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Abstract: The objective of the current study was to analyze seasonal effect on
differentiating tree species in an urban environmesing multi-temporal hyperspectral
data, Light Detection And Ranging (LIDAR) data, amdree species database collected
from the field. Two Airborne Imaging Spectrometer Applications (AISA) hyperspectral
images were collected, covering the Summer and geabons. In order to make both
datasets spatially and spectrally compatible, s¢vereprocessing steps, including band
reduction and a spatial degradation, were performAedobject-oriented classification was
performed on both images using training data ctdtbeandomly from the tree species
database. The seven dominant tree spe@g=li(sia triacanthos, Acer saccharum, Tilia
Americana, Quercus palustris, Pinus strobus and Picea glauca) were used in the
classification The results from this analysis did not show anyandjfference in overall
accuracy between the two seasons. Overall accumasy approximately 57% for the
Summer dataset and 56% for the Fall dataset. Hawéwve Fall dataset provided more
consistent results for all tree species while thm@er dataset had a few higher individual
class accuracies. Further, adding LIDAR into thassification improved the results by
19% for both fall and summer. This is mainly dughe removal of shadow effect and the
addition of elevation data to separate low and kiggetation.
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1. Introduction

Tree species maps are important for several readdunsicipal governments use land cover maps
for conservation, such as the preservation of ticodar tree species [1]. Growing cities also have
desire to control development near greenbelt af2hsTree species maps can also be used by
conservationists hoping to protect the favoredinggplace of a particular species of bird [3]. Thus
there is demand for accurate and up-to-date lamdranaps. Remote sensing approaches have proven
to be valuable in developing land cover maps coegpto traditional methods [5, 4]

There is a considerable amount of literature raggrthe identification and classification of tree
species utilizing airborne or space-borne imagesipginumerous classification methods. Generally,
tree species identification using remote sensinig dipends upon spatial, spectral and temporal
resolution. In addition, several authors discussitfiportance of different classification algoritharsd
supplementary data such as LiDAR for the identiftcaof tree species.

The first major use of digital imagery and machimmecessing was to map vegetation health a year
after the corn leaf blight in 1970 [6]. The laurmhLandsat in 1972 began a serious investigatitm in
the capabilities of remote sensing for vegetati@nagement. In 1978, Kan and Weber released their
study on mapping forests and rangelands using leandsey found they could separate hardwood
forest, softwood forest and grasslands with 70%ii@y [7].

Meyer, Staenz, and Itten used color-infrared fitminhage two areas of the Swiss Plateau and were
able to classify 5 classes of trees with 80% aayuf8]. In another study, Cypress and Tupelo trees
were mapped utilizing moderate spatial resoluti@ndsat TM imagery in an effort to develop a
method of locating wetland areas for more effectawed management [9]. Higher spatial resolution
imageries were also used by several authors fergpecies identification [11, 10]. Carleer and Wolf
attempted an analysis of tree species in a Belgig@st using a high-resolution IKONOS image [12].
They suggest that forest tree mapping requiresehigpatial and spectral resolution.

Combinations of different date and spatial resolutmulti-spectral images have been used for
species classification [1]. They found that the ges taken in September were most useful in
identification of tree species and 1m spatial naoh is optimal for reducing the shadow effects in
between the trees in Columbia, Missouri. Fall immggeppeared to provide the most information for
species identification while spring leaf-out imagevas next best in terms of species identification
[13].

Spectral resolution is also a significant factor determining overall classification accuracy.
Comparatively few authors have used hyperspectragjery for tree species identification. Researchers
compared four satellite-based sensors — the Hypéryperspectral scanner, IKONOS, Landsat ETM+
and the ALI multispectral scanner — and used thendentify species in an African rainforest [14].
They found the hyperspectral results to be 45 & B2tter than multispectral imagery in classifying
land cover. AVIRIS data has been used to identég types for urban mapping in the city of Modesto,
California [15]. Results indicate that high-res@uat hyperspectral data is an excellent tool farcegs
identification. le Maire, Francios and Dufrene sesbed methodologies for differentiating tree spgci
[16]. In particular, they review various ratios apand combinations that have been implemented by
other researchers. This research determined thpér$pectral data does improve classification
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accuracy. Greiwe and Ehlers used a high-resolutimae-dimensional sensor in combination with 128
bands of HyMap data to classify the city of Osnabkuin Germany [17].

Several researchers have also reported the imper@ihadvanced classification methods such as
subpixel classification, Classification And RegieasTree (CART) [1], object—oriented and support
vector machines for the mapping of tree speciess@&methods generally rely on more advanced data
analysis methods borrowed from the field of statsst Subpixel classification has been found to
improve accuracy by as much as 18 percent ovettitiadl classification methods such as minimum
distance [9]. Linear Discriminant Analysis is a mgaf statistical analysis that has provided more
accurate results than traditional methods of diassion, when identifying tree species with
hyperspectral imagery [18].

In 1980 David Landgrebe published an article inchie described a spatial-spectral classification
method [19]. This method is now known as objectmied classification. Recently, object-oriented
classification methods have become more accedsibbEsearchers due to software such as eCognition
Professional (Definiens AG) and Feature Analyss(Mi Learning Systems Inc.). One of the strengths
of object-oriented classification is that a pixed fonger represents a single object, but rather a
component of an object [20]. Segments also havpesHacation and texture components that can be
used for classification. Pixel-based classifiergendifficulty dealing with the spectral variatiomstree
crowns [21]. Object-oriented classifiers allow Uséo treat a crown as one object. Kristof, Csatd a
Ritter used 1m panchromatic and 4m multispectraDNOS imagery and an object oriented
classification scheme to classify a forest in Hupg&2]. This was done after poor results were
obtained using pixel-based methods. eCognition wsesl to classify a mountainous region in the
Czech Republic [23]. The classification of conifetsained more than 90 percent accuracy. Object-
oriented classification has been used to identdg species in forests in the northeast UnitedeStat
[10]. It was again applied to a mountainous for@stgion, this time in Japan [11]. Researchers have
started to combine several advanced classificatiethods such as decision trees and object oriented
with good results [24].

Elevation data have been incorporated as a dataesoumany studies. lovan, Boldo and Cord used
a high resolution Digital Elevation Model (DEM) tmmpliment high resolution color infrared image
to classify vegetation in an urban setting. Heigi®se used to separate grass from shrubs andasees
well to delineate tree crowns [25]. Commonly, LiDA&Rthe source for this elevation data. It has been
used with hyperspectral AISA data to determine Whitequencies provide the best species separation
[26]. LIDAR and HYDICE multispectral imagery weresed for classification of tree species in a
tropical environment [18].

LIDAR has also been used to develop a method ottiigerg pine and spruce trees [27]. Using data
collected over a Norwegian forest, researchers ageto correctly classify pine and spruce tregs w
95% accuracy by using the differences in shape deivihe two tree types. LIDAR and very high
resolution multispectral imagery were used to map species in a wildlife refuge in Mississippi .28
Laser-based altimetry data and multispectral IKON@fgery were used to estimate pine tree
coverage in a forest [29]. One of the principlecdigeries of this study was that LIDAR may be an
effective method of estimating Leaf Area Index. &eshers have also used LIDAR to determine
relations between branch/stem structure and spSgs
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Much of the current research with LIDAR explores itisefulness in estimating physical
characteristics of trees. These characteristicsin@yde heights, basal areas and volumes of pide a
spruce trees [31] and leaf area index in lobloilyep [32]. It has also been used to create Digital
Canopy Models in densely forested areas [33]. LiD#&® been used to develop a methodology to
segment individual trees in a forest, and thesensets were used to estimate heights and crown
diameters [34]. LIDAR has been used to define tiesters (rather than individual tree segments)
which were used to estimate density and biomads §B8l researchers have segmented LIDAR canopy
data to determine tree stem locations [36]. Anostedy has used LIDAR to develop volumetric
models that allow for more accurate approximatibhiomass [37].

In general, the literature indicates that best sili@ation accuracies can be obtained using
hyperspectral data, LIDAR and an advanced classific methodology. The goal of this research was
to determine the affect of season on tree sped@ssification in an urban environment using
hyperspectral imagery and object-based classificatn addition, this research explored the fusbn
LIDAR data with imagery for improving classificati@accuracy.

2. Sudy Area and Data

The University of Northern lowa campus was selecésda study area. The campus covers
approximately 49 hectares and is located in Cedlis,Howa, USA. It is relatively flat, with a sk
decrease in elevation toward the southern eddeedtudy area. This study area was chosen foraever
reasons. First, the researchers have knowleddedttidy area. Second, the campus has a widewariet
of mature trees, many of which are separated frdmerdrees by an expanse of grass, reducing the
possibility of confusing samples with another speciThe dominant deciduous trees @feditsia
triacanthos, Acer saccharum, Tilia americana and Quercus palustris; the dominant evergreens are
Pinus strobus and Picea glauca. Third, the University’'s planning department hafimation about
each of the trees on the campus, which saves obsgarthe time it would take to identify them.

This study benefited from having two hyperspectdaltasets from different data collecting
campaigns. The first dataset was collected on 3dly 2004 with an AISA (Airborne Imaging
Spectrometer for Applications) hyperspectral sen$bis image contains data from 400nm to 850nm
with 2.0m spatial resolution. The second hyperspedataset was collected in October 2006 by an
improved version of the AISA sensor called the Eagdlhis sensor captured 63 bands from 400 to
970nm and 1m spatial resolution. Additional datduded a LIDAR dataset which was collect in April
2006 by Sanborn Mapping Company Inc. with a Lei¢Z580 with a maximum sampling rate of 83
kHz. These were delivered in nine-1 kmies with 1m posting density. Finally, a tree detse
containing all trees and shrubbery on campus wea tesdevelop both training and reference datasets.

3. Methodology

3.1 Image processing

Before any image processing was done, both hypetrspeatasets were geometrically referenced to
the LIDAR imagery using ENVI 4.4 (ITT). For the Fahage, 30 ground control points were selected.
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There were 39 ground control points for the Sumimage. In order to make both datasets compatible
spatially and spectrally, the Fall image was spigtdegraded to 2m resolution, and the last 14 band
of the image (from approximately 850 to 970nm) wen@oved and every second band was removed
to produce an image with 25 bands. This providenr@ge that is equal to the Summer image in terms
of both spatial and spectral resolution. The impageas then processed using a forward Minimum
Noise Fraction transform to remove noise from th&set. The decision to do this was made after
performing a quick Linear Discriminant AnalysissaEmples which indicated a high classification error
rate (.35) with raw imagery. The MNF data resulted lower classification error rate (.25).

The LIDAR dataset was processed from its native ftamat to a raster elevation and intensity
dataset with 1m spatial resolution using LIDAR Arstlv.4.2. Bare earth elevations were subtracted
from the first return elevation to create a relataltitude layer where the new elevation of theugt
was ideally Om. The LIDAR data were spatially delgh to 2m to match the resolution of the other
imagery in the study. The original posting of thBAR was 0.6m. However, using a DEM created at
that resolution created complex issues of scalelwhie most easily solved by degrading the LIDAR
resolution.

3.2 Training and Reference Data

One of the unique aspects of this project was lgpaicomplete reference for all the vegetation in
the study area in the form of an ESRI shapefilevdbmping a training and reference data set can be a
costly, time-consuming process. These costs weserbbd by the Facilities Planning department when
they created this database. Training and referdatz were derived from this shapefile. Before any
analysis was performed, the shapefile was clippettheé image with the smallest extent (the Summer
image). Using a frequency plot, the 7 most comnmeast in the study area were selected. These trees
were then selected from the main database int@arate shapefiles for further analysis. To ensuee t
trees selected from this database were out of sigdoees within 10m of a building were removed
from the dataset. In addition, smaller trees wensaved from the database by selecting out thoss tre
with a crown diameter less than 4.5m.

With the database refined, the samples and refesewere selected. A random sampling strategy
was utilized for the selection of training sampkollowing the database preparation, the least
numerous tree species had 50 locations in the sauely. Thirty training samples and 20 reference
samples were selected. A previous rule of thumbdfareloping training sets has been to have 30n
samples where n is the number of bands, althoughsitbeen found that similar accuracies could be
attained with 2n to 4n samples [38]. In our caf| Samples was impossible as there are not thag man
trees, particularly in the case of the less comsmeties. Random points were selected by creating a
simple spreadsheet with shapefile ID numbers incobdemn and a randomly generated number in the
other. The fields were then sorted by the randombmer and the first 30 ID numbers were selected out
of the shapefile to create a new file. These 3@tsavere then removed from the original database an
20 more points were selected randomly for a refereset if there were more than 20 points remaining.
The individual training shapefiles were then mergetd a larger field, and converted into a raster
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GRID format for use with object-oriented classifioa. This process was repeated for the reference

shapefiles.
3.3 Segmentation

Segmentation is one of the most critical aspectshpéct-based classification. Segment size can
have a significant effect on classification accyrdhe primary setting that determines segmentisize
the scale parameter. Secondary settings are singjpeoanpactness. There does not appear to be any
tool to determine the ideal parameters, so a &ma error method was employed. The initial scale
parameter setting was determined by visual inspecti is obvious that the segments should notdbe s
large as to encompass multiple trees. Ten wasrdeted to be the maximum scale parameter (and
subsequent analysis confirmed this). After thatltiple classifications were performed at different
scale parameters by creating a simple script ttoperrepetitive tasks. This script loaded the sampl
dataset, created samples from it, classified tlagery and then loaded the reference dataset.

These tests were first performed using the imagedevelop the segments. Maximum accuracy for
the Summer dataset was obtained at a scale paraoi€&gFigure 1). With the Fall dataset, the ideal
scale parameter was achieved at a scale of 2 ¢~®jur

Figure 1. Segmentation scale parameter vs. accuracy withB#R for the Summer dataset.
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Additionally, accuracies decline quite rapidly. Algoa segmentation scale parameter of 10
accuracies quickly drop to 0. Higher scale parametesult in larger segments, and at these scales,
many of the classes are no longer classified beceash segment contains samples for several classes
This is responsible for the fairly rapid declineowerall accuracy in these tests.
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Figure 2. Segmentation scale parameter vs. accuracy withD#R for the Fall dataset.
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These segmentation tests were performed usingib®R_to generate segments. The images were
segmented based on the LIDAR intensity and theoouged elevation layer without any influence
from the hyperspectral data. It was found that @swvdifficult to develop good segments based on
imagery as the shadows created tree segmentsnttiatied the shadows lying on the grass. LIDAR
data does not contain any shadows, and in thianost elevation is an ideal criterion for sepagatin
classes. Maximum accuracies were obtained witlake garameter of 6 for each dataset (Figures 3 and
4).

Figure 3. Segmentation scale parameter vs. accuracy fd@uhamer dataset.

0.52

0.51

0.5 1

0.49

0.48 *

Accuracy

0.47

0.46

0.45 *

0.44 ‘ : : ‘ ‘
0 2 4 6 8 10 12
Scale Parameter




Sensors 2008, 8 3027

These tests were also performed on the shape amottsness-compactness parameters. These final
parameters proved to be less influential in oveaatluracy than the scale parameter. Variationkan t
scale parameter can cause fairly significant chauigeverall accuracy. At best the shape parameter
can cause a variation of a few hundredths in ovacauracy. In the Summer dataset, adjustments in
the shape parameter were responsible for imprawi@dinal accuracy from 0.51 to 0.55. With thel Fal
image, the highest accuracy (0.54) was achieveplgiby fine-tuning the scale parameter values. The
compactness-smoothness parameter did not imprevevéirall accuracy in either image.

Figure 4. Segmentation scale parameter vs. accuracy fdrdahelataset.
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3.4 Classification

Identical classifications were performed on the 8wemand Fall images using the ancillary data and
methods. The classification hierarchy (Figure 5)svaeveloped as follows: First, vegetation and
impervious surfaces were separated using a NorewhlRifference Vegetation Index layer. The
vegetation layer was subdivided into high and legetation using the LIDAR elevation layer. The
low vegetation area represents the end of thischrai the hierarchy as we were not concerned with
classifying grass and small shrubbery. The higretaggn branch was subdivided into coniferous and
deciduous. This was achieved by using the LiDARnsity layer. During visual inspection of this
layer, it was readily apparent that coniferousdnelected more in the near infrared spectrum thdn
the deciduous trees. The remaining classes (teespecies) were assigned to their appropriate paren
classes.
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Figure 5. The classification hierarchy developed for LiDARskd classifications.
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The individual species were classified using a estaneighbor classification scheme. The nearest
neighbor feature space was determined using FeSpaee Optimization. This tool uses samples and
determines which bands are most critical to aceucktssification. As important as it is to deterenin
which bands are most important for improving accyré is also important to determine which bands
decrease overall accuracy and remove them. Thigheasase with the data in this classification. Wit
a total of 28 bands available for the Summer im@geMNF bands, LiDAR intensity and elevation,
brightness and max difference), the ideal combomatf bands excluded the MFN bands 1 and 6 as
well as the Max. Dif. bands. In the case of thd Faagery, there were 29 bands available (25 MNF
bands, LIDAR intensity and elevation, brightnessl anax difference). Bands 4, 7, 9, 11, 15,
Brightness and Max.Dif. were excluded from the sifasation. A number of other combinations of
bands were tried including Standard Deviation, m@ifin to neighbors, and various shape attributes.
These all provided poorer classification accurdgntusing the MNF mean layer values. Finally,
accuracy assessments were performed using themeést data mentioned in section 3.2. A traditional
confusion matrix was used to derive all accuraatisics.

4, Reaults

Figure 6 shows classification outputs without udiigAR for Summer and Fall season and Table 1
provides overall and class accuracies. The Summage provided the highest overall accuracy (48%)
when compared to the Fall (45%). TRecea glauca and Gleditsia triacanthos had the most robust
classifications (82% producer’s, 45% user's and 7fducer’'s, 78% user’'spinus strobus (31%
producer’s and 38% user’s) ager saccharum (25% producer’'s and 47% user’s) had the worst
accuracy.
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Figure 6. Classifications performed without LIDAR using tt@® Summer imagery and

(b) Fall imagery.
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Figure 7. LIDAR aided object-oriented classified images gdime (a) Summer imagery

and (b) Fall imagery.
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The Fall classification had an overall accuracy®¥. The highest accuracy belongedsteditsia
triacanthos with 77% producer's and 88% user’'s accuracy. Lovasiuracies are held ®inus
strobus (19% producer’s and 58% user’s) afcer saccharum (8% producer’s and 17% user’si).
comparison, the Fall data improved the accuradyofclasses Fraxinus pennsylvanica andGleditsia
triacanthos. The Fall data is also responsible for a significetdrease in accuracy fAcer saccharum.

Table 1. Class and overall accuracies for classificatiagomed without LIDAR for

the Summer and Fall images.

Pinus | Picea | Quercus | Acer Tilia Fraxinus Gleditsia
Summer strobus | glauca | palustris | saccharum | americana | pennsylvanica | triacanthos
Producer’s 31% 82% 49% 25% 41% 31% 74%
User’'s 38% 45% 36% 47% 50% 52% 78%
Overall
Accuracy 48%

Pinus | Picea | Quercus | Acer Tilia Fraxinus Gleditsia
Fall strobus | glauca | palustris | saccharum | americana | pennsylvanica | triacanthos
Producer’s 19% 74% 43% 8% 38% 53% 77%
User’'s 58% 33% 48% 17% 35% 56% 88%
Overall
Accuracy 45%

Classifications performed using LIDAR are shownFigure 7 and overall and class accuracies are
found in Table 2. The overall accuracy using then8er image was 57%. The highest class accuracies
were Gleditsia triacanthos (82% producer’s, 84% user’s) amicea glauca (95% producer’'s, 59%
user’s). The lowest class accuracy \Waaxinus pennsylvanica (11% producer’s, 80% user’s).

The Fall image had slightly lower overall accurés§%). The highest accuracies were adgea
glauca (84% producer’s, 59% user’s) af@leditsia triacanthos (77% producer’s, 83% user’'s). The
Acer saccharum class had lowest accuracy (33% producer’s, 33%)sé@he coniferous classes both
had a decrease in accuracy. Overall, there dide®m to be a clear trend towards improvement from
one season to the next. Further, the coniferossetadid not demonstrate an improvement or decline
in accuracy from season to season. Phwus strobus class improved from Summer to Fall while the
Picea glauca class decreased from Summer to Fall. Alternativielgenerally appears that there is a
trend toward a decrease in accuracy from SummefFalb with deciduous species:raxinus
pennsylvanica is the notable exception. This particular classwstb dramatic improvement from
Summer to Fall. Otherwise, accuracy was similademreased from Summer to Fall.



Sensors 2008, 8 3031

Table 2. Class and overall accuracies for classificatiorigoemed with LIDAR for the
Summer and Fall images.

Pinus Picea Quercus | Acer Tilia Fraxinus Gleditsia
Summer strobus | glauca | palustris | saccharum | americana | pennsylvanica | triacanthos
Producer’s 47% 95% 71% 31% 59% 11% 82%
User’'s 71% 59% 68% 58% 62% 80% 84%
Overall
Accuracy 57%

Pinus Picea Quercus | Acer Tilia Fraxinus Gleditsia
Fall strobus | glauca | palustris | saccharum | americana | pennsylvanica | triacanthos
Producer’s 64% 84% 57% 33% 33% 42% 7%
User’'s 68% 59% 57% 33% 54% 45% 83%
Overall
Accuracy 56%

In the Summer classification, ticea glauca class was very well-defined among the coniferous
class as there was almost no confusion with angrattasses. ThBinus strobus tended to be easily
confused with Picea glauca. Quercus palustris and Gleditsia triacanthos also had strong
classifications with little confusion among othelasses. TheAcer saccharum had significant
confusion withTilia Americana. The Fraxinus pennsylvanica class was misclassified as all other
classes almost uniformly.

In the Fall classification, there was little confus with Picea glauca. There was less confusion
between thePicea glauca and Pinus strobus, and this is reflected in the improved accuracidse
Quercus palustris class had the most confusion wkhaxinus pennsylvanica. TheTilia Americana
class had more confusion among other classes thaadi with the Summer classification. The
Fraxinus pennsylvanica class had improvements although there was comfusith Acer saccharum.
Gleditsia triacanthos did not exhibit significant change from the Summlassification.

LIDAR generally improved the accuracy of classifica when compared to classifications based on
imagery alone. LIDAR improved overall accuracy 1886 both datasets. It is interesting to note that
the Fraxinus pennsylvanica class had decreased accuracies when LIDAR waspocaed for both
seasons. The class which benefitted most from LiDud® Quercus palustrs in the Summer with a
55% increase in producer’s accuracy and 87% insuaecuracy, anécer saccharumin the Fall with
a 75% increase in producer’'s accuracy and 50% en'suaccuracy. LIDAR had very little effect on
Gleditsia triacanthos accuracy (10% producer’s increase and a 7% us®rsase) in the Fall and a
decrease of 6% user’'s accuracy in the Summer. diass is represented by trees that are grouped
together, which resulted in a large segment regasdbf the presence of LIDAR. One of the benefits o
LIDAR is its ability to create separate segmentsihdividual trees. WithGleditsia triacanthos, the
segments were basically the same size regardletbe giresence of LIDARFraxinus pennsylvanica
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also lost accuracy with LIDAR by decreasing 21%inducer’s accuracy and 19% in user’s accuracy.
Generally however, most class accuracies wereaserkby the addition of LIDAR.

5. Discussion and Conclusion

These results indicate that there is little diffexe between Summer and Fall classification accuracy
when using 2m hyperspectral imagery to classifyeselvee classes, In general, results from the Fall
classification are more consistent. The Summersitleation exhibits more extreme highs and lows
with Picea glauca (95% producer’s and 59% user’s accuracies) Rrakinus pennsylvanica (11%
producer’s and 80% user’s accuracies). Some atiwde@e indicated that September before the leaves
change is the ideal time to collect imagery [1] ihdbthers have indicated that October at “peak
autumn colors” provides good results [13]. Howeubese articles dealt with smaller numbers of
classes of deciduous species. This study did rotighe results to back up those conclusions. In, fact
results indicate that Summer imagery provides betterage accuracy for deciduous species - 51%
producer’s and 70% user’s accuracies for Summerd8a6l producer’s and 55% user’s accuracies for
Fall. The margins are slimmer for the coniferouscégs averages - 71% producer’'s and 65% user’s
accuracies for Summer and 74% producer’s 63% uaecsracies for Fall.

Generally, LIDAR improved overall classification cacacies by 19%. It improved producer’'s
accuracy by an average of 19% and improved usecaracies by an average of 31%. LIDAR can
provide significant improvements in terms of botlexall and class accuracies. Generally, it increéase
class accuracies despite a few aberrations. LiDARiges several benefits in classifications: first,
can be used to create segments which are not meiwkeby shadows; second, it can be used to create
class rules, such as those based on height; andd tiiné intensity data extend the spectrum sligintiy
the infrared as the laser operates at approximaéggnm.

While the results are as strong as they can benghe data and sample size, other researchers have
achieved better results. One of the key reasonthéflower accuracy can be attributed to the number
of classes. Many studies do not attempt to classfynany species. Figure 8 shows the relationship
between the number of classes and overall accultastands to reason that with increased complexity
classification accuracy will suffer. With two classPicea glauca andQuercus palustris), accuracy is
approximately 89% for Summer and 86% for Fall.

Results could also be enhanced by improving thepbagimethod for each individual dataset. No
advanced endmember selection techniques were Tiseahnly criteria for selection were that the trees
could not be close to buildings (to eliminate shvesjoand that they could not be small, immaturestree
The randomly-selected sites might not be idealcteles for each class. For example, random site
selection could mean that a small tree was selemsed training sample even though it was in the
shadows of a group of different species of treeswvéVer, because the goal was to compare the two
hyperspectral data sets, an entirely random samplincedure was developed. Future classifications
would benefit from a more selective sample genangbrocess.
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Figure 8. Overall accuracy vs. number of classes for Sunandrall datasets.
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Finally, the number of samples used for the clasgibn was below the level recommended
particularly in light of the complexity of the ckiication [39, 40, 38]. Generally, the number of
recommended training samples ranges in the hundiedsir study, the number of training samples
was limited by the number of trees of each speni¢ise study area. By reducing the number of ckasse
and increasing the number of training samples,alvend class accuracy would certainly increase.
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