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Abstract: A visible sensor array system for simultaneous multiple SNP genotyping has 

been developed using a new plastic base with specific surface chemistry. Discrimination 

of SNP alleles is carried out by an allele-specific extension reaction using immobilized 

oligonucleotide primers. The 3’-ends of oligonucleotide primers are modified with a 

locked nucleic acid to enhance their efficiency in allelic discrimination. Biotin-dUTPs 

included in the reaction mixture are selectively incorporated into extending primer 

sequences and are utilized as tags for alkaline phosphatase-mediated precipitation of 

colored chemical substrates onto the surface of the plastic base. The visible precipitates 

allow immediate inspection of typing results by the naked eye and easy recording by a 

digital camera equipped on a commercial mobile phone. Up to four individuals can be 

analyzed on a single sensor array and multiple sensor arrays can be handled in a single 

operation. All of the reactions can be performed within one hour using conventional 

laboratory instruments. This visible genotype sensor array is suitable for “focused 

genomics” that follows “comprehensive genomics”. 
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1. Introduction 

Demands for convenient genotyping of previously characterized marker nucleotides in various 

organisms, including humans, have been increasing recently. Following human whole genome 

sequencing, the need for establishing high throughput genotyping methods with a potential for genome-

wide association studies (GWAS) was recognized [1-5]. Several methods were then developed [6-10] 

which have provided fruitful results [11-15]. Now GWAS is carried out as a routine strategy in many 

research groups. GWAS successes have generated the need for convenient analysis of the resulting 

marker genotypes for research groups and therapeutic hospitals. Most of the methods used for GWAS 

are not directly applicable for groups whose interest is focused rather than comprehensive. Generally, 

high throughput methods are not convenient for analysis of a limited number of targets in terms of 

labor, cost and time. Thus, accompanying progress in GWAS there is an increasing demand for 

convenient genotyping methods optimized for a small number of marker nucleotides. 

We recently developed a new SNP typing sensor device that allows visible inspection of genotyping 

results [16]. This device was used to investigate human radiation sensitivity-associated genes [17-18]. 

Previously, there was one chip-based genotyping method that had been reported to allow visual 

detection of typing results by naked eyes [19]. This method uses a commercially available biosensor 

chip that is capable of transducing specific molecular interactions into signals that can be visualized 

even by the naked eye. The chip (6 x 6-mm squares) is small enough to be placed in a 96-square-well 

reaction plate. Mass deposited on the thin-film surface by enzymatic catalysis alters the wavelength of 

light reflected by the optical layer resulting in a perceived color change on the surface. This method 

uses allele-specific ligation reaction of biotin-conjugated oligonucleotide probes for discrimination of 

genotypes. The biotin molecule in the probe is used for visualization of typing results.  

On the contrary, our device is a microarray slide (75 x 25 mm) that uses enzymatic allele-specific 

primer extension reactions to discriminate genotypes. The array is composed of a commercially 

available plastic slide base with specific chemical modifications on its surface that allow covalent 

immobilization of amino-modified oligonucleotides [20]. Briefly, the surface of a cyclic olefin 

copolymer (COC) was coated by random copolymerization of 2-methacryloyloxyethyl phosphoryl-

choline (MPC), n-butyl methacrylate (BMA), and p-nitrophenyloxycarbonyl polyethyleneglycol 

methacrylate (MEONP). In aqueous solution, BMA forms aggregates and becomes adsorbed onto a 

hydrophobic substrate surface of a COC. On the other hand, the hydrophilic properties of MPC provide 

suitable environment for DNA-DNA hybridization reactions and enzymatic activity such as that of 

DNA polymerase. MEONP works as an active ester unit to form covalent bonds with 5'-C6-amino-

oligonucleotides. The immobilization-ready, post-functionalized plastic slide base is already 

commercially available from Sumitomo Bakelite Co. (Tokyo, Japan). Plastic bases can be handled 

safely and are less easily broken during operation and transportation than glass. Reliable genotype 

discrimination is achieved by enhancing allelic specificity in an enzymatic extension of immobilized 

oligonucleotide primers with a locked nucleic acid (LNA) modification at the 3’-end [21-22]. Selective 

incorporation of multiple biotin-dUTP molecules during the primer extension reaction, followed by 

binding of alkaline phosphatase-conjugated streptavidin allows visible detection of genotypes through 

precipitation of colored alkaline phosphatase substrates onto the surface of the plastic base.  
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Precipitation of colored substrates allows immediate inspection by the naked eye and images can be 

recorded by a digital camera equipped on a mobile phone as shown in Fig. 1. Unlike other SNP typing 

systems, this array does not need expensive instruments such as a fluorescent high resolution scanner 

or a mass spectrometer for detection. Furthermore, the overall processes can be carried out quite easily 

in a relatively short time period. It takes only one hour from primer extension to observation of typing 

results. 

In this review article, details of the sensor array including design of allele-discriminating 

oligonucleotides, principles of SNP typing reaction chemistry, sensor array preparation and examples 

of operation are described. 

Figure 1. Recording the visible genotype sensor array image using a digital camera 

equipped on a mobile phone. A: Image recording using a mobile phone. B: Recorded 

image on the mobile phone. Individual spots on the sensor array indicate target SNP allele 

types. Visibility of the genotyping spots allows immediate inspection of results. 

 
 

2. Design of allele-discriminating oligonucleotides 

An example of an allele-discriminating oligonucleotide is shown in Figure 2. It should be noted that 

the 3’-end nucleotide opposing the target SNP nucleotide in the template DNA is LNA modified to 

enhance its allelic discrimination efficiency as reported in [21] and [22]. The Tm of the backbone 

oligonucleotide was set to be 60oC by adjusting the number of overall nucleotides while the SNP 
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nucleotide was always located at the 3’-end. Each oligonucleotide was synthesized with additional 5’-

end amino C6 modification for covalent attachment to the plastic base. 

Figure 2. Structure of an allele-discriminating immobilized oligonucleotide. The 3’-end 

nucleotide opposing the target SNP nucleotide in the template DNA is LNA modified to 

enhance allelic discrimination efficiency. The Tm of the backbone oligonucleotide is set 

to be 60oC. Amino C6 is attached to the 5’-end nucleotide for covalent immobilization 

to the surface of a plastic base. 

 
3. Preparation of genotyping array 

Synthesized allele-discriminating oligonucleotides were immobilized as follows. First, the 

concentration of oligonucleotides was adjusted to be a 0.05 µM solution in 1 x S-BIO spot solution 

(Sumitomo Bakelite, Tokyo, Japan). Drops of approximately 50 nL were spotted onto S-BIO Prime 

Surface plastic bases (75 x 25 x 1 mm, Sumitomo Bakelite, Tokyo, Japan) using a MassARRAY 

Nanodispenser (Sequenom, San Diego, CA) as shown in Figures 3A and 3B. The spotted plastic bases 

were heated at 80oC for 1 h to stimulate covalent immobilization of the oligonucleotides onto the 

surface of the plastic base (Figure 3C). White spots were clearly visible after heating as shown in 

Figure 3D. A Multiwell Geneframe (19 x 10 mm x 5 wells/frame, ABgene House, Surrey, UK) was 

then placed carefully on each base (Figure 4A). The bases were washed in 0.1% Tween-20 at room 

temperature for 1 min as shown in Figures 4B and 4C. The white spots disappeared after this washing 

process. The bases were then soaked in 1 x S-BIO blocking solution (Sumitomo Bakelite, Tokyo, 

Japan) containing 0.1% Tween-20 at room temperature for 5 min. They were washed in 1 x TBS-T (10 

mM Tris, pH 7.6, 150 mM NaCl and 0.1% Tween-20) at room temperature for 1 min, then in 0.1% 

Tween-20 at 80oC for 1 h to remove excess surface adhesive chemicals from the Multiwell Geneframe 

and finally in 0.1% Tween-20 at room temperature for 1 min. They were centrifuged at 100 x g for 1 

min as shown in Figure 4D and dried at room temperature for 10 min. The arrays thus prepared were 

placed in a desiccator and stored at 4oC until use. 
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Figure 3. Spotting of oligonucleotides on plastic bases. A: MassARRAY Nanodispensor. 

B: Spotting on a plastic base. C: Heating of the spotted plastic base. D: Comparison of 

original and spotted plastic bases. 

 

Figure 4. Post spotting processes in preparation of visible genotype sensor array. A: 

Attaching a Multiwell Geneframe onto each plastic base. B: Simultaneous handling of 

multiple plastic bases. C: Masking unspotted surface of plastic bases by soaking in 1 x 

S-BIO blocking solution. D: Removal of surface solution by centrifugation. 
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4. Reaction chemistry 

Overall reaction processes are illustrated in Figure 5. They consist of the following three steps: Step 

1: Multiple allele-specific immobilized oligonucleotide primer extension. Step 2: Binding of alkaline 

phosphatase-conjugated streptavidin to biotin-dUTPs incorporated during primer extension process. 

Step 3: Visible color development. Overall reactions can be completed in one hour. 

 

Figure 5. Scheme of reaction processes on the visible genotype sensor array. Only three 

reaction processes are necessary. These reactions can be performed by conventional 

laboratory instruments shown in Figure 9. Typing results can be visibly inspected within 

one hour. 

 
 

4.1. Step 1: Allele-specific primer extension (Figs. 6, 9A and 9B) 

Multiple immobilized oligonucleotides were extended simultaneously and selectively by the 

perfectly matched template DNAs (Figure 6). Typically, fifty microliters of a reaction mixture 

contained 1 x Mg-free ThermoPol II reaction buffer (New England Biolabs, Beverly, MA), 2.5 units of 

HotStar Taq DNA polymerase, 10 µM biotin-modified dUTP (Fermentas, Hanover, MD), 10 µM each 

of normal nucleotide (dATP, dCTP and dGTP), 4mM MgCl2, and 1 µL of PCR product mixture. The 

reaction mixtures were initially heated at 95oC for 15 min to activate the HotStar Taq DNA polymerase, 
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then cooled down for a couple of minutes and poured onto the wells on the array. The arrays were 

placed in prewarmed, humidified plastic boxes as shown in Figure 9A. The boxes were then sealed 

thoroughly with Saran wrap (AsahiKASEI Life and Living, Tokyo, Japan) and incubated at 65oC for 30 

min as shown in Figure 9B. The biotin-dUTPs incorporated during the primer extension reaction are 

used as tags for sensitive visible detection of spots in subsequent steps. It is advisable to use PCR 

products with sizes up to 800 bp (based on unpublished observation). Longer template DNA seems to 

be introducing static and/or spatial hindrance and reduce the hybridization efficiency. Genomic DNA 

might be feasible to use if it is fragmented to short size and using fluorescence to detect signals, though 

we have not yet examined. HotStar Taq DNA polymerase has been used since it does not possess 3’-5’ 

exonuclease activity. The 3’-5’ exonuclease activity should be eliminated since it removes mismatched 

base pair at the SNP nucleotide and supports non-specific primer extension. Other DNA polymerase 

without 3’-5’ exonuclease activity may be used. In this system, primer extension reactions, including 

initial hybridization between free-moving template DNAs and immobilized oligonucleotide primers, 

take place rapidly compared with other hybridization-only methods that usually require more than 

several hours. Ten minutes incubation might be sufficient to get enough signal strength as judged by 

ref. 16, however, we recommend using 30 minutes for stable and reliable genotyping. 

Figure 6. Allele-specific primer extension reaction. The immobilized oligonucleotide 

(Allele 1) that is hybridized to perfectly matched template (Allele 1 template) can be 

extended according to the sequence of the template. Biotin-dUTPs in the solution are 

thus incorporated during the extension process. Extension of the immobilized 

oligonucleotide (Allele 1) hybridized to a mismatched template (Allele 2 template) is 

efficiently inhibited by the LNA modification at its 3’ end.  
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4.2. Step 2: Incubation with alkaline phosphatase-conjugated streptavidin (Figures 7 and 9C) 

This is a process to attach alkaline phosphatase-conjugated streptavidin to the biotin-dUTP tag sites 

(Figure 7). Alkaline phosphatase is an essential enzyme that permits visible colored substrate 

precipitation at the next step. Fifty microliters of alkaline phosphatase-conjugated streptavidin (Bio- 

Rad Laboratories, Hercules, CA) diluted 100 times in 1 x TBS-T was added to each well of the array 

the array and incubated for 10 min at room temperature (Figure 9C). Free unbound alakaline 

phosphatase-conjugated streptavidin was removed by washing in 1 x TBS-T.  

Figure 7. Binding of alkaline phosphatase-conjugated streptavidin to the incorporated 

biotin-dUTPs. Streptavidin specifically binds to biotin molecules in the extended 

sequence of the immobilized oligonucleotide. This reaction allows spatially restricted 

localization of the alkaline phosphatase-streptavidin conjugates on the plastic base.  

 
 

4.3. Step 3: Visible color development (Figures 8 and 9D) 

The alkaline phosphatase, bound to the biotin-dUTP tag sites through its conjugated streptavidin 

molecule, catalyzes conversion of soluble nitro-blue tetrazolium chloride (NBT) into unsoluble, 

colored NBT-formazon as shown in Figure 8. The NBT-formazon precipitates onto the surface of the 

plastic base and adheres tightly, giving visible colored spots at the oligonucleotide immobilization site. 

One hundred microliters of 5-bromo-4-chloro-3’-indolylphosphate (BCIP)/NBT (Perkin Elmer 

Optoelectronics, Fremont, CA) with 0.1% Tween-20 was added to each well of each array and these 

were incubated at room temperature for 30 min. Visible spots usually appear within 10 minutes as 

shown in Figure 9D. The arrays were washed in 0.1% Tween-20 for 1 min, centrifuged at 100 x g for 1 

min, then dried at room temperature for 10 min. 
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Figure 8. Colored substrate precipitation. Captured alkaline phosphatases catalyze 

conversion of soluble NBT into unsoluble, colored NBT-formazon. The resulting NBT-

formazon precipitate adheres to the surface of the plastic base, giving visible spots. 

 
 

Figure 9. Overview of experimental set-up for reactions on the sensor array. A: Set-up of 

allele-specific primer extension. The reaction mixture was added to each well of the 

visible genotype sensor arrays then placed on a plastic tip case containing pre-warmed 

water. B: Allele-specific primer extension was performed in a constant temperature 

incubator at 65oC. The plastic tip case was wrapped with Saran wrap to preserve humidity. 

C: Incubation of alkaline phosphatase-conjugated streptavidin. D: Color development 

using BCIP/NBT. 
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Figure 10. Examples of spot images from the visible genotype sensor array. Genotypes of 

four individuals were simultaneously analyzed on one sensor array. Allele 1: Allele-1 

disciminating oligonucleotides spotted in triplicate. Allele 2: Allele-2 discriminating 

oligonucleotides spotted in triplicate. P: Positive control oligonucleotide [16]. N: 

Negative control oligonucleotide [16]. 

 
 

5. Recording images and data processing 

Typing results can be immediately inspected by the naked eye and can be recorded by a digital 

camera equipped mobile phone (Figure 1). In our laboratory, for detailed quantitative assessments, the 

images of spots on the sensor array were recorded using a Nikon D70 digital camera (Nikon, Melville, 

NY) fixed on a tripod. The original 16-bit RAW format RGB files (shown in Figure 10 as an example) 

were then converted to 8-bit grayscale TIFF format files using Adobe Photoshop Version 6.0 software 

(Adobe Systems, San Jose, CA). The signal intensities of individual spots on the sensor array were then 

quantified using the Daredemo DNA Array Kaiseki software version 1.0 (Dynacom, Chiba, Japan). 

Typical scatter plots of signal intensities are shown in Figure 11. A total of forty-five individuals 

whose genotypes had been previously investigated by another established method (MassARRAY) were 

used to validate this sensor array. All data points of individual genotypes were clustered in well-

separated regions. Detailed assessment of the allelic discrimination by this sensor array has been 

carried out by calculation of Silhouette scores according to [23]. All of the oligonucleotides 
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investigated were revealed to have a score beyond the cutoff value of 0.65, confirming reliability of 

allelic discrimination by this sensor array [18]. 

 

Figure 11. Scatter plots of signal intensities measured for three SNPs. X-axis: Signal 

intensity of allele-1 discriminating oligonucleotide. Y-axis: Signal intensity of allele-2 

discriminating oligonucleotide. Data plots were of 45 individuals previously genotyped 

by another established method (MassARRAY). Blue crosses: Allele 1 homozygotes 

determined by MassARRAY. Green open diamonds: Heterozygotes determined by 

MassARRAY.  Red closed circles: Allele 2 homozygotes determined by MassARRAY. 

Plots are modified from ref. 18. 

 
 

6. Applications of the visible genotype sensor array 

Increasing reports of success with GWAS in many fields have generated a need for convenient 

analysis of the selected marker genotypes by research groups and therapeutic hospitals. Furthermore, 

these techniques are increasingly in demand in developing countries to improve human healthcare [24]. 

The visible genotype sensor array described in this review article should be considered as a candidate 

to meet the above needs. The method of Zhong et al. [19] uses allele-specific ligation reaction of 

biotin-conjugated oligonucleotide probes to the immobilized oligonucleotides that hybridized to 

template PCR products. Ligation reaction has superior allelic discrimination ability to that of DNA 

polymerase. However, the biotin-conjugated oligonucleotide probe must be synthesized for individual 

SNPs and their cost cannot be ignored when analyzing substantial number of different SNPs. Our 

method, on contrary, uses biotin-conjugated dUTP that can be universally applied to any SNPs. In 

addition, multiple biotin-conjugated dUTP molecules can be incorporated into single immobilized 

oligonucleotide thus providing higher sensitivity to our method, providing strengthening of spot 

signals. This property has been essential for eliminating need of microscopical recording of detailed 

typing results used for the chip and enabled direct capturing of the images. It also provided 
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enlargement of device size from the chip to the microarray slide. The reactions on our sensor array can 

be easily performed with conventional laboratory instruments such as a constant temperature incubator 

as shown in Figure 9B. Typing results can be immediately inspected by the naked eye and can be 

recorded by a digital camera equipped on a mobile phone as shown in Figure 1. The overall time 

required is less than one hour from applying the template PCR products onto the array to getting the 

visible images. Up to four patients can be simultaneously analyzed using a single array and multiple 

arrays can be conveniently handled in a single operation. These features allow easy access to most 

research laboratories and therapeutic hospitals including those in developing countries. 
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