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Abstract: Land surface temperature (LST) retrieved from &tdethermal sensors often
consists of mixed temperature components. Retgesubpixel LST is therefore needed in
various environmental and ecological studies. ig plaper, we developed two methods for
downscaling coarse resolution thermal infrared {Ti&liance for the purpose of subpixel
temperature retrieval. The first method was dewsdopn the basis of a scale-invariant
physical model on TIR radiance. The second methasl based on a statistical relationship
between TIR radiance and land cover fraction ah Isigatial resolution. The two methods
were applied to downscale simulated 990-m ASTER d#®a to 90-m resolution. When
validated against the original 90-m ASTER TIR dai@e results revealed that both
downscaling methods were successful in capturiaggdneral patterns of the original data
and resolving considerable spatial details. Furtipgantitative assessments indicated a
strong agreement between the true values and tineagsd values by both methods.
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1. Introduction

Satellite thermal infrared (TIR) imagery is therpary source to retrieve land surface temperature
(LST) for various ecological and environmental s#gdat regional and global scales [1, 2, 3]. Finer-
scale studies such as the analysis of urban heati$4] and stream temperatures [5, 6], however,
require LST at a higher spatial resolution thar gravided by the currently available satelliterthal
sensors. Moreover, due to the heterogeneous nafutand surfaces, mixed pixels of multiple
anisothermal objects exist in TIR imagery at atrneddy coarse spatial resolution. As a result, LST
products retrieved from satellite TIR imagery aftem composed of a mixture of different temperature
components [7]. Therefore, there is a need for ecihg the spatial resolution of the current LST
products. In particular, as coarse spatial resmiuthermal sensors such as MODerate resolution
Imaging Spectro-radiometer (MODIS) and Advanced yWEigh-resolution Radiometer (AVHRR)
provide LST products with very high temporal freqaies, improvements on the spatial resolutions of
these frequently used LST products will signifidp@iugment their potential uses in many application
requiring LST with higher spatial resolutions.

Two basic approaches have been developed to entiaadeST products retrieved from satellite
TIR imagery. The first approach uses spectral meanalysis (SMA) to decompose mixed TIR pixels
into multiple isothermal components [8, 9, 10, By.modeling TIR radiance as a mixture of multiple
thermal endmembers, SMA produces a set of compotenperatures and their corresponding
fractions for each mixed pixels. However, the spatetails within the mixed pixels remain unresdlve
in the decomposed component temperatures. In &bntilae second approach uses downscaling
methods to disaggregate each mixed TIR pixel intdtipte finer resolution TIR pixels for subpixel
LST retrieval [5]. Specifically, it involves twoegbts: 1) downscaling TIR radiance using higher apati
resolution ancillary data (e.g. land cover mapsy a) retrieving subpixel surface temperature from
downscaled TIR radiance. Compared to the first@ggr, the second approach can provide substantial
spatial details within mixed pixels.

In this paper, we present a downscaling approacteribancing LST products using satellite TIR
imagery. Given the fact that the algorithms foriesting LST from TIR radiance are well established
[12, 13, 14, 15], our focus is on the developmenmethods for downscaling TIR radiance from
satellite sensors. Liu et al. [7] grouped scalipgraaches to satellite-derived data into two broad
categories: 1) scaling based on physical modeld,2arscaling based on statistical methods. In this
paper, we develop both physical and statistical rdmaling methods for subpixel TIR radiance
estimation.

2. Downscaling M ethods
2.1. Physical downscaling

The basic idea of the physical downscaling metlsam iestablish a functional relationship between
TIR radiance and ancillary data, which satisfie® teonditions: (1) the functional relationship is
physically meaningful and holds across differerles; and (2) the ancillary data can be easilyesical
Specifically, we modeled the TIR radiance as adirmmbination of multiple land cover components
weighted by their corresponding fractions and mediby atmospheric effects.
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Under constant atmospheric conditions, the at-sefi$® radianceR;(i) observed in a given

spectral channel at pixeli =1, ...,n; nis the total number of pixels in the image) camimleled by
the following equation [6]:

K
Rs() =7> & f ()B(T (1)) + Ry, 1)
k=1

wherer is the transmissivity of the atmosphegg;is the emissivity of componekt(k = 1, ...,K; K is
the total number of land cover componentg)i) is the fraction of componemtwithin pixeli; B is

the blackbody radiance defined as the integratioRlank function over the spectral channel given
T.(i), which is the surface temperature of compoikenithin pixeli; and R, is atmospheric thermal

path radiance. When downscaling is considered, | pixes disaggregated inton higher spatial
resolution pixels, denoted by, wherej = 1, ...,m. The downscaled at-sensor TIR radiaRg@;) in

the given spectral channel at pixglis modeled by the following equation:
- K - -
Rs(',-)=Tszfk(lj)B(Tk(lj))+RA, 2)
k=1

where all parameters are defined similarly as uraéiqn (1).
Spectral mixture analysis attempts to retridy@) directly from multiple equations, each of which

corresponds to one spectral channel defined bytiequél). In contrast, our objective here is not to
directly retrieveT, (i) but to downscaldRs(i) toRs(i;), from which subpixel temperaturdgi;) can

be retrieved. As such, we estimate the functiordtionship betweelR;(i) andf, (i) by fitting the

model in equation (1) to observed data at the eoapmatial resolution. To avoid estimating the
unknown component temperatufg@) , we make the assumption of isothermal pixel ¢@nponent

temperatured, (i) are the same within pixa) as suggested in [9], which allows us to drop the
subscriptk inT, (i) . The isothermal assumption may introduce some liidst is necessary to reduce

the number of unknown variables. An adjustmenthie bias will be made later. Consequently, the
model used to estimate the functional relationsleipveenRs (i) andf, (i) becomes

K
Rs(i) =7 & f()B(T (M) + R, 3)
k=1
where T (i) is the LST at the coarse spatial resolution. Ndtat t can be absorbed &y such

thatg, =r¢, represents the effective emissivity of comporieafter considering atmospheric effects.
Equation (3) can then be rewritten as

Rs()=(L f,0B(T @), ... .f (B(T ())%(Ra .E - &) - )
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The least squares estimates of parameéilé)gs ?l ,EK) are then obtained using observations over

all pixels(i = 1, ...,n) in the image at the coarse spatial resolution.
Similarly, the isothermal assumption indicates fhdt;) =T(i). Hence, equation (2) can be written

as

K
Rs(i;) =7 & f,()B(T(M))+R,. (5)
k=1

Using the functional relationship obtained at tloarse spatial resolution, the downscaled at-sensor
radianceRs(i;) at the higher spatial resolution is estimated by

RG)=(1 6)BTO), - fi § BT O)x(Ry &L - &) (6)
Where(fQA, g, . B, ) are the plug-in estimates of parameters in (4;shperscript “0” irf?;)(ij)

denotes the initial estimate. To correct the brasoduced by the isothermal assumption, the initial
estimate,Rg(ij), is modified tdR;(i;) by adding an additive term which is proportionale)(ij):

Ma

R(i) =R, +5~

ZRSR(S)(

(R -RE; ))j (7)

!
iy

j

2.2 Satistical downscaling

A statistical approach to downscaling TIR radianaectly estimates the subpixel TIR radiance
R.(i;) based on higher spatial resolution ancillary datgi, ), k =1,...K) without referring to the

physical models at different scales. In this paper,applied a statistical method originally develdp
for disaggregating zonal census counts [16, 1fawnscale TIR radiance. As detailed in Figure 1,
this statistical method obtains the high spatiabhation TIR radiance estimaés(ij) in two stages:
initialization and iteration. At the initializatiostage, TIR radiance at high resolution pikeis set
equal to the TIR radiance at its corresponding ssaesolution pixel. At thel-th iteration, a linear
regression model between the TIR radiance estirl':i’é‘fei ;) obtained from the previous iteratiorl)
and the land cover fractiond\((i;), k=1,...K) is fitted to all the pixels. Note that an intggtéerm is
not used in the regression model in order to acouinearity as the land cover factions sum to one.
The model estimate of the TIR radiance is obtailaﬁdf\’;‘l(ij):ﬁA’lfl(ij)+...+,5K f. @), where
,@1/3’K are estimates of regression coefficients. To niakeaverage of TIR radiance estimatesnof
high spatial resolution pixels equal to the value of their corresponding coaeselution pixel (i.e.

Ry(i)), R%(i,) are updated t&,(i,) using the equation:
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R(1)=R()+R M- Y RI(). ®

The iteration proceeds until the difference in iagression coefficient of determinatichbetween two
continuous iterations falls below a threshold vdlig. 0.001).

Figure 1. Procedure of statistical downscaling method.

Initialization Stage:

1./=0;

2:(r*) =0;

3:RLG ) =Ry(i), (i=1,..,m, and =1, m),

Iteration Stage:

4: [=1+1;

5: Regress ]i’éfl (i) 10£,(i )yef (), (i =1,...,m, and j =1,....m);

6: Calculate the regression coefficient of determination (7°)’;

7: Calculate the model estimates: ]i’éfl (i,)= ,@Lfi (7 )+...+,3Kf}( (i,), where ,@1 ,@K

are the regression coefficients from 5;

) ~ A | A
8: Update the model estimates: Ry(i,) = Ry ' (i) + Ry (i) —— > Ry (i)

1=

9:If (r*) — (7)™ 2 0.001, repeat 4-8; Otherwise, iteration terminated.

3. Validation and Evaluation
3.1. ASTER data

The TIR radiance used to test our downscaling nusthe from Advanced Spaceborne Thermal
Emission Reflection Radiometer (ASTER). ASTER i® afi the major satellite sensors used for land
surface temperature retrieval [18]. It has 14 rmpectral channels including three visible and near
infrared (VNIR) channels with 15-m spatial resaduti six short wavelength infrared channels with 30-
m spatial resolution, and five TIR channels with-fA0Ospatial resolution. ASTER level-1B data
acquired on April 25, 2004 were collected in owdstarea, Yokohama City in Japan. The study area
covers most inner portion of the city with mostrnesgentative land use/land cover (LULC) types from
the central business district (CBD) to suburbarutal areas in Japan. A false color display oftbe
m ASTER VNIR imagery of the study area is showfrigure 2.
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Figure 2. The false color display of the 15-m ASTER VNIR ireagin the study area.

As the five ASTER thermal channels are highly datesl with each other, we only selected the
thermal infrared data in channel 13 (10.25-10@bin this study. The ASTER Level-1B data set
contains radiometrically calibrated digital numb@diNs) quantized as 16-bit unsigned integers fer th
TIR bands. We converted the scaled DNs in char®éb ht-sensor TIR radiances by the formula [19]:
Radiance = (DN value — 1) x 0.005693. The at-sem#®rradiance image of ASTER channel 13 was
shown in Figure 3(a).

To evaluate the proposed downscaling methods, fmadtlution TIR radiances in a particular
spectral region acquired at the same time anditotare needed for validation. We simulated multi-
resolution thermal data by upscaling the ASTER okad3 from the original 90-m resolution to 990-
m resolution. This allows us to apply the proposerthods to downscale the 990-m thermal data back
to 90-m resolution, which will then be validatedaargt the original 90-m thermal data. Specifically,
the TIR radiances were upscaled by averaging elery 11 TIR pixels at the 90-m resolution to one
pixel at the 990-m resolution [7]. The simulated98 ASTER TIR imagery was shown in Figure 3(b).
In addition to the simulated TIR radiances, LSThat 990-m resolution is also needed in the physical
model. Unlike the TIR radiances, the upscaling fiemcfor LST is much more complicated than just a
simple average [7]. Therefore, we used the 1000@DW LST products acquired at the same time as
the ASTER data over the study area as a good ajppaiein the physical model.
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Figure 3. (a) The original 90-m TIR radiances of ASTER chddi& (b) The simulated

990-m TIR radiances of ASTER channel 13, (c) Thereged 90-m TIR radiances by
physical downscaling, and (d) The estimated 90-nR Thdiances by statistical
downscaling. Unit for the scale bar is w /A(snum).

(a) - I (b)

(©) (d) "
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11

110
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The three 15-m ASTER VNIR channels shown in Fig2inwere used to generate high resolution
ancillary data (i.e. land cover fractions). Spesiliy, the VNIR data were initially clustered irfitieen
classes and further grouped into seven generaldawver types (water, soil, two urban types, anddhr
vegetation types)The 90-m land cover fractions were then estimatedtha proportion of the 15-m
pixels of each land cover type within each 90-mepixhe land cover fractions at 90-m resolution
were aggregated into 990-m land cover fractionsiimple averaging everdy/l x 11 pixels of the 90-m
fractions.
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3.2. Physical downscaling results

The physical model between ASTER at-sensor TIRaramis and land cover fractions at the
resolution of 990-m was well fitted to the dataradicated by a very high coefficient of determioati
r?=0.9238. The model parameter estimates in equétioare summarized in Table 1. All parameters
are statistically significant with afl-values being nearly close to zeros. The additoragonent due to
atmospheric effects was estimated as 2.56986 w s(mm). Note that all the effective emissivities
are relatively smaller compared to those publisineliterature (Sabins, 1986; Lillesand et al., 2004
and the spectral library at UC Santa Barbara, hitpw.icess.ucsb.edu). This is due to the fact that
effective emissivities were scaled by absorbing tifamsmissivity of the atmosphere into the true
emissivities.

Table 1. The parameter estimates of the physical model.

Parameters Estimate Standard Error P-value
R, 2.56986 0.18414 <2e-16
£, 0.49519 0.03397 <2e-16
g, 0.70226 0.01831 <2e-16
E, 0.71396 0.01829 <2e-16
g, 0.74050 0.02203 <2e-16
g, 0.69724 0.01876 <2e-16
g, 0.63358 0.02272 <2e-16
g, 0.64320 0.02016 <2e-16

When the model parameter estimates obtained aefindution of 990-m were applied to land cover
fractions at the spatial resolution of 90-m, then®TIR radiances were obtained. After bias coroecti
(see equation (7)), the final model estimates ef3@-m TIR radiances were shown in Figure 3(c). A
visual comparison revealed that (1) the generdépst of the 90-m TIR radiances in Figure 3(a) were
well captured in Figure 3(c); and (2) consideradpatial details in Figure 3(c), which were origlpal
unresolvable in Figure 3(b), appeared in Figurg.3owever, some hotspots (pixels with high TIR
radiances) depicted in red in Figure 3(a) wereaagtured in Figure 3(c). This is due to the faett th
there is a lack of individual patches (hotspotanpdsed by more thafl x 11 pixels of the 90-m
resolutionin the original thermal image. Additionally, a dimportion of the map in Figure 3(c)
illustrated some smoothing and blocking effectsiciwimight be a consequence of the assumption of
isothermal pixel. Further comparison between thedehceestimates and the true values (i.e. the
observed 90-m TIR radiances of ASTER channel 13Justrated by a scatter plot in Figure 4. The
scatter plot showed that most of the points liethgla 1:1 line (dotted line) with only a small pont
of points departing far from the 1:1 line, indicagtia general good agreement between the physical
model estimates and the true values. To evaluatees$ults quantitatively, a simple linear regressio
model was fitted between the estimated values hadtrue values using all the 90-m pixets X
75625). The results demonstrated that the estimatkets matched very well with the true values as
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evidenced by (1) a very high coefficient of deteration ¢* = 0.777), (2) the closeness of the fitted
line (solid line) and the 1:1 line in the scatt®tpand (3) a small residual standard error (01333

Figure 4. Estimated 90-m TIR radiances of ASTER channel 233 physical
downscaling. Solid lines are the fitted models dotted lines are 1:1 lines. Units for
both axis are w / (fsrum).
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3.3. Satistical downscaling results

The results of the 90-m TIR radiances by statiktiimavnscaling were shown in Figure 3(d). The
estimated values well captured the general pattefrite true values in Figure 3(a) and resolved
substantial spatial details unseen in Figure 3{ompared to Figure 3(c), Figure 3(d) revealed more
spatial details and illustrated less smoothinglandking effects. Similar to Figure 3(c), some lpots
depicted in red in Figure 3(a) were not capturedrigure 3(d). This could be explained by the
smoothing effect of the regression model used bysthtistical downscaling. The scatter plot in Fegu
5 showed almost the same patterns as that in Figused indicated a good agreement between
statistical estimates and the true values. Theltsesti quantitative evaluations were similar to gbo
obtained in section 3.2. Compared to the physioatrdcaling, the statistical downscaling achieved a
slightly higher coefficient of determination?(= 0.794) and smaller residual standard error @BR7
These results further demonstrated the good pediocen of the statistical downscaling method.
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Figure 5. Estimated 90-m TIR radiances of ASTER channel 33 shatistical
downscaling. Solid lines are the fitted models dotted lines are 1:1 lines. Units for
both axis are w / (fsrum).
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4. Conclusions

Subpixel LST retrieval is often needed in varionsinmental and ecological studies because the
LST products retrieved from current satellite thakrisensors have limited spatial resolutions foerfin
scale studies and may contain mixed pixels of migltanisothermal objects in heterogeneous areas. In
this paper, we developed two methods for downsgatmarse resolution TIR radiances in preparing
for subsequent subpixel temperature retrieval. filsemethod was developed on the basis of a scale-
invariant physical model on TIR radiances. Frompghgsical model, a functional relationship between
TIR radiances and land cover fractions was estichateng data at a coarse spatial resolution. The
downscaled TIR radiances were then estimated blyiagpthis functional relationship to land cover
fractions at a high spatial resolution. The secomethod was based on a statistical relationship
between TIR radiances and land cover fractions dtigh spatial resolution. In this statistical
downscaling method, high spatial resolution TIRiaades were initialized by the coarse spatial
resolution observations and then iteratively reggdgo the high spatial resolution land cover fosst
until no significant improvements between two couatus iterations were achieved.

The two downscaling methods were applied to sinedl®&90-m TIR radiances of ASTER channel
13. The estimated 90-m TIR radiances were therdatd against the original 90-m TIR radiances.
The visual comparison of the results revealedlb#t downscaling methods successfully captured the
general patterns of the original data and resolgedsiderable spatial details. The quantitative
assessments indicated a strong agreement betwed¢ru¢hvalues and the estimated values generated
by both methods. Future research could consideusieeof spatial dependence in the downscaling
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methods and explore other ancillary data. In caiohy the downscaling methods developed in this
paper showed promising results for further subpixetl surface temperature retrieval.
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