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Abstract: Due to the wide potential applications of wirelesssor networks, this topic has
attracted great attention. The strict energy caim#s of sensor nodes result in great
challenges for energy efficiency. This paper presoan energy-efficient organization
method. The organization of wireless sensor netsvaskformulated for target tracking.
Target localization is achieved by collaborativexseg with multi-sensor fusion. The
historical localization results are utilized for apdive target trajectory forecasting.
Combining autoregressive moving average (ARMA) nhogled radial basis function
networks (RBFNSs), robust target position forecagis performed. Moreover, an energy-
efficient organization method is presented to enbatihe energy efficiency of wireless
sensor networks. The sensor nodes implement setaskg are awakened in a distributed
manner. When the sensor nodes transfer their citsemg to achieve data fusion, the
routing scheme is obtained by ant colony optimaatiThus, both the operation and
communication energy consumption can be minimigegberimental results verify that the
combination of ARMA model and RBFN can estimate thget position efficiently and
energy saving is achieved by the proposed orgaoizatethod in wireless sensor networks.

Keywords: Wireless sensor networks, energy efficiency, tarfpeecast, ant colony
optimization
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1. Introduction

Wireless sensor networks (WSNs) have become a ggoreisearch field. In WSN, a large number
of intelligent sensor nodes with sensing, procgssand communication capabilities accomplish
complicated sensing tasks. Due to the limited battapacity, the energy efficiency of a WSN is an
important issue. Sleeping and awakening of sensdes are supported in power-aware hardware
design [1]. As a typical WSN application, targetcking should be addressed as an energy efficiency
problem. Prior target position estimation can bedu® organize the awakening and routing of WSN,
so that the energy efficiency can be improved. ifi@thl target tracking is usually performed by a
Kalman filter (KF) [2] or a particle filter (PF) [3These algorithms are computationally-intensioe f
sensor nodes. Here, adaptive estimation can bedea\wby autoregressive moving average (ARMA)
models. However, the high uncertainty around maeeyjvwhich brings estimation error into the
forecasting process, must be handled. Based ofotbeasted results, energy-efficient organization o
sensor nodes can be performed to optimize the eerggumption of a WSN.

This paper proposes an energy-efficient organimatieethod for WSNs. Equipped with multi-
sensors, sensor nodes can produce range and beeasgirements. As the target is often detected by a
number of sensor nodes, a Fisher information mdtfid) [4] is adopted to evaluate the target
localization error. With the known target trajegtaadaptive target position forecasting is impletadn
by a novel algorithm. It is a combination of ARMAonel [5] and RBFN [6], which is called ARMA-
RBF. The target position estimation of the nextss&p instant is available. The energy-efficient
organization approach includes sensor node awatemd dynamic routing. A distributed awakening
approach is presented to save and scale the apertiergy consumption. Ant colony optimization
(ACO) [7] is introduced to optimize the routing sohe, where transmission energy consumption is
concerned. Experiments analyze the energy effigienic proposed energy-efficient organization
method and present the energy saving.

The rest of this paper is organized as follows.ti8ecll gives the preliminaries of the energy-
efficient organization for target tracking. In Seat lll, we present the principle of collaborative
sensing and adaptive estimation. Section IV dessribe approach of energy-efficient organization,
including sensor node awakening and dynamic roucigeme. Experimental results are provided by
Section V. Finally, Section VI presents the conidos of the paper.

2. Prdiminaries

The two-dimension sensing field is filled with ramdly deployed sensor nodes. Their positions are
provided by a global positioning system (GPS). Aksnode is located in the centre of the sensing
field. Sensor nodes sense collaboratively withgpecified sensing period [8]. As the historicaby&r
positions become available, the sink node can &steibe target position of the next sensing period.

2.1 Multi-Sensor Model

It is assumed that each sensor node equips twea kihdensors, one pyroelectric infra-red (PIR)
sensor and one omni-microphone sensor. Sensor ddais the bearing observations with the PIR
sensors, while the range observations are prodoigedde omni-microphone sensors. For each sensor
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node, it is assumed that the two sensors haveathe sensing rang®,. The coordinates of the sensor
node and target are denoted (5, y;) and (X,q« Yiugs) r€SPectively. Then the true bearing angle is

calculated as:

Yoorgee = Y5

B =arctan—==—— (1)

Karger — X

and the true range value is calculated as:
1= Kage =)+ Yo = %) )
Both sensors have zero-mean and Gaussian errobdigin. The standard deviation of bearing and

range observations g, and g, respectively. The observations produced by thegemodel are:

B =B+ Ws )
=6 W, (4)
wherew, andw, are the corresponding Gaussian white noise.

2.2 Energy Model

For the scalability of energy consumption in WSN, tae components of the sensor node are
supposed to be controlled by an operation systaoh as microOperating SystemS) [1]. Thereby,
shutting down or turning on any component is erdlidg device drivers in the specified WSN
application.

During sensor node operation, four main parts afrgy consumption source are considered:
processing, sensing, reception and transmissioa.pfbcessing energy is spent by the processor with
memory. It is assumed that when the processor tigeait has constant power consumption. The
embedded sensors and A/D converter are adoptdteees it any sensing task, and the corresponding
power consumption is a constant. For wireless comcation, the reception and transmission energy
is derived from the RF circuits.

When the reception portion is turned on, the sensde keeps listening to the wireless channel or
receiving data. For the transmission portion ofdREuits, the transmission amplifier has to achiame
acceptable magnification. Therefore, when sensdesibtransmits data to sensor nogehe power
consumed by transmission portion is [9]:

R =ayr, +azdi,j2rd %)
wherer, denotes the data rate, denotes the electronics energy expended in tramsgibne bit of
data,a, >0 is a constant related to transmission amplifieergy consumptiond, ; is the Euclidean

distance between the two sensor nodes.
3. Collaborative Sensing and Adaptive Estimation

Due to the redundancy of sensor node deployméMSis, the target can be detected by a group of
sensor nodes simultaneously. Observations of semsies are merged for higher detection accuracy.
Moreover, the sink node constructs the forecastingel with the historical target trajectory.
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3.1 Target Localization with Multi-sensor Fusion

It is assumed that the coordinates of the targe(3f ., Y.« ) at one sensing instant of the WSN.
Meanwhile, the target can be detectedNysensor nodes. Sensor nodes can produce the bearing

observationsfZ and range observatiorns, wherei=1,2;-- N, . For sensor node, the matrix

representation of the observation equation carebgetl from (3) and (4):

M =H (X)+W, W ~ N(OW) (6)
where X =[X, 4 Yagel IS the true target positiom, =[43,r]" is the observation vectoH, is the
observation matrixV/ is the observation error vectdy, means the normal distribution function, and
Y =diag[o}, 07] .

With the observation of the sensor nadehe likelihood function of the true target pasitiX is
calculated as:
1 —20 = H OO W =H O]
p(; X )_\/Z_Tlfﬂar 2
A suitable measure for the information containethm observations can be derived from the Fisher
information matrix (FIM) [4]. The FIM for the obseations of sensor nodeis calculated as:

3= E{[%m o(r, | xm%m p(F, 1 X)T'} ®)

where E represents the expected value.
According to (7), we have:

(7)

A By DXAy  AXDy, 1
3= ()0’ ()'o; ()0 ()0, ©)
AxAy, DXy, D¢ By
(D)o’ ()'os (D)o ()0

where AX = Xap =X+ AY, = Yige — Y7 and r' is the Euclidean distance between the true target

position and sensor nodeas presented in (2).
J ™ is the estimation error covariance matrix, whieffiies the Cramer-Rao lower bound (CRLB).

To localize the target with higher accuracy, we ustioextract the information from the all the
observationdl';| i =1,2,---,N.}. The FIM for all the observations is calculated as

J= Nz J, (10)

According to the estimation error covariance mattix, the root mean square error (RMSE)is

taken as the target location error, which is caltad as:

L, =+/trace(™) (11)

wheretrace is a function computing the sum of matrix diagosleiments.

In this way, the target can be localized by maximiikelihood estimation after gathering the
observations from the sensor nodes. The locatioaracy is reflected by, .
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3.2 Adaptive Target Position Forecasting

As a record of the target trajectory, a time seoiehkistorical target positions is transferred agon
the sensor nodes with sensing tasks. When thentuamget position is obtained, the historical &g
also available in the active sensor nodes so Hrget forecasting can be performed. In the two-

dimension field, the target position is presentgdlescartes coordinates. One direction of the targe
trajectory{y,| k=12,---,N,} is considered for this discussion. The problertoigstimate the target

position y, ,, in the next sensing period. The same forecastapyo@ach can be implemented in the

other direction.
The ARMA model is adopted here due to its outstagdperformance in model fitting and
forecasting and its modest computational burdene HRMA model contains two terms, the

autoregressive (AR) term and the moving average)(MAn [5]. In the AR process, the current value
of the time serieg, is expressed linearly in terms of its previousues(y, , ¥, » ' Y-} and a

random noises, . This model is defined as a AR process of orderAR(p) . It can be presented as:

Yi :(qyk—1+§02yk—2+"'+¢pyk—p+ak (12)
where{g|i=1,2,---,p} are the AR coefficients. In the MA process, thereot value of the time
seriesy, is expressed linearly in terms of current and ioey values of a white noise series
{a, &, &t - This noise series is constructed from the prefictrrors. This model is defined as
a MA process of ordeq, MA(Q) . It can be presented as:

Y« =8 —6a,,-03_,~~6a_, (13)

In the autoregressive moving average process,ufrert value of the time serigg is expressed
linearly in terms of its values at previous periggs.,, Y, - Y-} and in terms of current and
previous values of a white noi¢e,, a,_, -, & _.} -

To determine the order of ARMA model, the patteshautocorrelation function (ACF) and partial

autocorrelation function (PACF) are analyzed. Aeperimental analysis, it is found that the time
series{y,| k=1,2,---,N,} can be modeled b&R(p) . The method of least square estimation is

adopted to determine the coefficientsARR(p) [10].
With the constructed\R(p) model, forecasting can be performed on sensorsaddegeneral, the
estimation equation oy, ,, is:
Elyyul =@Yy t @Yy 1t t G Yy por (14)
Compared to (12), the noise temm,, is not taken into account. To enhance the accuaacy
is obtained by RBFN.
RBFN is a three-layer feed-forward neural netwotkioh is embedded with several radial-basis

functions. Such a network is characterized by goutidayer, a single layer of nonlinear processing
neurons, and an output layer. The output of theRBFcalculated according to [11]:

Zou =Zw,-)(,- Ulz,—¢c Ib) (15)

where z, is an input vector,; is a basis function||]} denotes the Euclidean normy, are the

weights in the output layeM is the number of neurons in the hidden layer, @nere the centers of

robustness of forecasting, the estimatan of a,,,
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RBF in the input vector space. The functional fasfy, is assumed to have been given, which is
always assumed as Gaussian function:

(16)
where o is a constant.

The framework of ARMA-RBF is shown in Figure. 1. dseding to (15), the RBFN is constructed
as:

M
aNt+l:zc‘)j/Yj (”yNt—erlth Y ”z) 17§
j=1

Figure 1. The framework for ARMA-RBF forecasting.
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Input vector[y, V., - V., and outputa, are taken as the training samples, where

1<i<N, - p. Then the estimatiory, ,, is calculated as:
yN‘+l :(qut +¢2yN‘—1+'“+¢pyNt—p+1+ é‘Nﬁl (18)
In ARMA-RBF algorithm, the RBFN is dynamically tread with the new target position in each
sensing period. With the output of RBFN, the fostitey error of ARMA model can be compensated.

4. Ener gy-Efficient Organization M ethod

With the forecasted target position, WSN perfornstrithuted awakening to enhance the scalability
of the energy consumption. Moreover, the routinigeste of data reporting is optimized by ACO for
energy efficiency.

4.1 Distributed Sensor Node Awakening

Sensor node awakening is considered with the fetedaarget position. To prolong the lifetime of
WSN, we exploit a sensor node awakening approapkraion modes of sensor node are defined as
follows:

1) Seep: It has the lowest power consumption as all themanents are inactive. Only the timer-
driven awakening is supported, that is, the pramessmponent can be awakened by its own timer.
The power consumption is defined as 5mW.
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2) Idle: Only the processor component is active in thislead\ll the other components is controlled
by the operation system. The power consumptioefimed as 25 mW.

3) Sense: The processor and sensor components are aatithisl mode, sensor nodes can acquire
the target observations. The power consumptioefineld as 40 mW.

4) Rx: The processor is working and the reception portibRF circuits is turned on. Sensor nodes
can receive request or data. The power consumjgtioefined as 45 mW.

5) Rx & tx: The processor is active while both the recepiod transmission portions of RF circuits
are turned on. Sensor nodes can receive and traimgormation. The power consumption is defined
as (45+ R, ) mW, whereP, is the power consumption of transmission portiocoading to Section |I.

Then, sensor node awakening strategy can be esghlaitcording to the defined operation modes.
Each sensor node controls its operation modesateparFor a sensor node in idle mode, if thengois
target in its sensing range, it will get intw mode. Thus, the broadcasting information of thiget
position can be obtained from the sink node. Not this target position is the target position
estimation forecasted in the last sensing periodat Tis because the target localization is not
accomplished yet, while the sensor node shouldgbelep as soon as possible. Then the sensor node
goes to sleep mode with the estimated sleep patatber. If the sensor node in idle mode detects any
target, it goes into data acquisition sensing médier that, the data is transmitted for data fasio
therx & tx mode. Then, the forecasted target position isiaediuAlso, the sensor node which finishes
the sensing task goes to sleep mode, adoptingstimeated sleep period number.

Here, the estimation approach of sleep period numilebe discussed. For each sensor node, we
define the shortest distance to the WSN boundag as Then the sleep time is:

T dmin < VmaxT + Rs
tsleeg:) = dtarget B Rs d SV T+ Rs (19)
Vv min max

max

whereT denotes the sensing peridq, is the sensing range of sensor node, @pdis the maximum

target velocity. When any target gets into the sendield, the Euclidean distance between the

forecasted target position and the sensor noderistdd byd,, . . If d;, ., <d,, thend . =d;
=d

Thereby, WSN stays on standby for any new targetriexg it. When there is a target in the sensing
field, the sensor nodes which are far away fromténget will go to sleep. The sleeping sensor nodes
are awakened on time when there is potential sgnask.

min ? target

otherwise,d, . =d, -

4.2 Dynamic Routing with Ant Colony Optimization

When there is a target in the sensing field, a g@usensor nodes goes into the sense mode at each
sensing instant. The observations produced by teessor nodes should be transferred to the sink
node for collaborative sensing. As these sensoesi@ite close to each other, data transmission is
enabled in one pair of sensor nodes at a time eadasollisions in the communication. Therefore, a

routing problem is considered as follows:
1) The index of sensor nodes with observations i®gehbyfl, 2,---,n_};

2) The cost measure of edge between sensor nade j is defined according to (5):
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Py Earad )t i#] (20)
3) A optimal path{A2), A(2),---,A(n,)} should be found, wherel(i)O{L2,---,n.} . At the
beginning, sensor nodé(l) transmits observations to sensor notl@). Sensor nodel(n,) can

localize the target by data fusion.il¢ j, then A(i) # A(j) . The minimization objective function is:
n,-1

F= Z Pairai+ (21)
=]

In this way, the observations of sensor nodes eameérged step by step on the path and the last
sensor node will obtain the final target locali@atresult. This result is then reported to the sioke.
As it only includes the coordinates of the tar¢fe®, communication cost is ignored.

It is assumed that the sink node maintains the amial information of sensor nodes. Therefore,
the optimization of routing scheme can be perforragdhe sink node. ACO is adopted to find the
optimal path [7]. In addition to the cost meas@@ch edge has also a desirability measyrecalled
pheromone, which is updated at run time by aréfiaints. Ants prefer to move to sensor nodes with a

high amount of pheromone. The probability with whantk in sensor nodé chooses to move to the
sensor nodg is given as follow:

Zri,j(ai,j)g - J DQK

K = Ti,u (5|u) l

uw 5 122
0 joo

wherer, ; is the pheromonej ; is the inverse of the cost measure, Q" is the set of sensor nodes
that remain to be visited by ant positioned on semodei, andg (g >0) is a parameter which

determines the relative importance of pheromonsugedistance. Once all ants have built their tours,
pheromone is updated on all edges according to

m,
i =@A-a)rn +ZATik,j (23)
k=1
where
1 . .
ATi'fj T if antk has toured edge | . (24)
0 otherwise

O0<a, <1lis a pheromone decay parameter,is the length of the tour performed by &ntandm, is

the number of ants. Finally, the edge which receie greatest amount of pheromone is regarded as
the optimal path.

5. Experimental Results

In this section, the efficiency of collaborativensieg, adaptive estimation and energy-efficient
organization will be analyzed with simulation expeents.

5.1 Experimentation Platform

It is assumed that the sensing field of WSN is 49& 400 m, in which 300 sensor nodes are
deployed randomly. The sensing period is 0.5 s.tRertarget, maximum acceleration5sn/s and
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maximum velocity is25 m/s. Deployment of WSN and target trajectory is givenFigure 2. The
trajectory of 100 points involves different movirgituations, so this scenario can represent the
generalization of tracking problem. According tactan Il, each sensor node has the sensing range of
40 m. The standard deviation of bearing observatisr2” while that of range observationslisn.

The parameters in (5) are set as=500 nJ/bil, @, =5 nJ/(bitOnf ) and r, =1 Mbit/s. The data

amount of observations isKB for each sensor node. It is assumed that the fiamstaying in each

mode isdt = 20 ms.Then, the power consumption of WSN in the eaclsisgmeriod is:
300

R () =2 P, K) (25)

where T is the sensing period ankl is the sensing period index(i,k) denotes the power

consumption of sensor noddn the k -th sensing period. Moreover, the total energy aonsion of
WSN aftern, sensing periods is:

Even =Ti Ry (K) (26)

Figure 2. Deployment of WSN and the target trajectory.
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Among the total energy consumption, energy consuilmgdransmission portion is defined as
transmission cost, while the other energy conswnps defined as the operation cost.

5.2 Target Tracking Experiments

First, the efficiency of collaborative sensing isadissed. For sensing performance comparison, we
consider the situation that only the closest senede for the target acquires the observationsiréig
compares the target location error with collabemsensing and single sensor node. Obviously, the
localization errors of single sensor node and bollative sensing method have the same trend, where
are impacted by the same obstacles and noises.Jowe can be seen that the collaborative target
location error is much less than that of singlessemode all the time. The reason is that the
collaboration of multiple sensor nodes can enhamedracking ability and weaken the impact of noise
and obstacles, which can significantly improve thbustness of target tracking. Thus, the sensing
performance is enhanced by the collaborative sgnsin
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Figure 3. Comparison of target localization error with ablbrative sensing and single
sensor node.
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Figure 4. Target position forecasting error of ARMA and ARMRBF in the coordinate
frame XOY: (a) X direction; (b) Y direction.
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Then, the target position forecast performanceroé tseries analysis is studied. In each sensing
period, the known target trajectory in the x andingctions forms two sets of time series, which are
analyzed respectively without further assumptidngs assumed that target localization in the atiti
5 s can be guaranteed by the boundary sensor nodee e target localization results are used for
ARMA learning. According to Section Ill, the targpbsitions forecasting error with ARMA and
ARMA-RBF is compared. The forecasting error frons 50 25 s is given in Figure 4. Following the
patterns of ACF and PACF, the parameies set as 3 folAR(p) model. As illustrated in Figure 4,
because RBFN is dynamically trained and used fonpmmsating the forecasting error of ARMA
model, the forecasting error of ARMA-RBF algorithenmuch less than ARMA algorithm. Thus, with
ARMA-RBF algorithm, the estimation of target moverhe&an provides more accurate results for
sensor nodes scheduling. Obviously, the energgieffi organization method can stably keep the
energy consumption of operation and transmissianlow level. It means that the energy consumption
of WSN can be more balanced, and the lifetime adl&WWSN can be prolonged, with the guidance of
energy-efficient organization.

Figure 5. Power consumption comparison with general orgaioizatnd energy-
efficient organization: (a) operation cost; (b) Ageission cost.
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With the forecasted target position, the sensoresagstimate the sleep period number and go to
sleep in a distributed manner. Thereby, the opmratost of WSN is optimized. In each sensing period
all the sensor nodes which can detect the targké wp. In order to minimize the transmission cost,
the ACO algorithm is utilized for routing. Accorg@ino (25), the power consumption of WSN is
calculated. Meanwhile, a general organization aggos considered for comparison, where all the
sensor nodes wake up every sensing period. Ingtea€CO algorithm, sensor nodes forward their
observations according to the distance from sirdenavhere it starts on farthest sensor node ansl end
on the closest sensor node. Figure 5(a) illustréitesoperation cost with general organization and
energy-efficient organization, while the power aemgtion curves of transmission cost are presented
in Figure 5(b). Utilizing energy-efficient organtaan, the operation and transmission costs are both
lower, because the energy-efficient organizatiorthwe can automatically adjust the status of sensor
nodes and schedule the sleep period of each semstr according to the estimation of target
movement.

According to Figure 5, Table 1 gives the energyscmmption of the organization approaches
utilizing (26). Define the relative reduction ofeggy consumption as:

AC = E‘}"S“l;E"memO% (27)
Even

where E,, and E.,, denote the energy consumption with general andggredficient organization,
respectively. Thus, 12.3% operation cost and 4Qra¥%smission cost is saved during target tracking.

Table 1. Energy Consumption Comparison of General Orgaminadnd Energy-efficient
Organization.

Energy consumption (J) General organization Energy-efficient organization

Operation 111.5 97.8

Transmission 84.7 50.2

6. Conclusions

Considering the energy constraints of target tragkin WSN, this paper proposes an energy-
efficient organization method based on collaboe®ensing and adaptive target estimation. Sensor
nodes which are equipped with bearing and rangsosgnutilize the maximum likelihood estimation
for data fusion. Hence, targets can be localizeddiaborative sensing while the localization enor
evaluated utilizing FIM. A sink node maintains thistorical target positions, with which the target
position in the next sensing instant is estimatgd\BMA-RBF. The future target position is derived
from the forecasted results and is adopted to argahe sensor nodes for sensing. Here, the energy-
efficient organization method includes the disttédal sensor node awakening and adaptive routing
scheme. Sensor nodes can go to sleep when there target in its sensing range and it can be
awakened once there is potential sensing task.dBgsiprobabilistic awakening is introduced to
prolong the sleep time of sensor nodes. ACO algworits employed to optimize the path of data
transmission. Experiments of target tracking vetligt target localization accuracy is enhanced by
collaborative sensing of the sensor nodes, whéddhecasting performance is improved by combining
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ARMA model and RBFN. More importantly, the energfioteency of WSN is guaranteed by the
distributed sensor awakening and dynamic routirige Main contribution of this paper is an energy-
efficient organization framework for target tradkiras well as the forecasting and awakening
approaches.
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