value of each spectral channel was subtracted from each pixel 

brightness in that channel [29]. 

The Landsat TM image was orthorectified using 54 ground control points identified on 1:5,000 

scale orthophotographs produced from a 1996-1997 national aerial photography campaign and a digital 

elevation model constructed from contour lines of 20 m increment. Orthorectification ensured that 

spatial inaccuracies caused by the irregular terrain would be minimized. The total root mean square 

error (RMS error) was about 0.6 of a pixel. 

 

3.2. Data analysis 

 

3.2.1. Classification Scheme 

 

Initially, six informational classes (Table 1) were identified after a field survey and photo 

interpretation of the orthophotographs. Training areas for each informational class were identified in 

the satellite imagery based on a field survey supported by GPS over characteristic locations in order to 

cover their spectral and spatial variability. In addition to simple descriptive statistics, the spectral 

consistency of the training areas was evaluated using a hierarchical cluster analysis procedure [30]. 

The Ward’s method of clustering, which according to Milligan’s [31] review of clustering techniques 

provides the best overall performance for most data sets, was selected along with the squared 

Euclidean distance as a measure of similarity between plots. In this clustering method, the distance 

between two clusters is the sum of squares between the two clusters summed over all the variables. At 
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each stage of the clustering procedure, the within-cluster sum of squares is minimized over all separate 

or disjointed clusters [32]. 

 

3.2.2. Maximum Likelihood (ML) Classification 

 

The Maximum Likelihood classifier is based on the Gaussian estimate of the probability density 

function for each class. Assuming that the probabilities for all classes are equal, the probability density 

function is calculated for each class by [33]: 
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where   cxzp ik  is the probability density function for pixel  ik xz , as a member of class c at 

location ix , k is the vector of { Kk ,....1 }wavebands, cV  is the variance-covariance matrix for class c, 

and ciM  is the Mahalanobis distance to class centroids: 

     kcikc
T

kcikci uxzVuxzM   (2) 

where kcu  is the vector of means in K wavebands of the particular class c, and T is a matrix 

transposition function. 

 

Table 1. Land cover types in the study area and corresponding training areas. 

 

Land cover 

type 
Description 

Number of training 

plots / pixels 

Artificial 

surfaces 

Urban areas and man-made structures (roads, camps) 6 / 572 

Forest Coniferous forests (Pinus halepensis) 6 / 632 

Shrubs Shrublands mixed with interspersed P. halepensis 

(maquis, including Q. coccifera, Q. ilex and Arbutus 

unedo) 

5 / 575 

Grass Cultivated crops and pastures which at the time of image 

acquisition, due to the vegetation phenology and the 

area’s climatic conditions, are in full bloom 

6 / 812 

Barren Bare rocks, very sparsely vegetated areas, and non-

cultivated farmlands 

5 / 962 

Water Wetlands and sea 5 / 732 

 

Finally, each pixel is allocated to the class with the highest probability function or equivalent to the 

highest posteriori probability of membership obtained by the Bayes’ Thorem under non-equal prior 

probabilities [34]: 
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where   ik xzcL  is the conditional probability of pixel value  ik xz  belonging to class c, Pc is the a 

priori probability of membership of class c, and there are r = 1, . . ., n classes. 

 

3.2.3. Contextual Classification Based on Mahalanobis Distance 

 

The classified image by ML algorithm was spatially weighted and reclassified using Mahalanobis 

distance [34]. Mahalanobis distance can be used to derive probability measures that indicate class 

membership, such as typicality probabilities, or it can be used straightforwardly [28, 35]. Typicality is 

better suited to identify misclassified pixels than the posteriori probability measure, because it 

represents a spectrally related measurement of classification confidence [36]. The pixels may have 

been classified to the class with the highest posteriori probability of membership, but they do not 

belong to that class. In the present study a 3 x 3 moving window with an inverse distance weighting 

was applied to the typicality values of the pixels within the imagery. The centre pixel was then 

assigned to the class presenting the highest sum of typicality values within the window. 

 

3.2.4. Logistic Regression Modelling 

 

Multiple logistic regression modelling is used to predict a binary dichotomous variable Y from a set 

of independent explanatory variables by estimating the probability of the event’s occurrence. The main 

assumption made in the logistic regression model is the linear relationship between the natural 

logarithm of the odds of the binary outcome (let Y take values 1 and 0) and the independent variables. 

In contrast to other multivariate statistical methods, no assumption of multivariate normality has to be 

satisfied. 

Logistic regression may be proved useful for the classification of satellite remotely sensed data, 

especially when the independent variables (spectral observations) do not follow the normal 

distribution. The main consideration for implementing the logistic regression modelling into 

classification process is to express the classification problem in a binary dichotomous way, i.e. to 

consider the classification categories by two each time [11]. The equation for the logistic regression is 

expressed as: 
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where the parameters βο and βk (k= 1,2,3....Κ) of the K wavebands, are estimated using the ML 

method. 

The flowchart of classification using logistic regression modelling is presented in Figure 2 while the 

whole process is implemented by the following steps: 

1. Assessment of training areas for each informational class and extraction of DN values. The spectral 

channels of TM imagery are perceived as independent variables while the land cover category is 

the dependent variable. 

2. T groups (t classification classes) of t-1 data files each, are formed and the main or baseline 

informational class is encoded to value 1. This set of files is the final input to the multiple logistic 

regression modelling process.  

3. Using a forward multiple logistic procedure based on the likelihood ratio statistic, the coefficients 

of each model are estimated by considering three explanatory variables maximum. The 

independent variables of each model are the best-performing out of the seven available to 

discriminate each informational class.  

4. The logistic regression models are applied and t x (t-1) new images are produced and organized in t 

groups according to the original file scheme. Within each group, the four images are combined 

through multiplication to produce a final probability image for each class. 

5. The final classified image results by assigning to each pixel the land-cover category which 

corresponds to the highest probability value. 

 

3.2.5. Autologistic regression modeling 

 

The autologistic regression model, which results after the addition of an autocovariate component to 

an ordinary logistic model, provides the opportunity to integrate spatial information into modelling. 

The integration of the autocovariate is based on the principle that adjacent pixels are more likely to 

belong to the same class. Therefore the probability of a candidate pixel to belong to a certain class, 

apart from considering the spectral information, also depends on whether the neighbouring pixels 

belong also to the specific class [26]. To implement autologistic modelling the autocovariate 

component has to be first estimated. Unfortunately, the autocovariate component cannot be estimated 

because the binary response variable is not initially available. To overcome this constraint, the 

autocovariate component can be estimated from the predicted probabilities of the binary response 

variable instead of the response variable itself [37]. 

The procedure includes the following steps [27, 37, 38]: 

1. Estimation of the predicted probabilities of the binary response variable using the ordinary multiple 

logistic regression model. 

2. Estimation of the autocovariate component from the predicted probabilities using a moving 

window. The autocovariate component is then incorporated into the ordinary multiple logistic 

regression model as a new covariate. 

3. Estimation of the coefficients of the autologistic multiple regression model including the original 

covariates (three spectral channels) and the autocovariate component. The procedure can be 

repeated from step 2 using the estimated probabilities of step 3. 
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Figure 2. Flowchart of the classification approach based on logistic regression. Following 

the extraction of the training areas, t-1 multiple logistic regression models were structured 

for each of the t classes. Using the estimated regression coefficients, binary images were 

produced and multiplied to derive an image of estimated probabilities for each class. 

Finally, pixels ware assigned to the class presenting the maximum probability. 

 

 
 

The formula of the autologistic regression model, based on the equation of the ordinary logistic 

regression for a grid of cells is the following: 
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where ykz is the presence/absence value in the )( gk xz  neighbouring cell for pixel )( ik xz , n is the 

number of pixels of the contiguity matrix, )()( ikgkk xzxz  is the weighting distance function between 

the target pixel )( ik xz  and pixel )( gk xz , and b is the estimated autologistic regression coefficient for 

the autocovariate. 

In our study development of the autologistic regression models was made by maintaining the same 

covariates (spectral bands) as the original logistic models, in order to test their relative significance 

and validity. Only eight nearest neighbours were considered and an inverse distance weighting was 

applied. 

 

3.3. Assessment of the different classification procedures 

 

A stratified random sampling procedure was adopted to select a total of 123 points that were used to 

estimate the accuracy of the classification results. The majority of the reference samples were located 

by field survey, while areas difficult to visit were located through photo-interpretation of the available 

orthophotographs. Overall and individual per class accuracy (users and producers) and the Kappa 

coefficient of agreement were estimated. 

A pairwise test statistic Z was also applied on the Kappa coefficient of agreement to statistically 

compare the results of the four classification schemes [39]: 

2121 varKvarK/KKZ   (7) 

Furthermore, classification performance of the maximum likelihood and logistic regression was 

assessed by considering the standardized probabilities based on which the pixels were assigned to a 

specific class [8]. To apply this approach a common measurement scale of the probabilities has to be 

adopted. Therefore, a standardization procedure was applied so the sum of the standardized 
probabilities  XiL  for every location ix  belonging to classes r = 1, . . ., n classes, is equal (i.e. 1 or 

100). In the case of ML classification, standardized probabilities are identical to the posterior 

probabilities [40], while for logistic regression, the standardized probabilities can be calculated by the 

following formula:  
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where  XYxzL ik )1)(   is the standardized probability for the class i, and Pi is the predicted value of 

occurrence for class c out of r = 1,2,3…t classes at location Xi (as calculated in paragraph 3.2.4.). 

Finally, two landscape pattern metrics, the Mean Patch Size (MPS), a common fragmentation index 

[41], and Edge Density (ED), a robust metric [42], were estimated to quantify the spatial structure of 

the polygons resulting after conversion of the raster format classified images to vector format. 
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4. Results and Discussion 

 

4.1. Purification of classification categories 

 

Hierarchical cluster analysis results are presented in Figure 3 in dendrogram form, where the high 

similarity between the spectral signatures of forests and shrublands is very clear. The training plots of 

the two categories are clustered together in the same distance creating uncertainties for their successful 

discrimination and mapping. In our study area the forested land presents a very heterogeneous 

composition and structure similar to the majority of Mediterranean forest ecosystems.  

When the stands are sparse and the foliage coverage is not dense, the reflectance of the broadleaved 

species of the understory contributes significantly to the total reflectance of the pixel and results in 

spectral responses similar to areas dominated by shrubs in the overstory [12]. Therefore, these two 

categories were grouped together into one single category-forest. A very good correspondence 

between the remaining categories and the suggested cluster analysis grouping can be seen. The mean 

and standard deviation values of the spectral classes after the merging are presented in Figure 4. 

The overall accuracy of the image classified by the ML algorithm was 64.23%, while the accuracy 

of the image classified by multiple logistic regression was 75.61% (Table 2). Additionally, the 

achieved user’s and producer’s accuracy were in most cases higher in the latter classification approach. 

The Kappa coefficient of agreement for the classified image by the logistic regression method was 

significantly higher (0.68) than ML algorithm (0.56). 

 

Table 2. Accuracy measures of the four classification methods, reference points and area 

extent of each land cover type of the final map resulted from the autologistic regression 

modeling approach. 

 

  1. Maximum 

likelihood 

2. Contextual 

ML 

3. Logistic 

regression 

4. Autologistic 

regression 

 Area οf the 

map (km2)/ 

Reference 

points 

Producers Users Producers Users Producers Users Producers Users 

Artificial 

surfaces 
37.9/13 100.00 27.08 100.00 28.26 38.46 55.56 46.15 40.00 

Forest 48/29 82.76 88.89 89.66 89.66 89.66 86.67 86.21 96.15 

Grass 93.3/32 62.50 83.33 68.75 88.00 75.00 75.00 87.50 82.35 

 Water 817.7/16 93.75 100.0 93.75 100.0 100.00 100.0 100.00 100.0 

Barren 97/33 21.21 77.78 18.18 75.00 66.67 61.11 72.73 75.00 

 
Overall 

accuracy 
64.23 66.67 75.61 80.49 

 Κappa 0.56 0.59 0.68 0.75 
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Figure 3. Hierarchical cluster analyses of the training areas originally delineated in the 

Landsat TM image. Shrublands and forests are clustered together in a very short distance, 

indicating spectral similarities which may create spectral confusion and misclassification. 

 

 
 

As observed in Table 3, the vast majority of the pixels (90%) were classified with high probabilities 

in both methods (over 90%) which implies a high degree of certainty for the classification results. 

However, in logistic regression a smaller fraction of pixels was classified with low probabilities (less 

than 0.5), which denotes that the classification of low discriminated categories is implemented at a 

higher confidence level. 
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Figure 4. Descriptive statistics of the final classification scheme. Vertical bars extent 1 

standard deviation around the mean. 

 

 
 

Individual class accuracies were low for the classes “artificial surfaces” and “barren”, especially in 

the maximum likelihood based approaches. As it can be observed in Figure 4, these classes not only 

present spectral similarities between them but also they are less uniform since they present greater 

variability in their radiometric values. In addition, ML is a parametric classifier which presupposes 

normal distributions, while it is based on the variance-covariance matrix of the spectral responses of 

land cover classes for classifying a pixel. Unfortunately, multi-modal (e.g. water) or non-normally 

distributed data (e.g. artificial, barren) as observed in the broad-scale land cover types of our study 

(Figure 5) can introduce uncertainties which result further to misclassification. Previous studies have 

also shown the dependence of the classification performance to the composition and distribution of the 

classes [43]. On the other hand, logistic regression modeling is a non-parametric classification 

approach, which presupposes fewer statistical assumptions for its implementation compared to ML. 

Eventually, these can be underlying factors for explaining the low accuracies of the classification 

results of these classes. 
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Figure 5. Observed frequency distributions and Kolmogorov-Smirnov values d calculated 

for each class. None of them was found to be normally distributed at 95 % confidence level 

according to the estimated d value. 
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Table 3. Posterior probabilities of the classified images estimated by the logistic regression 

and the maximum likelihood algorithm. 

 
Maximum likelihood Logistic regression 

Probabilities 

threshold 

Number of 

pixels 

Percent 

(%) 

Cumulative 

percent (%)

Number of 

pixels 

Percent 

(%) 

Cumulative 

percent (%)

0,1 32556 2.68 2.68 1514 0.12 0.12 

0,2 35805 0.27 2.95 1514 0 0.12 

0,3 39052 0.27 3.21 1514 0 0.12 

0,4 42838 0.31 3.52 1716 0.02 0.14 

0,5 47126 0.35 3.88 3780 0.17 0.31 

0,6 52670 0.46 4.33 20393 1.37 1.68 

0,7 59719 0.58 4.91 39632 1.58 3.26 

0,8 69963 0.84 5.76 62503 1.88 5.14 

0,9 90133 1.66 7.41 98830 2.99 8.13 

1,0 1215609 92.59 100.00 1215609 91.87 100.00 

 

The use of the typicality measure as a contextual refinement to ML algorithm improved the overall 

classification accuracy (66.67%) and the Kappa coefficient of agreement (0.59). The contextual 

process, which creates and uses information from the pre-defined neighboring pixels, estimates new 

probabilities for each pixel. While pixels may have been classified to a certain class with the highest 

posteriori probability of membership, the contextual approach improves classification results by 

assigning new classes to pixels that do not belong to this class using spatial information. Therefore, 

uncertainties occur in the original classification are expected to be reduced. 

Similarly, the consideration of the spatial autocovariate in the logistic models (Figure 6) 

significantly improved the fit of the models and increased the overall accuracy from 75.61% to 80.49% 

(Table 2). In the autologistic model, the probability of a candidate pixel belonging to a class depends 

on whether the neighbouring pixels belong also to that class. The autologistic approach follows the 

same principles utilized when applying a simple post-classification majority filter. However, the 

processing rule on which each method is based differs between the two. In the majority filter, only the 

number of pixels having the same value is considered, while in the autologistic model both the 

radiometric values of the pixels and the autocovariate component are taken into account [26]. 

In addition, a pairwise test statistic was applied to statistically compare the results of the four 

classification schemes based on the Kappa coefficient of agreement (Table 4). The value of 1.57, 

which results after the comparison of the ML classification with the logistic regression classification, 

does not exceed the crucial threshold of 1.96 (z-statistic at 95% confidence level) implying that the 

two methods are statistically non-significant. Instead, the comparison of the autologistic with the ML 

algorithm shows statistical differences, while the same finding stands after the comparison with the 

Mahalanobis-based post-classified image. 
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Figure 6. Land cover map using the autologistic regression modeling approach. Grid 

numbers in meters are in Greek grid projection. 

 

 
 

Table 4. Significance matrix of the four classification approaches. Shaded cells indicate 

statistical significant differences at 95% confidence level. 

 

Maximum 

Likelihood 

(ML) 

Logistic Autologistic

Logistic 1.58   

Autologistic 2.55 0.93  

Contextual ML  0.40 1.28 2.30 

 

The improvement of classification accuracy after incorporating the autocovariate in the original 

logistic classification approach and the post classification in maximum likelihood is justified by the 

lower number of polygons which results after the vectorization of the classified images (Figure 7). 

This is especially obvious for polygons smaller than 0.1 ha which approximates the area represented 

by one Landsat pixel. The reduction of the number of isolated pixels implies a reduction of the “salt 

and pepper” effect which is critical when the classification results are integrated in geographic 



Sensors 2008, 8  

 

 

8082

databases or presented as cartographic outputs. One point shall be given emphasis is the arbitrary 

choice of the neighbourhood size and the weighting function prior to autocovariate estimation. An 

improper choice may lead to a substantial extent of generalization. However, it seems that in 

fragmented landscapes a small sized window might be more appropriate, particularly for medium sized 

pixels while larger windows are more appropriate at finer resolution satellite images [16]. 

 

Figure 7. Frequency distribution of polygon size resulting after vectorization of the 

classified images. 
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Figure 8. Landscape pattern metrics of the classified images of the four classification approaches. 
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Finally, landscape metrics estimated for the classification results (Figure 8) verified that the 

landscape patterns of the classified images were less fragmented when the spatial information was 

incorporated. Both contextual approaches resulted in less fragmented land cover maps, characterized 
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by a larger mean patch size and smaller edge density values compared to those resulting from the 

maximum likelihood and logistic regression approaches. 

 

5. Conclusions 

 

The use of multiple logistic regression for broad-scale land cover classification proved to be more 

efficient than the well-known classification algorithm of maximum likelihood even when the latter was 

refined following a spatial approach based on Mahalanobis distance. The accuracy achieved by the 

multiple logistic regression approach (75.61%) confirms the possible use of this statistical technique in 

the classification of broad-scale land cover types using remotely sensed data. Parametric classifiers, 

such as ML, which presupposes normal distributions, can be insufficient and limited especially in 

cases where data present multimodal and not normal distributions. In such cases those traditional 

methods can be substituted by other statistical methods that do not require those assumptions, such as 

logistic regression. The laboursome and time demanding method of logistic regression can be 

overcome by the integration of a built-in routine to commercial image processing software. 

The extension of the logistic approach to an autologistic one was very successful since it reduced 

the number of polygons resulted from the classified image and improved the overall accuracy 

(80.49%). Several classification methods which utilize only the spectral information of satellite sensor 

imagery are in certain cases insufficient due to spectral similarities of classes. In such cases, spatial 

information may be useful when considered to increase the limited spectral separability. 
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