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Abstract: This paper presents a new model, MUSCLE (Multidice@l Scanning for Line
Extraction), for automatic vectorization of rasit@ages with straight lines. The algorithm
of the model implements the line thinning and thepée neighborhood methods to
perform vectorization. The model allows users thngespecified criteria which are crucial
for acquiring the vectorization process. In thisd®lp various raster images can be
vectorized such as township plans, maps, archrctinawings, and machine plans. The
algorithm of the model was developed by implemeantian appropriate computer
programming and tested on a basic application. IReserified by using two well known
vectorization programs (WinTopo and Scan2CAD), c¢atkd that the model can
successfully vectorize the specified raster datektyuand accurately.

Keywords: Raster to vector conversion, geographic informaggstems, vectorization,
thinning, topology, threshold.
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1. Introduction

Data collection used to be the major task whichsoamed over 60% of the available resources since
geographic data were very scarce in the early ddy$51S (Geographic Information Systems)
technology. In most recent GIS projects, data ctida is still a time consuming and expensive task;
however, it currently consumes about 15-50% ofatailable resources [1]. In order to reduce total
project cost, data generation method of extradadiaitg from existing archives has been widely applied
By using scanning method, analogue format data fileenarchives can be transformed into digital
format data, which are called raster.

In the majority of graphical information systemspuit data consist of raster images such as scanned
maps in a GIS and engineering drawings in a CADesys In order to manipulate, for example
transform or select the lines and the other featimem such raster images, these features must be
extracted through a vectorization process [2]. bezation is quite important in document recogmitio
line detection, mapping, and drawing applicatioBs For advanced vectorization applications, the
raster images must have high accuracy to preskeveriginal shapes of the graphical objects with th
highest extent possible [4].

Line is one of the most fundamental elements iplyl information systems. Line detection is a
common and essential task in many applications sgchutomatic navigation, military surveillance,
and electronic circuits industry [5 - 6]. In preug studies, there are a large number of algorithms
developed for detecting lines from raster images-[8 - 9 - 10]. The vectorization methods
implemented in these algorithms can be categoiitedfollowing six classes; (1) Hough Transform
(HT) based methods, (2) thinning based methodsc@8jour based methods, (4) run-graph based
methods, (5) mesh pattern based methods, anddfespixel based methods [11].

After the scanning, thresholding, and filteringgets, a traditional vectorization process consists o
three stages (except HT based methods); (1) lineitty, (2) line following and chain coding, ang (3
vector reduction (i.e. line segment approximatidn)order to determine only the important points
representing the medial axis, the lines on the arag to be thinned to one pixel wide by using the
kernel processing [12]. Once line thinning stagpagormed, the second stage is line following and
chain coding the medial axis. In this stage, trggirocess starts at an end pixel and continuesl lzase
the chain code directions until the last pixel lue fine is reached. Fig-1 indicates the eight fbssi
directions specified by the numbers from 0 to 7tabenformation on chain coding process can be
found in [13 - 14 -15]. At the third stage, the na@xis coded in the second stage is examinedtand
vectors in the chain code are identified. In thiscpss, the long vectors that closely representhiae
codes are formed while considering a user definegimmum deviation of the vectors from the chain
codes [16 - 21].

In this study, a new model, MUSCLE (Multidirectidn&canning for Line Extraction), was
developed to vectorize the straight lines through faster images including township plans, maps,
architectural drawings, and machine plans. Unlikaditional vectorization process, this model
generates straight lines based on a line thinniggrithm, without performing line following-chain
coding and vector reduction stages [22].
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Figure 1. Chain Code Directions.
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2. Material and M ethod

The logic behind the model is presented in Fig-Be Tollowing main stages in the model are
described in this section:

Threshold processing

Horizontal and vertical scanning of the binary imag
Detecting wrongly vectorized lines

Correcting wrongly vectorized lines by using diagloscanning
Applying topological corrections

Generating final vector data

o gk wbdhPRE

2.1. Threshold Processing

In grayscale images, the objects may contain maiffigreht levels of gray tones. In this study, the
objects are separated by using the threshold mmgesechnique, with the assumption that the gray
values are distributed over the image nearly homeges [17 - 18 - 19]. In the threshold process, a
predetermined gray level (threshold value) is taeermined and every pixel darker than this level
assigned black, while every lighter pixel is assmjnwhite. Therefore, the grayscale image was
converted into a binary image [20 - 21].

2.2. Horizontal and Vertical Scanning of the Binamage

In this stage, the horizontal and vertical linesavextracted from the binary image. The nearly
vertical lines were obtained by scanning the imdgeg&zontally, while the nearly horizontal lines nee
obtained by scanning the images vertically. Thenkof nearly vertical and nearly horizontal lines a
shown in Fig-3. In Fig-3a, the lines which pastigh the region 1 and 2 are defined as the nearly
vertical lines and the nearly horizontal lines,pexdively. Fig-3b and Fig-3c indicate the sample
drawings for nearly vertical and nearly horizonliakes, respectively. In other words, if the slope
(tangent) of the line is between -1 and +1, itefirkd as “nearly horizontal line”. If the sloparfgent)
of the line is less than -1 or greater than +ik dtefined as “nearly vertical line”.
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Figure 2. Stages of MUSCLE Model.
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Figure 3. Samples for nearly vertical and nearly horizofiteds.
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At the first step, each row on the binary image s@anned horizontally to determine the thickness
of the lines and the position of the pixels, whietre located in the mid-point of the lines. Durthgs
process, the value (black or white) of each pixaswhecked by moving from left to right. Once the
first black pixel was met, its column number wawredl into the algorithm. While continuing to scan
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pixels, the column number of the first white pixeds also stored into the algorithm. Thus, the posit
of the middle pixel in the mid-point of the linewd be determined by using the following equation,
based on the image coordinate system:

The position of the middle pixel = m + Absolutetéa({(n - m) / 2) (2)
m : column number of the first black pixel
n : column number of the first white pixel

For example, assuming thaf ixel is the first black pixel and T'3ixel is the first white pixel in
Fig-4a. Using Equation 1, position of the middl&ebican be calculated as™@ixel, which is then
colored with red. After performing the same prodessach row on the image, distribution of the red
pixels for nearly vertical and nearly horizontadds is indicated in Fig-4a and Fig-4b, respectiviely
these Figures, the distribution of the red pixaldigates that the red pixels have continuity faartye
vertical lines; however they have discontinuity fi@arly horizontal lines.

Figure 4. Determining red pixels by using horizontal andtieat scanning process.
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After the horizontal scanning processes were comgjenly the red pixels were selected. Then, a
neighborhood analysis was carried out based omehédy vertical lines by taking the advantages of
discontinuity on the nearly horizontal lines. Imstmethod, a red pixel, which is adjacent to anoteéd
one, was searched along the lines. This procedmaed until no red pixels were found adjacent to
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each other, indicating that the end of the line li@en reached. The beginning and ending point# of a
the nearly vertical lines were determined by usiregsame procedure.

At the second step, the binary image was scanedttally, and then, the same process described
above was carried out for all columns. Unlike honital scanning, the red pixels have continuity for
nearly horizontal lines (Fig-4c); however they haliscontinuity for nearly vertical lines (Fig-4d).
Therefore, the neighborhood analysis was carrigdbased on the nearly horizontal lines and the
beginning and the ending points of all the plertasgizontal lines were determined. After completing
the horizontal (Fig-5a) and vertical (Fig-5b) sdagnof the binary image, the final vectorized data
(Fig-5c) were generated by vectorizing the neaghtival and the horizontal lines.

2.3. Detecting Wrongly Vectorized Lines

In a case where two or more consecutive lines aeglyrhorizontal or nearly vertical, raster data
become unmanageable and the process described prdhious stages generates wrongly vectorized
lines. For example, initially, three consecutiveane horizontal lines (AB, BC, and CD) were
horizontally scanned as displayed in Fig-6a. Dudiscontinuity of the red pixels between intersmtti
points A, B, C, and D, the neighborhood analysisnca be performed and vectorized data cannot be
generated. When the raster image was verticallprezh during the second step, the neighborhood
analysis yielded wrong vectorization results beeaof continuity of the red pixels. The algorithm
recognizes point A as the beginning point of time liskips point B and point C, and ends the line at
point D. Therefore, the process generates a wromgttorized line between points A and D as
indicated in Fig-6b.

The detection of wrongly vectorized data is perfednby comparing the middle axis of the lines
(red pixels) with the vectorized lines. The middilas and the vectorized line have to be based en th
same linear equation. For example, if a sampleovieetd line (AB line) is a line with the beginning
point of A(Xa,Ya) and the ending point of B(y), then, the linear equation for this vectorizetlcan
be formed as follows:

(Y-¥) / (Ya - W) = (X- %) / (%a - %) (@)

Y = ((Ya- Yb) / (%a- %)) X + (b Xa - % Ya) / ( % - X)) 3)

WhenX coordinate of a red pixel is inserted into theéinEquation 3, and if the difference between
theY value derived from this equation and theoordinate of this pixel is greater than a usdindd
maximum deviation, the model defines this line ag@ngly vectorized line. After this process, tied r
pixels within the acceptable deviation range wdirmierated from the image by converting them into
the white pixel values. The wrongly vectorized ingith red pixels were remained unchanged within
the image.
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Figure 6. Detecting wrong vectorization after vertical aradibontal scanning.
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(b) Thered pixels are obtained after vertical scanting.

2.4. Correction of wrongly vectorized lines by gstliagonal scanning

The image with the wrongly vectorized lines (Fig-Veas diagonally (under 45ngle) scanned;
first, from left to right, and then, from right teft (Fig-7b). In diagonal scanning process, ifrtheere
two consecutive red pixels along the direction adming, the second red pixel is eliminated. Thus,
vectorized line took a discontinuous form as shawnFig-7c. After applying the neighborhood
analysis, the lines failed to have the acceptabiaber of pixels were not vectorized. The continuous
pixels, determined by implementing diagonal scagnirom both directions, were vectorized as
indicated in Fig-7d. Then, corrected vector dataewgenerated by combining both of the vectorized
lines together (Fig-7e).

2.5. Applying Topological Corrections

Once horizontal, vertical, and diagonal scanningcesses were completed, the topological
corrections for the intersection points of the sirshould have been performed. Topological correstio
are very important to efficiently use the extractedtor data in GIS and other spatial applications.

2.5.1. Connecting End Points of the Lines

This circumstance occurs especially at the coroertg. The correction was performed by using a
special criterion as explained in the following te@t. This criterion was based on selecting a user-
determined distance between the lines. The adjdioestin the selected distance were connectdukat t
algorithm. Then, the end points are joined by datmg the mean value of coordinates for two or enor
nodes as follows (Fig-8):

Xo=(Xe+Xo+ ..+ X)) /n 4)
Yo=(Y1+ Y2+ .. +Yy)/n (5)
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Figure 7. Correction of wrong extracted lines by using dis@ascanning procedure.
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Figure 8. Connecting end points of the lines.
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2.5.2. Correction of Overshoot and Undershoot Error

In this process, firstly; the coordinates of thieieection points between the lines were calculased
follows (Fig. 9):

Y =((a-Y) / (Xa- %) X+ (Vb Xa-% Ya) / (% - %)) (6)

Figure 9. The case of overshoot error. (d1 + d2 =d and g2 <

g
H

Secondly, poinA(X,Y.) and pointB(%,,Y,) were used to determine the beginning and endinggo
of the line. The other line can be defined by pai(&,y:) and pointD(Xy,ys) as follows:

Y = (% - Ya) / (% - %)) X+ (Yo Xe - Xa Vo) / (% - Xa)) (7)

Then, the coordinates of the intersection pok for these two lines can be calculated by the
formulations in Equations 8 and 9, respectively:

Yie= (((YaXe-Xaye)/ (%c-Xd) - (YoXa-XoYa) (Xa-Xb)) / ((Ya-Yo)/ (Xa-Xo) - (Ye-Ya) (Xc-Xd))) (8)
* (YaYo)/ (Xa-%0)) + ((YpXa-XoYa)/ (XaXb))

Xi = ((YaXeXaye)! (Xc-Xd) - (YoXa-XoYa) (Xa-Xb) ) 1 ((Ya-Yo)! (Xa-Xb) = (VoY) (Xe-Xa1)) )
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The distancesdf) from an intersection poinK(XVk), to the ending points of the intersecting lines
can be calculated by using the following equation:

dI’I.:ﬁ"r(Kn_X]{:IE_(Fn_F]{:IZ (10)

After determining the coordinates of the intersmttpoint and the distance between intersection
point and the ending points, ending points weraresad to determine either there were overshoot or
undershoot errors. If the length of a limg Wwas equal to sum of the distances from two engwigts
(d; andd,) to intersection point) and one of these distances was shorter thanraleeed distance
value : explained in Section 2.7.6), ending point wasrakf as overshoot (Fig. 9). If the length of a
line (d) was shorter than the sum of the distances frommemding points to intersection point and one
of these distances was shorter than a user deflisance valuep), ending point was defined as
undershoot (Fig. 10). Then, the algorithm corrélsesovershoot and undershoot errors by moving the
ending point to the intersection point.

Figure 10. The case of undershoot error. (d1 + d2 > d and g
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If there is a case where the length of a lidewas equal to sum of the distances from two ending
points to intersection point and both of theseatises were longer than a user defined distance valu
(p), ending point was not defined as neither oversboandershoot. In this case, intersection pant i
assigned to be a new point and the lines were @lividto four new lines as indicated in Fig. 11.

Figure11. The case where d1 + d2 =d, d1 > p, and d2 > p.
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2.6. Generating the Final Vector Data

The product obtained after the vectorization precsssaved to be ready to use in the “DXF”
format, which is the “de facto” standard and welbtvn exchange CAD format by all CAD software.
Each output images generated after scanning amelction stages can be recorded as separate layers;
therefore, the user can monitor the vectorizatimtgss and use these layers for various purposes.

2.7. Graphical User Interface and the Criteria

The algorithm was programmed in Visual Basic 64difpkm and the graphical user interface of the
model is displayed in Fig-12. The user is expettedefine the specified criteria for the currerdtea
and the future vector data before the vectorizapomcess. The performance of the vectorization
depends remarkably on these six criteria.

Figure 12. Interface of the algorithm including input winddar threshold and vectorization criteria.

% Threshold & Yectorize

Thieshold value (0% biack. 100% white] |50 ﬂ
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Mawimim desiahon distance value |3 =

Mastimurn joinl distance value |3

Owershoot and undershoot distance valee |2 =

[ Thieshold and Veciorze |

2.7.1. Threshold Value

Threshold value was used to define two main cladsesk and white, based on the gray value
distribution of the raster image. Gray values uniber threshold value become black, while values
above the threshold become white. Depending orihifesshold value, some lines can be thicker and
clarified, while some lines can be thinner and fadderefore, selecting an optimum value for the
threshold according to the raster properties iy werportant for the success of the vectorization
process. This optimum value can be found after ftpgome experiences based on the trial. For
example, by looking at the darkness of the outm#ge, user can come up with optimum threshold
value.



Sensors008, 8 2685

2.7.2. Minimum Line Thickness

The second criterion was the thickness of the lingse raster image to be vectorized. For example,
if the user selects three as a minimum number xélpifor line thickness, lines thinner than three
pixels are ignored and not vectorized. This is wisehen the user wants to extract certain objekés |
parcel boundaries with certain line thicknesses.

2.7.3. Minimum Line Length

Another criterion for eliminating the unnecessagyails and for vectorizing the lines with sufficien
length was the assignment of the minimum numbeéhefpixels for the line length. For example, if a
user selects six for this criterion, the algoriteiiminates lines that are shorter than six pixelsnt)
the vectorization process. Thus, unwanted objaath sis text and noise can be eliminated from the
raster image much more easily.

2.7.4. Maximum Deviation Distance

The determination of the wrongly vectorized lineaswperformed by considering the deviation
distance between the red pixels and the vectolinedas described in section 2.3. The maximum
deviation distance is defined by the user basedhensensitivity of the job. For instance, if a user
selects three for this value, the vectorized s are more than three pixels away from the eelp
would be considered to be in the incorrect formerglas the lines that are closer than this valuddvou
be considered to be in the correct form.

2.7.5. Maximum Joint Distance

During the topological correction of the vectorizegta, the ending points of the lines that were
closer to each other must have been merged fangithe broken lines. For achieving this, the user
allowed to define and input a maximum joint diseanvalue. Consequently, if the distance between
ending points of the lines is less than the inpalu®, the model connects these points at a shared
intersection point.

2.7.6. Overshoot and Undershoot Distance

The user is allowed to define and input a distaradee for correcting the undershoot and overshoot
errors during the vectorization process. For examifla user assigns the value of three for this
criterion, dangles and gaps which are smaller thege pixels would be eliminated and geometrically
corrected as explained in section 2.5.

3. Results and Discussion

The algorithm was tested on a sample raster dada@ivnship plan. In Turkey, township plans are
highly desired maps which are generally in analdguaat and subject to intensive digitizing tadks.
the model application, vectorization algorithm vagplied on the map exposed in Fig-13.
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The user-defined values were assigned to theiertiesscribed in the previous section. Setting a low
threshold value (50%) caused discontinuity alorg lthes during vectorization processes (Fig-14).
However, setting a high threshold value (90%) tesuln very thick lines with noises; therefore, it
caused the algorithm to induce errors and yielagatrbsults (Fig-15).

If the thickness value of the line was selecteddovery big, some of the necessary lines were
ignored in the process (Fig-16). For example, wkiggm minimum number of pixel for the line
thickness was decreased, the one pixel- thicknassgmored in the vectorization process.

For the third criterion, when the number of pixtds the minimum line length was selected as a
very big value (e.g. 9 pixels), the noise probleaswnostly solved, however, some of the lines along
the parcel boundaries were failed to be extradtgtl7a). On the other hand, when the value of this
criterion was set to be a low value (e.g. 3 pixeddénost all of the lines along the parcel bouretari
were extracted. However, it was observed that soiibe noises over the lines were also vectorized
(Fig-17b).

Figure 13. The input raster dataset used in the application.
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If the value of the fourth criterion, the deviatidistance between red pixels and the vectorizeg] lin
was selected to be a high value, the chance ofiiggthe lines that were wrongly vectorized tenals t
increase (Fig-18). When the fifth criterion wasesédd to be a high value, the lines that were not
intended to be processed were merged and vectoagzexen in Fig-19. The model application also
revealed that setting a low value for the sixthiedon had yielded better results regarding the
correction of the overshoot and undershoot errors.

Figure 14. The results of the vectorization process usirmgaathreshold value.
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Figure 15. The results of the vectorization process usingxra high threshold value.
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Figurel6. The results of the vectorization process usingh line thickness value.

q

Figure 17. The results of the vectorization process usingigls (a) and low (b) value
for the third criterion.

Figure 18. The results of the vectorization process usingh halue for the fourth criterion.

-

Figure 19. The results of the vectorization process usingyh talue for the fifth criterion.
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In order to generate the best vectorization outhef sample data, a number of alternative values
were tested over the criteria. The goal was toorexd all the lines at the parcel boundaries and to
eliminate the remnants of the noises and textswshmas possible. Our results indicated that the bes
vectorization was performed by using the followomgnbinations over the criteria:

* The threshold value as 65%,

e The minimum line thickness value as 1 pixels,

e The minimum line length value as 6 pixels,

* The maximum deviation distance value as 4 pixels,

* The maximum joint distance value as 4 pixels,

* The overshoot and undershoot distance value agelsp

The final vector data generated by applying thetorezation process with the criteria above are
displayed in Fig-20. Consequently, a great suceess achieved for fixing the lines at the parcel
boundaries; however, the noises could not be rechoompletely.

Figure 20. Overlay of the first test image and final outpragessed by the vectorization algorithm.
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The performance of the proposed model was evalubtecomparing the results with two
commercial raster-to-vector programs, WinTopo andn@CAD. For comparison, the images in Fig.
13, Fig. 21, and Fig. 22 were processed by althihee models and the results were indicated in€Tabl
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1. The images were acquired in 200 dpi and 8 klibraetric resolution by using scanner. So, before
the threshold processing, images have 256 gregsalu

Figure 21. The second test image used in the comparison.
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Our results indicated that WinTopo completed thetmézation process in the shortest computation
time; however, it divided the lines into many pigcehich resulted in too many objects. This also
required intense and time consuming post-procespnogess after the vectorization. Scan2CAD
performed a quality vectorization process with atakle number of objects. However, there were still

some errors on vector images.
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Figure 22. The third test image used in the comparison.
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Table 1. The summary of the sample application considanungber of final objects
and processing time.

The Number of Final Objects Processing Time (sec)
Programs Image 1 Image 2 Image 3 Image 1 Image 2 Image 3
MUSCLE 628 4074 1391 6.0 68.0 33.0
WinTopo 2308 7040 3788 0.5 3.0 2.0
Scan2CAD 712 1855 573 3.0 36.0 22.0

MUSCLE also provided very successful results, egfigdor the images with straight lines. The
model generated an individual vector for each padee, which reduced the number of final objects
This feature also reduced the computation timénégrocess of correcting the errors. However, total
time spent on vectorization process was longer thariime spent by using the other two commercial
programs since the current version of the MUSCLE nat professionally optimized.

5. Conclusions

In this study, a new model, MUSCLE, was developgdniplementing an appropriate computer
programming to automatically vectorize the rastadvith straight lines. The model allows users to
define specified criteria which are crucial for thlseiccess of vectorization process. A basic
vectorization application presented in this studgrot be totally generalized, yet it showed tha th
model is able to successfully vectorize raster esagith straight lines. More work in necessary to
improve the quality of the vectorized image suchaatomated selection of user defined optimum
combinations for the criteria.

The unique contribution of this model can be désadibriefly as its potential for vectorizing
straight lines based on a line thinning and simpdéghborhood analysis, without performing line
following-chain coding and vector reduction staggéssides, the model has the ability to vectorize no
only the maps with linear lines such as cadastrap sheets, township plans, etc., but also other
documents such as technical drawings, machine fiecehitectural drawings, etc., which are to be
converted from a analogue format to digital forntiais highly anticipated that MUSCLE can provide a
quick and simple way to efficiently vectorize rasteages. There are several opportunities to imgrov
this model such as vectorizing curve lines andnefj model interface.

The sample application, where the performance @itlodel has been compared with the two well
known commercial vectorization programs, indicateat the current version of MUSCLE can perform
a successful vectorization task. It was believedt ttefining and optimizing the algorithm by
professionals would improve the vectorization pescd-urther researches are also required through an
extended and a diversified sample space to expesieasible application areas of MUSCLE. Yet, our
results suggest that MUSCLE may offer opportunif@sreplacing the complicated digitizing tasks
with a concise, automatic and computer-aided psces
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