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Abstract: Nowadays, there is a growing interest in apploratiof space remote sensing
systems for maritime surveillance which includesoam others traffic surveillance,
maritime security, illegal fisheries survey, oilsdharge and sea pollution monitoring.
Within the framework of several French and Europgangects, an algorithm for automatic
ship detection from SPOT-5 HRG data was developedomplement existing fishery
control measures, in particular the Vessel MoniigrSystem. The algorithm focused on
feature-based analysis of satellite imagery. Geragorithms and Neural Networks were
used to deal with the feature-borne informationsd#hon the described approach, a first
prototype was designed to classify small targetshsas shrimp boats and tested on
panchromatic SPOT-5, 5-m resolution product takig account the environmental and
fishing context. The ability to detect shrimp bouaifish satisfactory detection rates is an
indicator of the robustness of the algorithm. Stile benchmark revealed problems related
to increased false alarm rates on particular tgbésages with a high percentage of cloud
cover and a sea cluttered background.

Keywords: Automatic ship detection, SPOT-5 HRG data, hightiapeesolution, Neural
Networks, Genetic Algorithm, maritime surveillance.
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1. Introduction

Ship detection is a key requirement for monitorirgffic, fisheries and for associating ships with
oil discharges. Provision of a well designed miaudisurveillance and control system capable of
tracking ships is therefore essential and wouldabatal interest to a variety of users ranging from
local authorities to defence organizations, nali@mal international. The Vessel Monitoring System
(VMS) that relies on a ship-born component provittes authorities with a continuous monitoring of
vessels’ location and movements in real time. Hakewmany ships are not equipped with these
systems, for example smaller fishery vessels argtguager boats do not have to apply with the
existing directives (e.g. EC directive 2002/59/EOhe has to resort to remote sensing using Earth
Observation (EO) satellites in order to obtain infation on these vessels. In that sense, remote
sensing is regarded as a technology to suppordhee system with passive measurements for non-
cooperating ships, sensing of non-harbour regiosmaonitoring purposes [1]. Space-based imaging
for ship detection and maritime traffic surveillanicas often formed part of major research effarts i
the fields of automatic target detection and redamn Ship detection with satellite based on
Synthetic Aperture Radar (SAR) was first demonsttdiy the experimental SEASAT in 1978. With
later first-generation satellites such as ERS-RSH, ERS-2 the field has reached some maturity [2]
With the advent of the second generation of radsellges such as ENVISAT and RADARSAT-1,
ship detection capabilities were once and for sthlelished thanks to advanced specific processing
taking advantage of the huge amount of informati@t can be retrieved from low level products [3].
The third generation satellites TerraSAR-X, Cosmigrted (CSK), RADARSAT-2, ALOS are
somewhat different, as the design is more heanillyénced by the requirement for high-resolution
imagery on land. Some of this will lead to improwetection and classification functionality of ship
targets. However, in general, the increase in ddditional information will go hand in hand with a
decrease in swath width introducing some limitagioegarding maritime use [4].

SAR has been studied extensively and most recestlgwed in [5]. Even though SAR imagery is
advantageous due to its ability to scan large asgasb its independence from cloud and light
conditions, individual identification and class#iton of vessels at a higher detail level remains a
difficult task. Besides, due to the presence ofcklgeand the reduced dimensions of the targets
compared with the sensor spatial resolution, th@naatic interpretation of SAR images is often
complex even though vessels undetected are sonsetimible by eye [6]. Compared to the large
amount of investigations on the feasibility of déebased SAR for ship detection purposes, fasle
research and development activity has taken pla@aiiomatic detection and classification of vessels
using optical imagery than using SAR imagery [MisTis a consequence of the novelty of the high
resolution optical satellite sensors, the problémla@uds, and the fact that the swath of high natsah
imagery is relatively small, making it less suiglbr surveillance over the oceans. However, high
spatial resolution can complement SAR since it gsthsuitable for ship classification and it permits
the detection of wooden and fibreglass boats, wiaigh difficult to detect with radar [8]. In this
context, there is an imperative need for a systeah automatically detects ship patterns from high
spatial resolution imagery in an operational fraroew

This paper proposes an approach for the detectidnctassification of ships from high spatial
resolution optical imagery. It was developed in fifa@nework of French and European projetB
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DECLIMS andLIMES) to complement existing fishery control measunegarticular the VMS. The
algorithm focuses on feature-based analysis oflisatenagery. Genetic algorithms (GAs) and neural
networks (NN) are used to deal with the featuraabonformation. Based on the described approach, a
first prototype was designed to classify small éasgsuch as shrimp boats and tested on 5-m resoluti
panchromatic SPOT5-HRG data.

2. Methodology
2.1. Method Overview

The algorithm is a three-step object detection tasisisting of the following stages:

- segmentation or predetection of ship patterns,

- feature extraction,

- classification.

The segmentation aims at detecting potential sngets. It involves a pre-processing stage for the
purpose of removing noise. Then, image objectsesponding to potential ship targets are created by
means of a region-growing algorithm.

During the feature extraction stage, image objaotscharacterized by spectral, shape and textural
features. The feature extraction step is concemidid finding transformations to map features to a
lower dimensional space for enhanced class sefirad optimized performance. Because of their
robustness, GAs are considered a suitable toaldeeas the optimization problem [9]. The GA-driven
selection procedure provides a vector of featurkueg corresponding to a series of feature
combinations that is passed to the subsequenifadatisn stage.

Figure 1. Flow chart of the proposed ship detection algarittmplemented in two
phases: a learning phase and an operational phase.
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In the third and last step, artificial neural netkgare used for the classification of image olsject
A neural network architecture is created accordmghe optimal feature combinations and optimal
number of hidden nodes. Figure 1 shows an overwietive approach which consists of two phases: a
learning phase and an operational phase.

In the learning phase, GAs are used to train a-feedard neural network based on reference
samples. An objective function is used to calcufdatesss that is equal to the inverse of clasdiica
error rate. In the operational phase, the bestdiomensional neural network architecture is seleeted
a classifier in the three-step ship detection dassdication algorithm.

In what follows, the three main stages of the athor are described in detail.

2.2. Segmentation ( Pre-detection of ship patterns)

Pre-screening of possible ship patterns is base¢teonontrast between sea (noise-like background)
and target (a cluster of bright pixels). The cositdepends on the sea conditions, the ship’s ddtail
shape, and its position relative to the satelléarh. The proposed algorithm applies a 100 x 108l pix
moving window adaptive threshold to the image pialies (X; ;) to discriminate bright pixels [10].
The threshold used for the detection of intensggks is based on the meam, () and the standard
deviation (g, ) of the sea background in the moving window.

Xi,j _:uoc
o

oc

> Threshold (1)

Noise resulting from image thresholding is remousthg a morphological opening operation with
a 2 x 2 pixels structural element. Indeed, isolgieetls cannot belong to a ship object, which is
usually characterized by a cluster of several nogkels.

The resulting thresholded image is then segmemtted doherent image objects by means of the
region-growing segmentation. Shrimp boats have aagteristic shape, usually consisting of two
regions of high intensity related by a region ofvéo intensity as shown in figure 2. The region-
growing operator allows the grouping of the regiofs ship that may be detected separately during
the thresholding operation.

Figure 2. On the left: Panchromatic SPOT-5 (5m) image regprisg a shrimp boat in
pseudo-colours. The middle image shows the twooresgpf the same boat detected
separately during the thresholding operation. Thage on the right represents the
image object obtained by the region-growing opé&rato
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2.3. Feature extraction

According to [11], image characteristics such ampshand texture are the most useful features in
visual interpretation of optical remote sensing gesm acquired at a high spatial resolution.
Notwithstanding their importance, it is difficutt successfully automate the recognition of shipslygo
based on quantified shape and texture featureagllsem in combination with spectral features might
result in a better discrimination of ships. Hernzased ora priori knowledge of ships’ characteristics,
we screen out spectral, shape and textural featiaesnost likely characterize ship objects in aua
way, bearing in mind that rotation-position invaiga is requisite.

A ship can be generally described by the follonchgracteristics:

- bright pixels,

- large length to width ratio,

- symmetry between its head and tail, like a loagaw ellipse,

- aregular and compact shape,

- ship wakes which have a linear texture.

Accordingly, 28 spectral, shape and texture featunere computed for the image objects.
Concerning texture, first and second order texineasures were derived from either the Grey-Level
Co-occurrence Matrix (GLCM). Table 1 lists the 28atures calculated for an image object
representing a shrimp boat (image object 5, irett@nple shown on figure 3).

Ship detection can be considered as a 28-dimersitassification problem with two classes: the
first class corresponds to ship objects includingvimg and stationary ships and the second class
corresponds to all non-ship objects such as cldudisclassification of such a high-dimensional data
set, a large training sample is required. In treeaa shrimp boat detection by optical remote sepsi
a limited amount of ground truth information is #able concerning ship position. The learning
performance may not be good in small-sample canditiand with high-dimensional data. For this
reason, it is desirable to reduce input dimensignab as to improve generalization capability amd
obtain a network that performs well in terms oftbttaining and test classification accuracies [12].
This underscores the relevance of feature extradtoo NNs; e.g., finding the best combination of
features in a lower dimensional space that doesleamt to a significant decrease in the overall
classification accuracy. One way to deal with disienality reduction is to use a GA.

A GA is inspired by biological evolution, and is dely believed to be an effective global
optimization algorithm. A genetic algorithm consisif a population of genetic strings, referredgo a
chromosomes, which are evaluated using a fitnesstitn. Chromosomes consist of variables or
genes. The fittest chromosomes are then regeneattkd expense of the others. Furthermore, genetic
operations such as crossover and mutation are edefihhe mutation operator changes individual
elements of a chromosome, the crossover operatberchanges parts between strings. The
combination of these operations is then repeatethgiseveral generations. The intrinsic parallelism
of a genetic algorithm, e.g., the ability to mangte large numbers of chromosomes in parallel,tand
handle large, complex, non differentiable and ruitilal spaces make the technique a very effective
optimization method [13]. The usefulness of GAspattern recognition and image processing has
been demonstrated [14]. Our approach consists iofjus GA to train neural networks by evolving
learning parameters and input features [15]. Thablpm is coded in a binary chromosome with a
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length of 28 bits (one for each object feature)ekehthe genes have values of O or 1. Starting anith
initial population of 100 individuals, the selectiprocess selects the healthier ones, directedhdy t
survival-of-the-fittest concept of natural genetystems. Fitness computation is based on an olgecti
function that is the inverse of classification enrate. For a judgement on their fithness to be mtue
individuals have to be decoded to serve as inpotstie NN classifier. The back-propagation
algorithm is used for training the network with eaining rate = 0.25 and a momentum = 0.10. A
tournament selection procedure and uniform crossaree adopted to select the new population. The
probability of crossover is set to 0.5, while theitation probability is set to 0.05. All the above
parameters of the GA are chosen empirically. Witkath successive generation, the individuals
yielding the highest fitness value, correspondmthe lower classification error rate as measured o
validation set, are enriched in number. The evohary process for network refinement is terminated
when the number of generations reaches 28. Alll foféspring individuals thus represent a
combination of spectral, shape and texture featilvasshould result in a high classification accyra
Finally, the best performing low dimensional NN latectures are selected for subsequent
classification.

Figure 3. 6 image objects obtained by region-growing imaggnsentation.

2.4. NN image classification

The single hidden layer NN used for the classiitcats the result of a GA selection procedure
employing mutation, different initial weight conidibs and uniform crossover. Since it consequently
represents the fittest and best performing indizisiuits expected error rate is low.

Figure 4 illustrates the framework of evolving ae#trlayered neural network using a GA. In the
decoding procedure, all the selected object featuadued by 1 are represented by a fully connected
input neuron. All other neurons, valued by O cqrozsl to non-selected features and are then
disconnected. There are two nodes in the outpuar layhich account for the two classes into which
image objects have to be classified. As for the memof hidden nodes in the hidden layer, it is
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evolved using the GA and follows the rule: numbémhmden nodes = number of selected object

features/2.

2965

Table 1: List of spectral, shape and texture features tatled for image objects. An
example of feature values is provided for imagescbp of figure 3 (*M = momentum
of inertia, *GLCM= Gray Level Co-occurrence Matrix)

Number of pixels 39
Mean 189,41
Standard deviation 57,05

© |Sumof squares 1,52E+06

S |Min 95

& |Max 255
Variation 3254,30
Asymmetry coefficient 0,49
Kurtosis 0,42
Perimeter 23,90
Area 39,00
Compactness 0,86
Hongation 2,44
M1 * 0,23

o [m2 0,03

i LS 6,59E+14
w4 7,33E+13
Major axe 11,14
Minor axe 4,54
Ratio Major/Minor 2,46
Eccentricity 357,84
GLCM* mean 150,00
GLCM variance 1,08E+06

o | GLCM uniformity 404,00

2 |GLCMinertia 4,97E+05

= |GLCM correlation 5,01E+05
GLCM entropy 99,55
GLCM homogeneity 22,00
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Figure 4. Framework of evolving neural network with a GA (@ifeed from Van
Coillie et al., 2007).
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3. Method implementation

In this section, we present some experimental teslitained from the application of the proposed
algorithm to the detection of shrimp boats. Tosttate the methodology, 7 SPOT-5 images, with a
high resolution panchromatic band (5m) were acquaeer the Exclusive Economic Zone of French
Guiana. The images were provided by the Direct Reap Station (DRS) of SPOT-5 satellite,
operating under the SEAS-Guyane (Survey of Enviemnof the Amazonia Assisted by Satellites)
program. The purpose of this program is to impréesv of image acquisition over the entire
Caribbean and Amazonian region. Thanks to SPOTrpsoved resolution and wide imaging swath,
which covers 60 x 60 km, the SPOT-5 satellite ptesian ideal balance between high resolution and
wide-area coverage. The coverage offered by SP@T & key asset for maritime surveillance in
coastal areas and open seas. For the detectitnpaisgets, panchromatic imagery was preferred ove
multi-spectral, because additional bytes (bandwidthinformation are better spent on increased
resolution than on additional colour.

On SPOT-5 optical images of 5 m resolution, shigseasy to detect with the human eye, their size
is readily estimated and details on the superstraatan easily be discerned. Some of the largeseles
types can be immediately recognised, such as cmmtaships, oil tankers and bulk carriers.
Intermediate vessels such as shrimp boats, thgeriiam 20 to 25 m in length still show detailst bu
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their interpretation is not so straightforwardisitdifficult for an untrained interpreter to disnez.g. a
fishing vessel from a patrol boat [16]. Figures 5-a typical example of a shrimp boat targetethis
application and the same 25 m long ship imaged P@ 5. Figure 5-b shows the pixel intensity
values of the shrimp boat across image lines inhitvézontal and vertical directions.. As already
mentioned, the methodology was applied in two kistphases: a learning phase and an operational
phase.

Figure 5. Example of a shrimp boat in the French Guiana @ee®ing from 20 to 25 m
in length) and its signature on a SPOT-5 image.

Value

250 |-
250 | _ _ - ) _
Horizontal profile [ Vertical profile
200 200
150 |- o 1950
I 2
i 3 L
- > -
100 |- 100 |-
50 /\ 50 |-
b ) 0 B I I L I L 0 i
20 40 60 80 100 ' ' ' ' :
; 20 40 60 80 100
Pixel Pixel
3.1 Learning phase

A training set consisting of 200 sample objectspagwhich 61 represent shrimp boats, was used
during the learning phase. This training set wasiobd from 5 SPOT-5 images. The two remaining
images, acquired on 13 August 2003 and 03 July , 208 used for the evaluation of the algorithm’s
performance. The network was trained for up to 4@@dchs with the GA. The output of the
optimization procedure is represented in figure 6.
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Figure 6. The best fithess corresponding to each generalisimg the evolutionary
training of the NN.
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On this figure, we can see the variation of béase8s represented by the best chromosome with the
number of generations of the GA. We notice thathtést chromosome is located at thé&°g2neration
with a maximum fitness of 0.56.

Hence we can determine which features played dafisigmt role for the classification, and what
features were useless for, or even disturbed, theldssifier. Among the 28 initial features caldath
for the image objects, only 8 features were exé@cNumber of pixels, Mean, Standard deviation,
Minimum, Maximum, Variance, Ratio Major/Minor anceXture uniformity. Hence, the optimal NN
architecture consisted of 4 nodes in the hiddeerlag determined by the GA. An average value of
0.1377 (95% confidence interval: 0.0854; 0.1899} wétained for the generalization error of the
optimal NN, estimated by means of 10-fold crosselaion.

The effect of the GA-driven feature selection oa tietection of shrimp boats was evaluated in the
operational phase.

3.2 Operational phase

Two images acquired in extremely contrasting metegical conditions were used to evaluate the
algorithm’s performance in the operational phaggif€é 7). This allows to roughly explore the domain
of validity the algorithm. The image acquired onAuBgust 2003 is characterized by an almost cloud-
free sea surface and a low sea state. Converselyntlige acquired on 03 July 2007 represents very
unfavourable situations of high percentages ofaloover and high sea state.

When applying the algorithm for the entire scenquaed on 13 August 2003, a land mask is
needed so not to mistake land for ship objectslobaj coastline database with a high accuracy was
therefore a necessary element of the operatiorsirsly Once the land mask was applied, the image
was submitted to the three processing stages thadtitute the proposed algorithm. In a network
population of 100 individuals, 8 fully connectedunans resulting from feature extraction using the
GA were used for the classification.
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Figure 7. Spatial coverage of the SPOT-5 images acquiredhervalidation of the
algorithm: the red and blue hatched squares caynesgo the images acquired
respectively on 13 August 2003 and on 03 July 20B& black square represents the
spatial extent of the EEZ .
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The results for shrimp boat detection on the tw@%B images using the developed algorithm are
represented in figures 8-a and 8-b. It is generdifficult to correctly cross-check the results of
automatic ship detection because only limited gdotrnth information is available concerning ship
positions. Moreover, unavailability of Automaticelatification System (AIS) data in French Guiana
precluded a correct validation of the algorithm’'srfprmance. Nevertheless, in our case, visual
interpretation by trained human operators was tséelp assess performance.

Performance was measured by detection rate (DRjadswl alarm rate (FAR). DR is the number of
shrimp boats correctly detected as a percentageedbtal number of real shrimp boats and FAR és th
number of shrimp boats incorrectly reported asragrgage of total number of real shrimp boats. On
August image (Figure 8-a), it was found that thesh&mp boats detected by the system perfectly
matched the operator reported ships' positionscéleRAR for class 'ship' was equal to 0. According
to the operators' report, a total of 31 ships weeatified in the entire scene. Among them, 10 ship
were less than 14 m long, and there was one matied This means that there were possibly 20 real
shrimp boats. Detection rate as referenced inwhig to the 20 possible shrimp boats was thus found
to be equal to 80%, which is quite high. A much éowletection rate of only 52% was reported when
taking as a reference the total number of boatstiitkxd by the human operator.

Compared with the algorithm’s performance on tlwidHree image, the results on the July image
(Figure 8-b), showed a marked underperformance.dgtection rate was found to be equal to 60%
with a corresponding false alarm rate of 5700 % aBjusting the threshold during the pre-processing
stage (equation 1 on section 2.2), the false alat@® could be reduced but only at the cost of a
decrease in the detection rate.
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Figure 8. Automatically detected ships on August 2003 im@jeand July 2007 image
(b) are represented by red circles. Pink circlesespond to non-detected ships.
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The output of the system is a list of detectedstppsitions and ancillary information related he t
ships’ lengths and headings (for moving targets)td current state, the system does not allowdpee
extraction; instead, the detected ships are catgbinto two categories: ‘in motion’ or ‘static’.

Of particular interest are those detected shrimgddfor which no corresponding VMS is reported,
highlighting potential unreported fishing activit¢€lose inspection of these targets by patrol dicra
for example, may be required in some cases. CopsdgLtime delay becomes a requirement for an
operational system for the automatic detectionhipss — the total delay should be below 1 hour to
allow for meaningful follow-up action. Therefore adher aspect taken into consideration in
performance evaluation was the timeliness. Wheriegpmn an entire SPOT-5 image, the system
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allowed delivery of end results within 1 hour froamage acquisition, thus proving its suitability for
near real-time monitoring of fishing activities.

4. Discussion

The implementation of the proposed algorithm onrma $esolution panchromatic image showed
that, in favourable conditions, as in the casehef August image, the system can provide reliable
detection of shrimp boats with minimal operatoemention and practically without any false alarms.
Failure to detect targets of less than 14 m lengly be explained by the insufficient spatial resotu
of 5 m used for the detection of small ships. Atispaesolution of better than 3 m might be reqdire
in order to provide a better detection rate. Fosthad the detected ships, the algorithm overesgohat
ships’ lengths compared to visually extracted siZdss is a result of particular image conditions:
almost all the ships were in motion. On optical g@y, the moving ship and its near wake are difficu
to separate because they are connected and carsinailag brightness, so wake and (moving) ship
detection often amount to the same. Therefore dusagmentation, a ship and its wake were
considered as being part of the same image obgsttiting in an overestimation of ship size.

In very unfavourable situations of special typdsbackground clutter arising in particular
meteorological situations and high percentage oficticover, as in the case of the July image, the
performance degrades due to extremely high faenatates. In these situations, the fully automatic
results may still be improved by human correctigush as manually adapting the detection threshold
or visually discarding the false alarms. Howeveisigenerally assumed that such situations may be
avoided in operational circumstances.

Even though the overall results are promising, ehstill remain several issues that need
improvement or refining in order to render ship edéibn from optical satellite imagery fully
operational:

- It is acknowledged that the opportunity of thafigral NN to learn class appearance is influenced
by the composition and the size of the training ethis study, the small size of the availabring
set, due to practical limits, had a significanteeffon the performance of the algorithm. Furthstste
on additional representative samples are curremitierway.

- To further improve our quantitative knowledgedsitection capabilities, more work needs to be
done into testing the algorithms’ performance urdierent weathering conditions. Depending on the
amount of false alarms that would be obtained falhg these tests, it would be possible to integrate
weather and oceanographic data to reduce falsaslates.

- The present work needs to be extended to impleareautomatic wake detection approach so as
to improve ship length classification and speearedton.

- A great deal of effort is currently being und&ga to improve validation procedures and control
efficiency by i) introducing information from othenaritime monitoring systems, such as VMS, ii)
cross-cuing to other sensors, such as the SyntAgicture Radar (SAR) sensor, for obtaining or
confirming classification.
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5. Conclusion

This paper has demonstrated the following:

- the feasibility of ship pattern recognition frdnigh spatial resolution satellite imagery,

- the appropriateness of a feature-based approadhip detection and

- the viability of utilizing neural networks evolgddy GAs in classifying shrimp boats.

From an application point of view, the most remai&abenefit is the great contribution to the
detection of illegal fishing activities, especialig areas where AIS information is unavailable.
Additionally, the modest requirements in terms ofmputer and hardware of the system offer a
potential for providing a recognition operationgstem to a variety of users such as coast guards,
search and rescue organizations and harbor malétérsse entities have access to optical spaceebor
data they could complement SAR and ground basedtonimg using the advantages of the developed
prototype, mainly :

- possibly better determination of ship position,

- the possibility of using manual interpretation éorefinement of ship’s classification.

Further work on advanced ship detection technigsestill warranted. Concerning the work
presented in this paper, future research will ideldests with other datasets for various ships and
environmental conditions; study of sea state effeantenna gain and ship motion on detection
performance; and evaluation of the algorithm usiagy high spatial resolution optical imagery (sub-
metric pixel resolution).

Acknowledgements

This work was conducted within the framework of (B)S project (Implementation of a Boat
Information System, 2003-2005, financed by the EheMinistry of Research RTE program), (2)
DECLIMS project (Detection, classification and identification oarme traffic from space, funded by
EU), (3)LIMES project (Land and Sea Integrated Monitoring for Europeanu@ity, funded by EU)
The authors acknowledge SEAS GUYANE Project, A#airmaritimes (AFMAR), COMAR,
SPOTimage and IFREMER for their valuable support.

References and Notes

1. http://www.eomd.esa.int/booklets/booklet170.d&5mopean Space Agency, Earth Observation
Market Development (EOMD) Programme, Marine Sutagie.

2. Petit, M.; Stretta, J.-M.; Farrugio, H.; WadsttrA. Synthetic aperture radar imaging of sea
surface life and fishing activitielEEE Transactions on Geoscience and Remote Sensing 1992,
30, 1085-1090.

3. Hajduch, G.; Leilde, P.; Kerbaol, V. “Ship ddten on Envisat ASAR data: Results,
limitations and perspectives”; SEASAR 2006, 200GsEati, Italy.

4. Greidanus, H.; Lemoine, G.; Kourti, N. “Sateliship detection for fishery control”; NURC
international symposium “Remote Sensing Applicatidio support NATO Expeditionary
Operations”, 2005, Lerici, Italy.



Sensors 2008, 8 2973

10.

11.

12.

13.

14.
15.

16.

Crisp, D.J. The State-of-the-Art in Ship Detextiin Synthetic Aperture Radar Imagery;
Australian Government, Department of defence, 20Q415.

Tello, M.; Lopez-Martinez, C.; Mallorqui, J.J5reidanus, H. “A Novel Algorithm for Ship
Detection in Envisat SAR Imagery Based on the WatvBtansform”; Proceedings of the 2004
Envisat & ERS Symposium, 2004, Salzburg, Austria.

DECLIMS project website http://fish.jrc.cec.eu/declims/.

Greidanus, H.; Clayton, P.; Indregard, M.; StaplG. “Benchmarking operational SAR ship
detection”; IGARSS, 2004, Anchorage, Alaska.

Goldberg, D.EGenetic Algorithms in Search, Optimization, and Machine Learning, 1989, p
412.

Kourti, N.; Shepherd, I.; Schwartz, G.; Pawal®. Integrating spaceborne SAR imagery into
operational systems for fisheries monitori@ganadian Journal of Remote Sensing 2001, 27,
291-305.

Lilesand , T. M.; Kiefer, R. W.; Chipman, J..\Remote sensing and image interpretation:
New York, 2004, p 736.

Van Coillie, M.B.; Verbeke, P.C.; De Wulf, Red&ture selection by genetic algorithms in
object-based classification of IKONOS imagery forelst mapping in Flanders, Belgium.
Remote Sensing of Environment- ForestSAT Special Issue, ForestSAT 2005 Conference
"Operational toolsin forestry using remote sensing techniques' 2007, 110, 476-487.
Scheunders, P. A genetic c-Means clusteringrigthign applied to color image quantization.
Pattern Recognition 1997, 30, 859-866.

Davis, L.Handbook of Genetic Algorithms: New York, 1991, p 385.

Brill, F.; Brown, D.; Martin, M. Fast genetielsction of features for neural network classifiers
|EEE Transactions on Neural Networks 1992, 3, 324-328.

Greidanus, H.; Kourti, N. “Findings of the DEIBAS project - detection and classification of
marine traffic from space”; SEASAR, 2006, 23-26ukay 2006.

© 2008 by the authors; licensee Molecular Diversttgservation International, Basel, Switzerland.
This article is an open-access article distributedier the terms and conditions of the Creative
Commons Attribution license (http://creativecommong/licenses/by/3.0/).



