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Abstract: Nowadays, there is a growing interest in applications of space remote sensing 

systems for maritime surveillance which includes among others traffic surveillance, 

maritime security, illegal fisheries survey, oil discharge and sea pollution monitoring. 

Within the framework of several French and European projects, an algorithm for automatic 

ship detection from SPOT-5 HRG data was developed to complement existing fishery 

control measures, in particular the Vessel Monitoring System. The algorithm focused on 

feature-based analysis of satellite imagery. Genetic algorithms and Neural Networks were 

used to deal with the feature-borne information. Based on the described approach, a first 

prototype was designed to classify small targets such as shrimp boats and tested on 

panchromatic SPOT-5, 5-m resolution product taking into account the environmental and 

fishing context. The ability to detect shrimp boats with satisfactory detection rates is an 

indicator of the robustness of the algorithm. Still, the benchmark revealed problems related 

to increased false alarm rates on particular types of images with a high percentage of cloud 

cover and a sea cluttered background. 
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1. Introduction  
 

Ship detection is a key requirement for monitoring traffic, fisheries and for associating ships with 

oil discharges. Provision of a well designed maritime surveillance and control system capable of 

tracking ships is therefore essential and would be a vital interest to a variety of users ranging from 

local authorities to defence organizations, national and international. The Vessel Monitoring System 

(VMS) that relies on a ship-born component provides the authorities with a continuous monitoring of 

vessels’ location and movements in real time. However, many ships are not equipped with these 

systems, for example smaller fishery vessels and passenger boats do not have to apply with the 

existing directives (e.g. EC directive 2002/59/EC). One has to resort to remote sensing using Earth 

Observation (EO) satellites in order to obtain information on these vessels. In that sense, remote 

sensing is regarded as a technology to support the active system with passive measurements for non-

cooperating ships, sensing of non-harbour regions and monitoring purposes [1]. Space-based imaging 

for ship detection and maritime traffic surveillance has often formed part of major research efforts in 

the fields of automatic target detection and recognition. Ship detection with satellite based on 

Synthetic Aperture Radar (SAR) was first demonstrated by the experimental SEASAT in 1978. With 

later first-generation satellites such as ERS-1, JERS-1, ERS-2 the field has reached some maturity [2]. 

With the advent of the second generation of radar satellites such as ENVISAT and RADARSAT-1, 

ship detection capabilities were once and for all established thanks to advanced specific processing 

taking advantage of the huge amount of information that can be retrieved from low level products [3]. 

The third generation satellites TerraSAR-X, Cosmo-Skymed (CSK), RADARSAT-2, ALOS are 

somewhat different, as the design is more heavily influenced by the requirement for high-resolution 

imagery on land. Some of this will lead to improved detection and classification functionality of ship 

targets. However, in general, the increase in this additional information will go hand in hand with a 

decrease in swath width introducing some limitations regarding maritime use [4]. 

SAR has been studied extensively and most recently reviewed in [5]. Even though SAR imagery is 

advantageous due to its ability to scan large areas and its independence from cloud and light 

conditions, individual identification and classification of vessels at a higher detail level remains a 

difficult task. Besides, due to the presence of speckle and the reduced dimensions of the targets 

compared with the sensor spatial resolution, the automatic interpretation of SAR images is often 

complex even though vessels undetected are sometimes visible by eye [6]. Compared to the large 

amount of investigations on the feasibility of satellite-based SAR for ship detection purposes, far less 

research and development activity has taken place in automatic detection and classification of vessels 

using optical imagery than using SAR imagery [7]. This is a consequence of the novelty of the high 

resolution optical satellite sensors, the problem of clouds, and the fact that the swath of high resolution 

imagery is relatively small, making it less suitable for surveillance over the oceans. However, high 

spatial resolution can complement SAR since it is most suitable for ship classification and it permits 

the detection of wooden and fibreglass boats, which are difficult to detect with radar [8]. In this 

context, there is an imperative need for a system that automatically detects ship patterns from high 

spatial resolution imagery in an operational framework.  

This paper proposes an approach for the detection and classification of ships from high spatial 

resolution optical imagery. It was developed in the framework of French and European projects (IBIS, 
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DECLIMS and LIMES) to complement existing fishery control measures, in particular the VMS. The 

algorithm focuses on feature-based analysis of satellite imagery. Genetic algorithms (GAs) and neural 

networks (NN) are used to deal with the feature-borne information. Based on the described approach, a 

first prototype was designed to classify small targets such as shrimp boats and tested on 5-m resolution 

panchromatic SPOT5-HRG data.  

2. Methodology  

2.1. Method Overview  

The algorithm is a three-step object detection task consisting of the following stages:  

- segmentation or predetection of ship patterns, 

- feature extraction,  

- classification.  

The segmentation aims at detecting potential ship targets. It involves a pre-processing stage for the 

purpose of removing noise. Then, image objects corresponding to potential ship targets are created by 

means of a region-growing algorithm.  

During the feature extraction stage, image objects are characterized by spectral, shape and textural 

features. The feature extraction step is concerned with finding transformations to map features to a 

lower dimensional space for enhanced class separability and optimized performance. Because of their 

robustness, GAs are considered a suitable tool to address the optimization problem [9]. The GA-driven 

selection procedure provides a vector of feature values corresponding to a series of feature 

combinations that is passed to the subsequent classification stage.  

 

Figure 1. Flow chart of the proposed ship detection algorithm implemented in two 

phases: a learning phase and an operational phase.  
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In the third and last step, artificial neural networks are used for the classification of image objects. 

A neural network architecture is created according to the optimal feature combinations and optimal 

number of hidden nodes. Figure 1 shows an overview of the approach which consists of two phases: a 

learning phase and an operational phase.  

In the learning phase, GAs are used to train a feed-forward neural network based on reference 

samples. An objective function is used to calculate fitness that is equal to the inverse of classification 

error rate. In the operational phase, the best low dimensional neural network architecture is selected as 

a classifier in the three-step ship detection and classification algorithm.  

 

In what follows, the three main stages of the algorithm are described in detail.  

 

2.2. Segmentation ( Pre-detection of ship patterns) 

Pre-screening of possible ship patterns is based on the contrast between sea (noise-like background) 

and target (a cluster of bright pixels). The contrast depends on the sea conditions, the ship’s detailed 

shape, and its position relative to the satellite beam. The proposed algorithm applies a 100 x 100 pixel 
moving window adaptive threshold to the image pixel values ( jiX , ) to discriminate bright pixels [10]. 

The threshold used for the detection of intensity peaks is based on the mean (ocµ ) and the standard 

deviation ( ocσ ) of the sea background in the moving window. 

Threshold
X

oc

ocji ≥
−

σ
µ,       (1) 

Noise resulting from image thresholding is removed using a morphological opening operation with 

a 2 × 2 pixels structural element. Indeed, isolated pixels cannot belong to a ship object, which is 

usually characterized by a cluster of several bright pixels.  

The resulting thresholded image is then segmented into coherent image objects by means of the 

region-growing segmentation. Shrimp boats have a characteristic shape, usually consisting of two 

regions of high intensity related by a region of lower intensity as shown in figure 2. The region-

growing operator allows the grouping of the regions of a ship that may be detected separately during 

the thresholding operation.  

Figure 2. On the left: Panchromatic SPOT-5 (5m) image representing a shrimp boat in 

pseudo-colours. The middle image shows the two regions of the same boat detected 

separately during the thresholding operation. The image on the right represents the 

image object obtained by the region-growing operator. 
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2.3. Feature extraction  

According to [11], image characteristics such as shape and texture are the most useful features in 

visual interpretation of optical remote sensing images acquired at a high spatial resolution. 

Notwithstanding their importance, it is difficult to successfully automate the recognition of ships solely 

based on quantified shape and texture features. Using them in combination with spectral features might 

result in a better discrimination of ships. Hence, based on a priori knowledge of ships’ characteristics, 

we screen out spectral, shape and textural features that most likely characterize ship objects in a unique 

way, bearing in mind that rotation-position invariance is requisite.  

A ship can be generally described by the following characteristics:  

- bright pixels, 

- large length to width ratio, 

- symmetry between its head and tail, like a long narrow ellipse, 

- a regular and compact shape,  

- ship wakes which have a linear texture. 

Accordingly, 28 spectral, shape and texture features were computed for the image objects. 

Concerning texture, first and second order texture measures were derived from either the Grey-Level 

Co-occurrence Matrix (GLCM). Table 1 lists the 28 features calculated for an image object 

representing a shrimp boat (image object 5, in the example shown on figure 3). 

Ship detection can be considered as a 28-dimensional classification problem with two classes: the 

first class corresponds to ship objects including moving and stationary ships and the second class 

corresponds to all non-ship objects such as clouds. For classification of such a high-dimensional data 

set, a large training sample is required. In the case of shrimp boat detection by optical remote sensing, 

a limited amount of ground truth information is available concerning ship position. The learning 

performance may not be good in small-sample conditions and with high-dimensional data. For this 

reason, it is desirable to reduce input dimensionality so as to improve generalization capability and to 

obtain a network that performs well in terms of both training and test classification accuracies [12]. 

This underscores the relevance of feature extraction for NNs; e.g., finding the best combination of 

features in a lower dimensional space that does not lead to a significant decrease in the overall 

classification accuracy. One way to deal with dimensionality reduction is to use a GA. 

A GA is inspired by biological evolution, and is widely believed to be an effective global 

optimization algorithm. A genetic algorithm consists of a population of genetic strings, referred to as 

chromosomes, which are evaluated using a fitness function. Chromosomes consist of variables or 

genes. The fittest chromosomes are then regenerated at the expense of the others. Furthermore, genetic 

operations such as crossover and mutation are defined. The mutation operator changes individual 

elements of a chromosome, the crossover operation interchanges parts between strings. The 

combination of these operations is then repeated during several generations. The intrinsic parallelism 

of a genetic algorithm, e.g., the ability to manipulate large numbers of chromosomes in parallel, and to 

handle large, complex, non differentiable and multimodal spaces make the technique a very effective 

optimization method [13]. The usefulness of GAs in pattern recognition and image processing has 

been demonstrated [14]. Our approach consists of using a GA to train neural networks by evolving 

learning parameters and input features [15]. The problem is coded in a binary chromosome with a 



Sensors 2008, 8                            

 

 

2964

length of 28 bits (one for each object feature), where the genes have values of 0 or 1. Starting with an 

initial population of 100 individuals, the selection process selects the healthier ones, directed by the 

survival-of-the-fittest concept of natural genetic systems. Fitness computation is based on an objective 

function that is the inverse of classification error rate. For a judgement on their fitness to be made, the 

individuals have to be decoded to serve as inputs for the NN classifier. The back-propagation 

algorithm is used for training the network with a learning rate = 0.25 and a momentum = 0.10. A 

tournament selection procedure and uniform crossover are adopted to select the new population. The 

probability of crossover is set to 0.5, while the mutation probability is set to 0.05. All the above 

parameters of the GA are chosen empirically. Within each successive generation, the individuals 

yielding the highest fitness value, corresponding to the lower classification error rate as measured on a 

validation set, are enriched in number. The evolutionary process for network refinement is terminated 

when the number of generations reaches 28. All final offspring individuals thus represent a 

combination of spectral, shape and texture features that should result in a high classification accuracy. 

Finally, the best performing low dimensional NN architectures are selected for subsequent 

classification.  

 

Figure 3. 6 image objects obtained by region-growing image segmentation.  

 

 

 

 

 

 

 

 

 

 
 

 

 

2.4. NN image classification 

The single hidden layer NN used for the classification is the result of a GA selection procedure 

employing mutation, different initial weight conditions and uniform crossover. Since it consequently 

represents the fittest and best performing individuals, its expected error rate is low.  

Figure 4 illustrates the framework of evolving a three-layered neural network using a GA. In the 

decoding procedure, all the selected object features valued by 1 are represented by a fully connected 

input neuron. All other neurons, valued by 0 correspond to non-selected features and are then 

disconnected. There are two nodes in the output layer, which account for the two classes into which 

image objects have to be classified. As for the number of hidden nodes in the hidden layer, it is 

25 m   



Sensors 2008, 8                            

 

 

2965

evolved using the GA and follows the rule: number of hidden nodes = number of selected object 

features/2.  

 

Table 1: List of spectral, shape and texture features calculated for image objects. An 

example of feature values is provided for image object 5 of figure 3 (*M = momentum 

of inertia, *GLCM= Gray Level Co-occurrence Matrix). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Number of pixels 39

Mean 189,41

Standard deviation 57,05

Sum of squares 1,52E+06

Min 95

Max 255

Variation 3254,30

Asymmetry coefficient 0,49

Kurtosis 0,42

Perimeter 23,90

Area 39,00

Compactness 0,86

Elongation 2,44

M1 * 0,23

M2 0,03

M3 6,59E+14

M4 7,33E+13

Major axe 11,14

Minor axe 4,54

Ratio Major/Minor 2,46

Eccentricity 357,84

GLCM* mean 150,00

GLCM variance 1,08E+06

GLCM uniformity 404,00

GLCM inertia 4,97E+05

GLCM correlation 5,01E+05

GLCM entropy 99,55

GLCM homogeneity 22,00
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Figure 4. Framework of evolving neural network with a GA (modified from Van 

Coillie et al., 2007). 

 

 

 

 

3. Method implementation 

In this section, we present some experimental results obtained from the application of the proposed 

algorithm to the detection of shrimp boats. To illustrate the methodology, 7 SPOT-5 images, with a 

high resolution panchromatic band (5m) were acquired over the Exclusive Economic Zone of French 

Guiana. The images were provided by the Direct Receiving Station (DRS) of SPOT-5 satellite, 

operating under the SEAS-Guyane (Survey of Environment of the Amazonia Assisted by Satellites) 

program. The purpose of this program is to improve flow of image acquisition over the entire 

Caribbean and Amazonian region. Thanks to SPOT-5's improved resolution and wide imaging swath, 

which covers 60 x 60 km, the SPOT-5 satellite provides an ideal balance between high resolution and 

wide-area coverage. The coverage offered by SPOT-5 is a key asset for maritime surveillance in 

coastal areas and open seas. For the detection of ship targets, panchromatic imagery was preferred over 

multi-spectral, because additional bytes (bandwidth) of information are better spent on increased 

resolution than on additional colour.  

On SPOT-5 optical images of 5 m resolution, ships are easy to detect with the human eye, their size 

is readily estimated and details on the superstructure can easily be discerned. Some of the larger vessel 

types can be immediately recognised, such as container ships, oil tankers and bulk carriers. 

Intermediate vessels such as shrimp boats, that range from 20 to 25 m in length still show details, but 
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Horizontal profile Vertical profile 

their interpretation is not so straightforward: it is difficult for an untrained interpreter to discern e.g. a 

fishing vessel from a patrol boat [16]. Figures 5-a is a typical example of a shrimp boat targeted in this 

application and the same 25 m long ship imaged by SPOT-5. Figure 5-b shows the pixel intensity 

values of the shrimp boat across image lines in the horizontal and vertical directions.. As already 

mentioned, the methodology was applied in two distinct phases: a learning phase and an operational 

phase.  

 

Figure 5. Example of a shrimp boat in the French Guiana area (ranging from 20 to 25 m 

in length) and its signature on a SPOT-5 image.  
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b )  

 

 

3.1 Learning phase  

A training set consisting of 200 sample objects, among which 61 represent shrimp boats, was used 

during the learning phase. This training set was obtained from 5 SPOT-5 images. The two remaining 

images, acquired on 13 August 2003 and 03 July 2007, were used for the evaluation of the algorithm’s 

performance. The network was trained for up to 4000 epochs with the GA. The output of the 

optimization procedure is represented in figure 6. 
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Figure 6. The best fitness corresponding to each generation during the evolutionary 

training of the NN. 
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On this figure, we can see the variation of best fitness represented by the best chromosome with the 

number of generations of the GA. We notice that the best chromosome is located at the 22nd generation 

with a maximum fitness of 0.56.  

Hence we can determine which features played a significant role for the classification, and what 

features were useless for, or even disturbed, the NN classifier. Among the 28 initial features calculated 

for the image objects, only 8 features were extracted: Number of pixels, Mean, Standard deviation, 

Minimum, Maximum, Variance, Ratio Major/Minor and Texture uniformity. Hence, the optimal NN 

architecture consisted of 4 nodes in the hidden layer as determined by the GA. An average value of 

0.1377 (95% confidence interval: 0.0854; 0.1899) was obtained for the generalization error of the 

optimal NN, estimated by means of 10-fold cross-validation.  

The effect of the GA-driven feature selection on the detection of shrimp boats was evaluated in the 

operational phase. 

 

3.2 Operational phase  

 

Two images acquired in extremely contrasting meteorological conditions were used to evaluate the 

algorithm’s performance in the operational phase (figure 7). This allows to roughly explore the domain 

of validity the algorithm. The image acquired on 13 August 2003 is characterized by an almost cloud-

free sea surface and a low sea state. Conversely the image acquired on 03 July 2007 represents very 

unfavourable situations of high percentages of cloud cover and high sea state.  

When applying the algorithm for the entire scene acquired on 13 August 2003, a land mask is 

needed so not to mistake land for ship objects. A global coastline database with a high accuracy was 

therefore a necessary element of the operational system. Once the land mask was applied, the image 

was submitted to the three processing stages that constitute the proposed algorithm. In a network 

population of 100 individuals, 8 fully connected neurons resulting from feature extraction using the 

GA were used for the classification. 
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Figure 7. Spatial coverage of the SPOT-5 images acquired for the validation of the 

algorithm: the red and blue hatched squares correspond to the images acquired 

respectively on 13 August 2003 and on 03 July 2007. The black square represents the 

spatial extent of the EEZ .  

 

 

 

The results for shrimp boat detection on the two SPOT-5 images using the developed algorithm are 

represented in figures 8-a and 8-b. It is generally difficult to correctly cross-check the results of 

automatic ship detection because only limited ground truth information is available concerning ship 

positions. Moreover, unavailability of Automatic Identification System (AIS) data in French Guiana 

precluded a correct validation of the algorithm’s performance. Nevertheless, in our case, visual 

interpretation by trained human operators was used to help assess performance.  

Performance was measured by detection rate (DR) and false alarm rate (FAR). DR is the number of 

shrimp boats correctly detected as a percentage of the total number of real shrimp boats and FAR is the 

number of shrimp boats incorrectly reported as a percentage of total number of real shrimp boats. On 

August image (Figure 8-a), it was found that the 16 shrimp boats detected by the system perfectly 

matched the operator reported ships' positions. Hence, FAR for class 'ship' was equal to 0. According 

to the operators' report, a total of 31 ships were identified in the entire scene. Among them, 10 ships 

were less than 14 m long, and there was one moored ship. This means that there were possibly 20 real 

shrimp boats. Detection rate as referenced in this way to the 20 possible shrimp boats was thus found 

to be equal to 80%, which is quite high. A much lower detection rate of only 52% was reported when 

taking as a reference the total number of boats identified by the human operator.  

Compared with the algorithm’s performance on the cloud-free image, the results on the July image 

(Figure 8-b), showed a marked underperformance. The detection rate was found to be equal to 60% 

with a corresponding false alarm rate of 5700 %. By adjusting the threshold during the pre-processing 

stage (equation 1 on section 2.2), the false alarm rate could be reduced but only at the cost of a 

decrease in the detection rate.  

 

 

 

French Guiana 

Suriname 

Brazil 
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Figure 8. Automatically detected ships on August 2003 image (a) and July 2007 image 

(b) are represented by red circles. Pink circles correspond to non-detected ships. 

 

 

 

 
 

The output of the system is a list of detected ships’ positions and ancillary information related to the 

ships’ lengths and headings (for moving targets). In its current state, the system does not allow speed 

extraction; instead, the detected ships are categorized into two categories: ‘in motion’ or ‘static’.  

Of particular interest are those detected shrimp boats for which no corresponding VMS is reported, 

highlighting potential unreported fishing activity. Close inspection of these targets by patrol aircraft, 

for example, may be required in some cases. Consequently time delay becomes a requirement for an 

operational system for the automatic detection of ships – the total delay should be below 1 hour to 

allow for meaningful follow-up action. Therefore another aspect taken into consideration in 

performance evaluation was the timeliness. When applied on an entire SPOT-5 image, the system 
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allowed delivery of end results within 1 hour from image acquisition, thus proving its suitability for 

near real-time monitoring of fishing activities. 

 

4. Discussion 
 

The implementation of the proposed algorithm on a 5-m resolution panchromatic image showed 

that, in favourable conditions, as in the case of the August image, the system can provide reliable 

detection of shrimp boats with minimal operator intervention and practically without any false alarms. 

Failure to detect targets of less than 14 m length may be explained by the insufficient spatial resolution 

of 5 m used for the detection of small ships. A spatial resolution of better than 3 m might be required 

in order to provide a better detection rate. For most of the detected ships, the algorithm overestimated 

ships’ lengths compared to visually extracted sizes. This is a result of particular image conditions: 

almost all the ships were in motion. On optical imagery, the moving ship and its near wake are difficult 

to separate because they are connected and can have similar brightness, so wake and (moving) ship 

detection often amount to the same. Therefore during segmentation, a ship and its wake were 

considered as being part of the same image object, resulting in an overestimation of ship size. 

 In very unfavourable situations of special types of background clutter arising in particular 

meteorological situations and high percentage of cloud cover, as in the case of the July image, the 

performance degrades due to extremely high false alarm rates. In these situations, the fully automatic 

results may still be improved by human corrections, such as manually adapting the detection threshold 

or visually discarding the false alarms. However it is generally assumed that such situations may be 

avoided in operational circumstances.  

Even though the overall results are promising, there still remain several issues that need 

improvement or refining in order to render ship detection from optical satellite imagery fully 

operational:  

- It is acknowledged that the opportunity of the artificial NN to learn class appearance is influenced 

by the composition and the size of the training set. In this study, the small size of the available training 

set, due to practical limits, had a significant effect on the performance of the algorithm. Further tests 

on additional representative samples are currently underway.  

- To further improve our quantitative knowledge of detection capabilities, more work needs to be 

done into testing the algorithms’ performance under different weathering conditions. Depending on the 

amount of false alarms that would be obtained following these tests, it would be possible to integrate 

weather and oceanographic data to reduce false alarms rates.  

- The present work needs to be extended to implement an automatic wake detection approach so as 

to improve ship length classification and speed estimation.  

- A great deal of effort is currently being undertaken to improve validation procedures and control 

efficiency by i) introducing information from other maritime monitoring systems, such as VMS, ii) 

cross-cuing to other sensors, such as the Synthetic Aperture Radar (SAR) sensor, for obtaining or 

confirming classification.  
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5. Conclusion 
 

This paper has demonstrated the following: 

- the feasibility of ship pattern recognition from high spatial resolution satellite imagery, 

- the appropriateness of a feature-based approach for ship detection and 

- the viability of utilizing neural networks evolved by GAs in classifying shrimp boats.  

From an application point of view, the most remarkable benefit is the great contribution to the 

detection of illegal fishing activities, especially in areas where AIS information is unavailable. 

Additionally, the modest requirements in terms of computer and hardware of the system offer a 

potential for providing a recognition operational system to a variety of users such as coast guards, 

search and rescue organizations and harbor masters. If these entities have access to optical space borne 

data they could complement SAR and ground based monitoring using the advantages of the developed 

prototype, mainly :  

- possibly better determination of ship position, 

- the possibility of using manual interpretation for a refinement of ship’s classification. 

Further work on advanced ship detection techniques is still warranted. Concerning the work 

presented in this paper, future research will include tests with other datasets for various ships and 

environmental conditions; study of sea state effects, antenna gain and ship motion on detection 

performance; and evaluation of the algorithm using very high spatial resolution optical imagery (sub-

metric pixel resolution).  
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