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Abstract: In this paper, we present a distributed infrastiieetbased on wireless sensors
network and Grid computing technology for air potha monitoring and mining, which
aims to develop low-cost and ubiquitous sensor okdsvto collect real-time, large scale
and comprehensive environmental data from roadidramissions for air pollution
monitoring in urban environment. The main inforrogtichallenges in respect to
constructing the high-throughput sensor Grid asewssed in this paper. We present a two-
layer network framework, a P2P e-Science Grid #&echire, and the distributed data
mining algorithm as the solutions to address thalehges. We simulated the system in
TinyOS to examine the operation of each sensoredlsas the networking performance.
We also present the distributed data mining resulexamine the effectiveness of the
algorithm.

Keywords:. urban air pollution, sensor network, grid, disttdaidata mining.

1. Introduction

Transport has a significant impact upon the envitent in which we live. In general, these impacts
can be divided under four broad headings: localqaality, climate change, noise and watercourse
pollution [1], while the clean air is vital to humdiealth. High levels of fine particulate (Rdlair
pollution in 2005 were estimated to have caused®1l.@ccelerated deaths and 1,088 respiratory
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hospital admissions in London [2]. The Mayor’s Siuality Strategy [3] was published in 2002 to deal
with local air quality and its impact on health. dAThe Control of Dust and Emissions from
Construction and Demolition Guidance [4] was issie8006. These documents are used to manage
the complex issues of air pollution in London aadlevelop the London Olympic facilities for 2012
with the minimal impact on London’s environment.

However, the volumes of particles and the oxidatbnitrogen in London are still higher than the
limitations declared in the Air Quality Standardg. [The major source of air pollution in London is
road traffic emissions. The Environment Agencyreates that traffic sources account for over 97% of
CO and 75% N emissions. Other notable contributions come froustrial plant and premises,
domestic energy production, and construction agtivi

In order to monitor the pollutants and analyzertkfiects to the environment, we developed Mobile
Discovery Net (MoDisNet in short) to collect reainé pollution data on key aspects of traffic
conditions, emissions, ambient pollutant conceatnaéaind human exposure. The purpose is to develop
the capability to measure, model and predict a watge of environmental pollutants and hazards
using a grid of pervasive roadside and vehiclefperaounted sensors.

Developing a sensor network over a target regidh face a lot of challenges. These include
developing and extending existing e-Science Grighser units, communication and modeling
technologies to enable the integrating of data fltogterogeneous fixed and mobile environmental
sensors grids in real time to provide dynamic esté® of pollutants and hazard concentrations;
demonstrating how these can be usefully correlaidda wide range of other complementary dynamic
data, such as weather, health or traffic data.

In the remainder of this paper, we first descrifoe motivations for the development of MoDisNet
system as well as the main contributions of thipgpaThen we discuss the novel techniques we
provide to address the problems when a sensorigrabnstructed based on the mobile and high-
throughput real-time data environment. We alsognethe system architecture to meet the demands of
the project as well as the sensor unit itself. Thiken followed by the simulation platform desagymd
the networking performance simulation as well asréml-time pollution data analysis scenarios. We
conclude the paper with a summary of the researdhaaliscussion of future work.

2. Motivations and Contributions

Road traffic makes a significant contribution toe tHollowing emissions of pollutants:
benzene(gHe), 1,3~butadiene, carbon monoxide(CO), lead, némoglioxide(NQ), Ozone(Q),
particulate matter(PM and PM s) and sulphur dioxide(S{ The impact of local air quality pollutants
on the environment and health have been studiedwaidd documented [6]. We summarize the
interaction and cooperation chain of the populaticaffic, air quality and health as Figure 1.

The figure shows that, increased car ownershipusedin urban areas (road traffic) generate some
chemical emissions to the air to form the air galo. With various weather conditions (effected by
the temperature, wind, humidity, pressure, etti¢sé pollutants pose different air qualities. When
human beings expose to the polluted air (espedialthe urban areas), driving in heavy traffic, nea
the highways or at the ‘downwind’ locations, withetdose-response, people may suffer breathing
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problems and asthma attacks, which will contriioteisk of heart attacks among people with heart

disease.

Figure 1. The adverse health impacts chain.
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Under the current Environment Act of UK [7], mostéal authorities have air quality monitoring
stations to provide environmental information tdlowdaily via internet. To date, the developmeht o
work in these areas has been hampered by crititalghps and asymmetries in data coverage, as well
as the lack of on-line data processing capabilitgred by the e-Science. Information on a number of
key factors such as individual driver/vehicle aityivpollution concentration and individual human
exposure has traditionally either simply not beweailable or only available at high levels of sphtia
and temporal aggregation, which average out séieadty critical local variations. For example, the
conventional approach to assessing pollution cdanagon levels is based on data collected from a
network of permanent air quality monitoring staton

However, permanent monitoring stations are freduenituated so as to measure ambient
background concentrations or at potential ‘hotspmtations and are usually several kilometers apart
According to our earlier research of ‘Discovery NERSRC e-Science Pilot Project’ [8] (the data
generated from statically located urban pollutioonitoring sensors), we learnt that the pollution
levels and the hot spots change with time as shiowhkigure 2. However, those results are all
computed offline and can’t give a real-time tragl. the result, it can’t make a prompt feedback or
supervision to individuals and the air pollutionmtor systems.

Figure 2. Pollution levels change at East London duringya da
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Besides, while traffic monitoring systems providéormation on aggregate traffic parameters, they
do not inform on individual vehicle trajectories, particular, key features (for emissions estinmgtio
such as the incidence of acceleration, deceleratiuh idling episodes. Moreover, epidemiological
studies typically base estimates of exposure onehpost code, despite the fact that many people
clearly spend large parts of the day in other locat These data gaps have led to a number ofariti
barriers to the successful development of key rekgasues. These include:

1. Model validation: Conventional environmental datairees do not provide a sufficient detail of
temporal or spatial resolution to enable existingemerging traffic, vehicle emissions and
pollution dispersion models to be validated at niiero-scale, especially at street level. This is
inhibiting the development of necessary understaygliof how best to design local traffic
management and urban design interventions to redaltetion concentrations in critical areas,
including pollution *hot spots’.

2. Human exposure: Little or no data are availablkbhatdisaggregate level on individual exposure to
pollutants, which is similarly inhibiting the dewgiment and validation of exposure modeling.
This has important implications, not only sciewtidiy but also practically, especially in terms of
demonstrating compliance with existing and futwguiatory obligations.

3. Integrated traffic and environmental control: Exigttraffic monitoring systems enable adaptive
traffic control systems such as SCOOQOT [9] to drawreal time information on aggregate traffic
parameters in order to dynamically optimize netwpekformance to reduce delays (by adjusting
signal timings and related measures). The extensidhese techniques to the joint optimization
of both traffic and environmental outcomes is hygihésirable, but currently impossible because of
the lack of comparable real-time pollution concatién data.

We can address these concerns by two ways: gergraiw forms of data (e.g., on exposure and
driver/vehicle activity) and generating data athieiglevels of spatial and temporal resolution than
existing sensor systems. Taking advantage of thveclost mobile environmental sensor system, the
MoDisNet system will construct a Grid environmenhigh fully integrates existing static sensor
systems and complementary data sources with thelenetwvironmental sensor system, which will
provide radically improved capability for the deten and monitoring of environmental pollutants and
hazardous materials.

The main contributions of this paper are: first, weopose a highly effective air pollution
monitoring system which fully considers the urbaackpround and the pollution features. In this
system, a hierarchical network architecture forrbgdthe mobile sensors and stationary sensors is
designed, which makes full use of the roadside adsvio fix the stationary sensors as well as the
public vehicles to carry the mobile sensors; aawiolet sensor unit GUSTO which can realize up to
1Hz data collection frequency with high accuracyl aow unit cost; a sensor grid framework to
provide the processing, integrating, and analyfiaterogeneous sensor data in both centralized and
distributed ways. Second, we provide a solutioexa@cuting the real-time distributed data mining in
sensor grid; design a distributed P2P clusterigprahm for MoDisNet system. Our result also
provides a typical air pollution pattern in urbamvieonment which gives a real-time track of the air
pollution variation. The result also presents int@otr information about environmental protection and
individual supervision.
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3. Air Pollution Monitoring System Infrastructure

The key feature of the MoDisNet system is to usargety of vehicle fleets including buses, service
vehicles, taxis and commercial vehicles a platféomenvironmental sensors. With the collaboration
of the static sensors fixed on roadside, the wisylstem can detect the real-time air pollution
distribution in London. We will describe the MoDiseNarchitecture in the following sections in
details.

3.1. MoDisNet Network Architecture

The MoDisNet system is constructed based on a nmmtelork environment, which is designed as a
two-layer network architecture — the mobile subammek formed by the Mobile Sensor Nodes (MSN in
short) and the stationary sub-network organizedtHgy Static Sensor Nodes (SSN in short). The
network architecture is shown in Figure 3.

Figure 3. The network architecture of MoDisNet.
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Here, MSNs are installed in the vehicles. They dantpe pollution data and execute the AD
conversion to get the digital signals. Accordinghe system requirements, the MSNs may pre-process
the raw data (such as the noise reduction, lodal daaning and fusion, etc.) and then send thate d
to a nearest SSN. The SSNs take in charge of tiaereleeiving, update, storage and exchange works.
Cooperating with the e-Science Grid architecturki¢tv will be discussed in detail in section 3.8 t
SSNs can realize the distributed data analysisnainéhg. According to different requirements from
the users or the server, the SSNs may send thairgwllution data or the distributed mining resut
the central data warehouse for further process.

3.2. GUSTO Sensor Unit

The sensors (including MSN and SSN) we designetinviloDisNet are GUSTO sensor units.
GUSTO is an acronym for Generic Ultra violet SenBechnologies and Observations. It is designed
to quantify relative concentrations of a suite dfan air pollutants in real time. The key featwéthe
GUSTO unit are:
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Simultaneous detection of multiple species of galis (SQ, NOx, Os;, Benzene and others)

Real time data collection and transmission (samggdiiequency is approximately 1Hz)

Relative low unit cost (compared to permanent nooimy sites)

Robust (self corrects for background changes foln saan)

Accurate over ambient concentrations (ppb levels)
GUSTO makes use of the characteristic narrow bdsdration of the gas under study (includes
SO, NO, NG, O3, NH3, and Benzene) in the UV spectral range 200-30@Reitrievals are based on a
variation of the well established Beer-Lambert Laviich describes the empirical relationship that
relates the absorption of light to the propertiéshe material through which the light is traveling
Accordingly, the amount of light emerging from argde is diminished by three physical phenomena:
1. The amount of absorbing material in its opticahp@bncentration)
2. The distance the light must travel through the dar(gath length)
3. The probability that the photon of that particuleavelength will be absorbed by the material

(absorptivity or extinction coefficient)
This relationship can be expressed mathematicatlyhas been covered in several previous works [8].
A schematic of the GUSTO unit for deployment witlihre MoDisNet program is presented in

Figure 4. When vehicles pass within the vicinitytbé sensor, key pollutants (§ONOyx, O, etc)
emitted by such vehicles absorb UV light at chanastic frequencies and then detected by the GUSTO
sensors as illustrated in Figure 4(a).

ok wnhpE

Figure4. GUSTO sensor unit schematic representation
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Figure 4(b) shows that the sensor unit primariysists of four main components: (1) the
Deuterium Light Source (DLS), (2) UV optics in tlem of a Multi-pass White Cell (MWC), (3) a
Spectrometer and a Linear CCD unit, and (4) thesaerontrol unit for data processing and
transmission. The sensor is closed path and amaieig sampled at a frequency of around 1Hz. The
UV light from the DLS passes through the Deuteramd the resulting spectral output is directed along
an open optical path via a set of Vertical Trandfierror. Then the spectral output imaged onto the
surface of the CCD detector. The intensity values @btained via a 14-bit ADC to produce an
atmospheric spectrum of wavelength versus intemsigr the GUSTO range. The narrow absorption
features are subsequently de-convolved from theshreric spectrum and the resulting differentials
are used to calculate the concentration of eaabribés

3.3. e-Xcience Infrastructure Based on Grid Computing
3.3.1 e-Science and Grid

Today’'s research depends increasingly on commuaaicaand cooperation. More and more,
scientists need to share resources through distdboomputing and databases, gaining access to
specialized and expensive facilities by develomiatjonal and international collaborations. Oftdms t
involves integrating complex data repositoriesageale computing and high performance visualization
now available in many research areas.

The term Enhanced Science, or e-Science is ‘reftre large scale science that will increasingly be
carried out through distributed global collaboraticenabled by the Internet. Typically, a feature of
such collaborative scientific enterprises is thegytwill require access to very large data coltetdi
very large scale computing resources and high peence visualization back to the individual user
scientists.’ [10]

In this description, as in many others, e-Sciescelosely associated with Grid computer network
architecture that enables much of the global colation considered basic to e-Science [11, 12]. The
Grid is an architecture proposed to bring all thissees together and make a reality of such arvisio
for e-Science. lan Foster and Carl Kesselman, woverof the Globus approach to the Grid, define the
Grid as an enabler for Virtual Organizations: ‘Anfrastructure that enables flexible, secure,
coordinated resource sharing among dynamic cadlestof individuals, institutions and resources.’ It
is important to recognize that resource in thistexiincludes computational systems and data storag
and specialized experimental facilities [10].

Currently, some research groups are working oretBeience architecture design and development,
including the TIME-EACM [13] project based at thailersity of Cambridge Computer Laboratory,
and the North East Regional e-Science Centre (NEREB!] based at the University of Newcastle,
etc. Most of their researches address the issuesabtime data query, distributed data access and
heterogeneity management.

However, MoDisNet aims to develop and deliver a imgksystem for pervasive mobile
environmental sensors. The work is based on dewvejap‘Mobile Sensor Data Gridor processing,
integrating, and analyzing heterogeneous sensar. @ased on the former research ‘Discovery Net
EPSRC e-Science Pilot Project’ [8], we have dewetbp service-based infrastructure for scientific
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informatics that supports the analysis of data geed from statically located urban pollution
monitoring sensors. However, the support of a mgmber of mobile sensors within a dynamic
environment presents new challenges to Discovery Nee number and nature of such sensor
networks mean that in most instances the data taeabstically be warehoused and then analyzed
off-line. A new paradigm is required where muclited analysis is performed within the network itself
using pervasive computing technologies such a®#es-to-Peer (P2P) model [15]. This is feasible as
even rudimentary sensors will have processing chiyaland sensor-to-sensor protocols can be
extended to support the dynamic real-time execuifanalysis and mining algorithms.

3.3.2 P2P-based Sensor Grid architecture in MoDisNe

Within large scale mobile sensor network architeguthe sensors themselves naturally form and
communicate with each other as a P2P network. ASSidSTO sensor can measure pollutants at very
high level of accuracy and throughput at very slmgrvals, which means the volumes of generated
and transferred data can be up to gigabit magniéadé day per sensor. This raises many informatics
challenges to the data process and storage. Im twrdmtisfy the real-time analysis requiremertts, t
sensors themselves must store part of the infoomaind communicate with each other within a P2P
network. The measurements from sensors, both mabdestatic, will be filtered and processed using a
set of specialized algorithmic processes, befoiagowarehoused within a repository. In order to
satisfy the real-time analysis requirements as aglthe data storage/communication trade-offs, the
sensors in MoDisNet Grid are equipped with suffitieomputational capabilities to participate in the
Grid environment and to feed data to the warehoasewell as perform analysis tasks and
communicating with their peers.

Within MoDisNet the sensor grid should be developfedupport two important techniques: firstly
the techniques allowing the analysis of transpegather and pollution data in real-time using P2P
methods and protocols; secondly the design of rwntunication protocols supporting dynamic real
time data aggregation and statistics. These wiViple MoDisNet with the ability to support the full
scale analytical task ranging from dynamic realetimining of sensor data to the analysis of off-line
data warehoused for historical analysis. To satisy demands above, the MoDisNet sensor grid
architecture is designed as illustrated in Figure 5

The GUSTO sensors (including SSN and MSN) conret¢hé MoDisNet Grid by several Sensor
Gateways (SGs) according to different wireless ssgeotocols. The sensors are capable of collecting
the air pollution data up to 1Hz frequency and samnthe data to the remote Grid service hop by hop
(a multi-hop style). This capability enable the sms exchange their raw data locally and thenzeali
the data analysis and mining in distributed wayisTdapability also presents the potential for farth
data fusion and aggregation (which is beyond tkearech of this paper, and we will discuss it byiefl
in section 7). The SGs take in charge of connedhiegwireless sensor network with the IP backbone,
which can be either wired or wireless. These S@swanitor the volumes of the data streams from the
sensors and execute the load balancing functiavedd transfer collisions, which is very useful for
improving the throughput and performance of thed@richitecture. A warehouse that can be accessed
by SQL database is managed by the Grid architesttnieh centrally stores and maintains all the
archived data, including derived sensor data aedHind part data such as the traffic data, thetheza
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data and the health data. These data can providéhwaf information for the Grid computation to
generate the short-term or long-term models tHate¢o the air pollution and traffic, down to tlexel

of streets and buildings. Further more, it may ghe supervision for the prediction of the forth¢omn
events about the traffic change and pollution trdnderm of the visual workflow tools, it can also
provide real-time output to the end user to maKellaunderstanding of the air pollution and traffic
conditions in different locations within the mormitreas.

Figure5. The MoDisNet sensor grid architecture.
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4. Data Mining
4.1 Data Mining Requirements within MoDisNet

Within the MoDisNet Project, a substantial levelre$ource has been assigned to the development
of a set of data mining techniques specific tortbeds of research into the relationships betweaanur
transport and the environment. In this system, aredefine the data mining tasks by three aspects:

4.1.1 Centralized Data Mining

The data stored within the central data warehouBeften need to be queried by the end-users in
order to find regularities in the pollution fluctians, traffic data and other sensor informatiohe3e
gueries will be easily configurable using Grid segvelements within the MoDisNet environment, and
potentially published as Grid services themselhesthis scenario, the data mining is necessarily
implemented in the warehouse. For the centraliza@ dnining, we seek to identify the long-term
patterns of pollution and traffic, and thereby ntily expected baseline conditions and key relatinm
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between certain pollutants and traffic events, @tuis will consist of relatively complex mining
processes for expected relationships and technituédentify potentially new relationships in the
data. Due to this complexity and the need to acoeghiple data archives, each running of the
centralized mining may take a long time. It willpg&d on the amount of the data under consideration
and the complexity of the algorithms. As our formenject Discovery Net forms an ideal engineering
framework for rapidly building up the system, wdlwbt discuss this case in details.

4.1.2 P2P Based Distributed Data Mining

Historical data is well-suited to large-scale asmlyover multiple dimensions, but for dynamic
queries over real-time sensor data streams, ttetdet to be taken directly from the sensors. These
data points have little value for warehousing alst #he real time mining querying cannot afford a
“store and mining” model. A typical analytical wovkould involve the statistics at a certain location
and about certain properties in that location. Séresor may not be able to offer this informatioriten
own, due to its movement from the location, or doignability to capture all relevant information
pertaining to the query. The dynamically composexsser network with P2P communication model
can support such information exchange and disgtstreaming mining algorithms to provide real
time analytical querying model.

The P2P in-networks data mining is based on tha dallected and stored by each sensor in real
time. Mining these real-time data, the system dam g quick judgment on the pollution status. And
the result may reflect some change of the traffigasions. The convergence time of the distributed
mining algorithms must be as quick as possiblethatsame time, the results may be very simple and
not accurate as the centralized one.

4.1.3 Integrated Data Mining

Based on the distributed data mining, we can beeaiasome abnormal air pollution conditions. It
may trigger the centralized data mining executiotwio ways:
* The distributed mining results may match a exigtgpa achieved by the centralized mining. So
we can suppose that some traffic events may haweelnad or will happen.
It is a whole new result that the centralized mgnimever learnt before. So it may run the
centralized algorithm again to re-calculate a nesdeh that is more complete and accurate than
the formal one.

In the following sections, we will focus on the thiisuted data mining (DDM) technique. As
described in 4.1.2, this is the key point of théadaining tasks in MoDisNet system. We will first
overview the background and recent researches dvl,CdDd then propose a P2P based distributed
clustering algorithm which is designed for pattegcognition of the urban air pollution.

4.2 Distributed Data Mining in Sensor Networks

Data mining in sensor networks faces several angdle. First, sensors are seriously constrained by
the resource, including battery lifetime, communaa bandwidth, CPU capability and storage [16].



Sensors 2008, 8 3611

Second, sensor node mobility increases the conmplekisensor data collection and analysis [17, 18].
Third, sensor data come in time-ordered streams w&&vork, which makes traditional centralized
mining techniques inapplicable. As in MoDisNet syst not only the types of pollutants measured by
sensors, but also since sensors may be mobileegsisntial to record the locations of the sensbrs a
each measurement time. As the result, mining tdase requires a multitude of analysis components
such as statistical, clustering, visualization alagsification algorithms and tools. Besides, thalysis

of spatiotemporal variation of multiple pollutantgh respect to one another can be directly peréam
over the collected pollution data, however the @atron with third-party data, such as weatherjthea
or traffic is more important and needs novel dyradata access and integration techniques.

For sensor networks, the sensors collect dataria fequence and then there is continuous stream
of incoming data for each sensor. Because of thadd storage capability, storing the historicatlada
in each sensor is difficult, even for storing thensnary/pattern from the historical data. At the eam
time, sensor network data management may neednttieeoanalysis results to be presented for the
real-time monitoring and supervising. As the resthlie real-time DDM schemes are significantly
demanded in such scenario.

DDM offers an alternate approach to address abowblgms of mining data using distributed
resources. DDM pays careful attention to distridutiata, computing, communication, and human
resources to use them in a near-optimal fashioh [hQecent years, there are a lot of researcimes o
DDM in sensor networks. The existing work can baraged into three aspects:

1. intelligent data collection schemes to reduce dabame;
2. optimal nodes organization strategies to elimitla¢eheterogeneous of sensor data; and
3.  highly efficient mining algorithms to reduce thenqouting complexity of DDM.

For the first scenario, an unsupervised approathemutlier detection problem in sensor networks
is presented in [20], where kernel density estimsatze used to estimate the distribution of the dat
generated by the sensors. [21] studied the prolofiedetecting regions of interesting environmental
events, which assumes that faults can occur inethepments though they would be uncorrelated,
while environmental conditions are spatially catet. In [22], the authors partition the sensod gri
into several subnets. If the density of nodes g l@nough, one node in each subnet can be chosen to
give an estimate of the samples at every other motthén its subnet. As the result, the collectedada
volumes are highly reduced.

Among the strategies of the second aspect, arrgripm nodes of the sensor networks in logical
hierarchical styles is a widely used method. In],[28 multi-dimensional clustering approach was
proposed to set up a two-layer framework, in whiecl sensor nodes grouped into cliques on the
bottom layer and the data abstraction represertddp layer. Under this framework, a distributed
pattern recognition scheme is executed. [24] alsmpgsed a two-layer modular architecture to
adaptively perform data mining tasks in large semsiworks. The architecture consists in a lower
layer which performs data aggregation in a modtdahion and an upper layer which employs an
adaptive local learning technique to extract a iptemh model from the aggregated information.

The high efficient mining algorithms can preserg thistributed mining result directly and many
efforts have been made in this area. In [25], anetwork data mining technique to discover frequent
event patterns and their spatial-temporal propertieas proposed, where each node collects
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information from its neighbors. [26] presented H-s&bilizing peer-to-peer indexing structure ard
efficient nearest neighbor querying methods. [24rked on the distributed error minimization
algorithm for density estimation and clusteringsensor networks. A distributed approach for event
prediction was proposed in [28], where each selesgns to make local decision about capturing the
environmental change.

In next section, we will present our distributedadmining algorithm—a P2P clustering algorithm
for air pollution pattern recognition which aimsrexuce the computing complexity and generate real-
time mining results.

4.3. Distributed Clustering Algorithm within MoDisNet

To realize the P2P based DDM, the algorithm hgwteide the information exchange in P2P style.
Here, we designed a clustering algorithm which saiisfy the P2P mining demands. The clustering
problem is defined as follow: clustering is the gass of grouping the data into classes of clusters
that objects within a cluster have high similafitycomparison to one another, but are very disamil
to objects in other clusters [29]. Cluster analys#s been widely used in numerous applications,
including pattern recognition, data analysis, imeggions and market research. We use the clustering
analysis in MoDisNet system to find out the pothatipatterns (or pollution clouds) in the urban
environments. The distributed data process inctytiie data process in both MSNs and SSNs. For the
MSNSs, the main tasks are:

1. sensing the air pollution data and conveying theagy signals to digital signals;

2. storing the sampled data; and

3. sending the data to nearest SSN if the timer in M3plres.

And for the SSNs, the main tasks are:

1. receiving data from MSNSs;

2. choosing a certain number of SSNs as the InformaExchange Node Set (IENS) in term of a
random algorithm (the random algorithm is beyond tliscussion of this paper), then sending
polling message to those nodes and waiting fod#ta exchange messages;

3. receiving the data exchange messages from the BSEKS; and

4. executing the distributed data mining algorithm.

To realize the data processing and analyzing fanstidescribed above, a distributkeaneans
algorithm (the goal is to fin& centers that minimize the maximum distance of iatpo its closest
center [30]) is designed to mining the air pollatipatterns in different locations according to the
sampled air pollutants’ volumes. This algorithm gun each SSN. To describe this algorithm, we
explain some of the definitions first (supposettital numbers of SSN is n (n > 0)).

e SSN\i: a SSN node with the identityi = 0, ...,n-1);

* S: an Information Exchange Node Set (IENSB8N;, which is a set of some of the SSNs that can
exchange information witBSN;;

* k: the number of clusters that requireckkimeans algorithmk(> 0);

. C'i,,-: the cluster center gth (j = 0, ...,k-1) cluster that is computed 88\ in Ith recursion|(> 0);

*  Numj: the number of members (data points) belongthtoluster inSS\;;

e ¢: apre-defined threshold.
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The algorithm is described as below:

1. NodeSS\; chooses a certain number of SSN§as term of a random algorithm;

2. NodeSSN; receives data from MSNSs as the local data andsegsidocal data as the initial local
cluster centre€®; (j = 0, ...,k-1);

3. NodeSS\; calculates the Euclidean distance between eaehdata and ead®’;;;

4. NodeSS\ distributes each data to the nea@$j as the member of this cluster, and each local
cluster ofSS\; can be described a@o(,j, Num;);

5. Node SS\; sends polling messages in intervals to each SSN and expect to receive data
information form them;

6. Node SS\, in § sends back the local data descriptiﬁ]‘fx,(, Numy;) to SSN; if it receives the
polling message fror8S\;

7. If node SSN; receives all the data information it expects skadk from all the node i, SSN;
calculates the new cluster centre<Chs;

8. NodeSSN; computes the offset betweé:ﬁ,j andCOi,j, if the offset< 4, then the algorithm finishes;
otherwise replace8?; by C';;, and go to step 3.

5. System Operational Simulation
5.1. Smulation Platform

The operational simulation of the MoDisNet systeimsato give an overall evaluation of the
hardware and software design. The simulation veklize not only the wireless communication
processing and upper layer algorithms, but alssémsor unit itself, including the reasonabilityadif
the function modules of the sensor chip, the lolager driving programs, and the cooperation of
different types of sensors (MSN and SSN). For pligpose, we designed a simulation platform which
has the capabilities to simulate all the functiohs single sensor, and the functions of informatio
exchange between different sensors.

To simulate the functions of a single sensor, wagied and coded MSN/SSN units based on the
TinyOS system. TinyOS is an open-source operatystes designed for wireless embedded sensor
networks. It features a component-based architectwhich enables rapid innovation and
implementation while minimizing code size as regdiby the severe memory constraints inherent in
sensor networks [31]. To realize all the functisghat a MSN or SSN requires, we have to choose
suitable system components that the TinyOS systeavides, as well as design reasonable
user/application components based on the functideactriptions listed in section 4.3. Besides, we
need to use different interfaces to link all thenponents to make them work together.

According to the functional description, we desidM@SN and SSN in TinyOS system as shown in
Figure 6 (a) and (b). Here, the grey square stésrda component; the shadow square is the interface
that a component provides; the dotted square isntieeface that a component uses; the line with a
black arrow means a command sending from the taileoarrow to the head of the arrow; and the line
with a white arrow means an event informing from thil of the arrow to the head of the arrow.



Sensors 2008, 8 3614

Figure 6. The Structure Framework of MSN and SSN.
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User/Application
Component
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The components that a MSN uses are Main compomgntl{ is the access point of all programs);
the user/application component MSN (which execatethe functions of a MSN); the sampling timer
component TimerC; the sampling and A/D conversi@amgonent DemoSensorC and the data
transmission and multi-hop routing component AOSmilarly, the components that a SSN uses are
Main, SSN, TimerC (which is used for polling tim)rand AODV. Here, the AODV is the acronym of
Ad hoc On-Demand Distance Vector Routing [32]. Tisisan on-demand distance vector routing
protocol which can support the multi-hop routinpesme and are widely used in the Ad hoc networks.



Sensors 2008, 8 3615

The AODV component is provided by the TinyOS systirich helps to realize the sending and
receiving of the control information and data mgssaeasily between different sensor units.

5.2. Visualization of System Operation

Based on the simulation platform illustrated int&et5.1, we can visualize and monitor the system
operation in OMNet++ [33]. The purpose of the vigaion is to investigate the initialization/
configuration of the system and the performanctefrouting protocols. Besides, we need to know if
the polling and data exchange messages can béetraalscorrectly or not, and if the distributed alat
mining algorithm is performed as expect.

The network topology of the simulation is desigresd Figure 7. There are 18 sensor nodes,
including 12 SSN nodes from tic[0] to tic[11] andViBN nodes from tic[12] to tic[17]. Data can be
sent and received in bi-directions along the edgésuse the air pollution data of four pollutant®,N
NO,, SGQ, and Q at 1-minute intervals in urban environment frodBto 17:59 within a day as the
sampled data for each MSN. The total number otfititaset is 7200.

Figure 7. The network topology of the simulation.
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The simulation is performed on the computer withG®J, 3.2GHz main frequency. The link delay
is set to be 100ms. The running details of theesystan be monitored as shown in Figure 8.
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Figure 8. Simulation monitor results
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(b) Running time 10.7421875 seconds. Tic[1] receivipdckets; Tic[2] receives 71 packets.

After the initialization, all the nodes begin tockange the polling and data messages. We can see
from Figure 8(a) that all the messages can be aedtreceived between the source node and the
destination node hop by hop. Figure 8(b) shows¢eiving procedures of every packet in tic[1] and
tic[2] within 10.7421875 seconds, while tic[1] read 50 messages and tic[2] received 71 messages.
These messages include all the control messagés dsunitialization, topology discovery and rogtin
information), polling messages and data exchangssages. The receiving speeds in these nodes
present an approximately linear increasing, whidans the system can send and receive messages
with very low collision and packet lost.

5.3. Operation of the Distributed Clustering Algorithm

The distributed clustering algorithm test resuttgic[1] are shown in Figure 9. The test dataset is
the air pollution data of four pollutants NO, NG5O, and Q. Each data record has a time stamp
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between 9:00 and 10:00, a sensor ID which showsldtee source, and four values of the volumes of
the pollutants. Here we defined tkeneans algorithm witlk = 3. So there will be three clusters with
the cluster ID of 0, 1 and 2. Result (a) is a pathe real-time mining result in tic[1]. We caredhat,

in each recursive processing of the algorithm, $Si§MN] computes the cluster centers and assigns the
distributed data it gathered to a correspondingtelu In result (b), the algorithm finishes accogdio

the converging criteria and tic[1] gets a localstlwing result. The final cluster centers and total
number of data points in tic[1] are also shownrhia tesult.

Figure 9. The distributed clustering algorithm test resuitic[1].

(a) Part of the real-time mining result in tic[1]

tic[1l] 0:0:8.98906250: Tine SensorlD Val ue ClusterlD
tic[1] 0:0:8.98906250: 0900 12 [93.0,73.0,8.0,114. 0] 0
tic[1] 0:0:8.98906250: 0901 12 [80.0,45.0,9.0,121. 0] 0
tic[1] 0:0:8.98906250: 0900 15 [12.0, 46.0,3.0,76.0] 1
tic[1l] 0:0:8.98906250: 0900 14 [9.0,42.0,12.0,59.0] 1
tic[1] 0:0:8.98906250: 0900 13 [63.0,48.0,2.0,36.0] 2

(b) The final mining result after the algorithm conyed
tic[1l] 0:0:8.98906250: Converged! Al gorithm stopped in node 1!
tic[1l] 0:0:8.98906250: Time Cent er ClusterI D Total Num
tic[1] 0:0:8.98906250: 0900-1000 [78.9,67.3,1.7,108.0] 0 104
tic[1] 0:0:8.98906250: 0900-1000 [11.6,54.8,6.2,83. 3] 1 147
tic[1] 0:0:8.98906250: 0900-1000 [80.9,32.4,5.7,51.1] 2 49

The comparison of the average clustering accurddhe centralized and distributed clustering
algorithms is shown in Table 1. For the centralizktstering algorithm, we suppose tic[8] be thesin
(central point for data processing) in the topolsgpwn in Figure 7, which means every other node
sends the collected data to tic[8]. And the clagsmeans algorithm [34] is running in tic[8] for
centralized clustering. For the accuracy measurgnenX' denote the dataset at nade.et L, (X)
and L' (x) denote the labels (cluster membership) of samp(exDd X') at nodei underk-means

algorithm and our distributed clustering algoritiiespectively. We define the Average Percentage
Membership MatchAPMM) as

)

Wheren is the total number of SSNs.

For the distributed clustering algorithm, we vamg humber of nodes in the Information Exchange
Node Set (IENS) of each SSN from 1 to 10. Dataranelomly assigned to each SSN. Table 1 shows
the APMM results.
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Table 1. Centralized Clustering vs. Distributed Cluster{fd@MM results).

IENS 1 2 3 4 5 6 7 8 9 10

APMM | 84.5%] 90.29%| 92.48%] 93.06%| 93.1%| 93.32%| 93.43%| 93.66%| 94.05%| 94.4%

From Table 1 we can see that, when the numberaésm IENS is no less than 2, in other words,
when each SSN exchanges data with at least two &88ls, theAPMM exceeds 90%. When the
number of nodes in IENS is no less than 4 ARMM exceeds 93%. The results are achieved under the
condition of assigning the data to each SSN rangoml reality, if the patterns of the dataset are
various in different locations, th&PMM maybe lower than the results in Table 1. In sutlasons, a
good scheme of how to choose the nodes to constreitENS would be very important.

6. Data Analysis Scenario

In this section, we present a real-time polluti@adanalysis scenario to evaluate the data analysis
capability of MoDisNet system. This evaluation e&sbd on the air pollution data that was generated
from our former project Discovery Net which consted a sensor grid over a typical urban area as
shown in the map of Figure 10 around the Tower letsrdnd Bromley areas in east London. There are
some of the typical landmarks such as the main exaeinding from A6 to L10, the hospitals around
C5 and K4, the schools at B7, C8, D6, F10, G2, kiBBand L3, the train stations at D7 and L5 and
Gas Works between D2 and E1. 140 sensors arebdisd in this area and collect data from 8:00 to
18:00 at 1-minute intervals to monitor the pollutaof NO, NQ, SG, and Q.

Figure 10. MoDisNet sensors evaluation case in an areastflLesmdon.

The air pollution analysis uses the air polluticatadto give an overall understanding of the air
pollution characterization within this area by rimgnthe data mining algorithm. As the Discovery Net
can only classify the pollution data into severallytion levels, such as high or low, but can’tl tes
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the distribution of different pollutants in differelocations and their contributions to the pobuati
levels. To improve the data analysis capabilitythis data analysis scenario, we use the distribute
clustering algorithm to cluster the pollutants imgollution clouds which can recognize different
pollution patterns. From the experimental resuft®scovery Net, we pickup all the high pollution
level locations at 9:00, 15:30 and 17:00 respelstit@ check the contribution of different pollutant
(NO, NG, SG and Q) to the pollution levels. The results are showfigure 11.

Figure 11. Pattern recognition for high air pollution lexskas.
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From the figures we can see that in the morning@Q, the high pollution locations are distributed
around the main roads and the schools (highlightgdhe circles). At 15:30, the high pollution
locations are around the schools and the factomcfwis a gas work and highlighted by the squake).
17:00, more pollution focuses on the main roads; hbspitals (highlighted by the ellipses) and the
factory make the contribution as well. Checking itieing data set, we found the relationship between
the pollution clouds, the different pollutants gradlutants’ volumes, which is shown in Table 2.

Table 2. Pollution pattern analysis.

. Analysis
Time | Clouds
NO NO, O3 SO

Red High Middle Low High

9:00 | Blue High Low Low Low
Yellow Low Middle Low Middle
Red Low Middle Middle Middle

15:30 | Blue Low High High Middle
Yellow Low Low Low High
Red Middle High High Middle

17:00 | Blue Low Low Middle Middle
Yellow Low Middle Middle High

This table shows that, in each time

snap, there3ad#ferent pollution clouds: Red, Blue and
Yellow. Each cloud represents a kind of combinatbihe 4 pollutants. For example, in the morning
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at 9am, the Red cloud that covers the main roadgl@area around the main roads is characterized
by high volumes of NO and SOMost of these pollutants are emitted by the Mekicunning in the
morning rush hours. According to the environmerggbrts, today in the UK, the road transport sector
is the major source of NOemissions, especially in urban areas, contributhage than 50% to the
total emission. Besides, the solid fuel and petmoieproducts are two main contributors of ;SO
Herein, it is still an urgent research topic fortageduce the transport emissions and produceeclea
diesel fuel.

At 15:30 in the afternoon, the Blue clouds cover sbhool areas, which are in high volumes ok NO
and Q with low volume of NO. While Yellow cloud featurdaly high volume of S@covers the
factory area. As N@and Q are all formed through a series of the photochahrigactions featuring
NO, CO, hydrocarbons and PM, generating,Nf@d Q needs to take a period of time. That is the
reason that the density of N@nd Q in the afternoon is higher than that in the magniraffic peak
time.

At 17:00 in the afternoon, it seems to be the wpadiution distribution time within a day. Besides
the transport emission around the roads and therfaemission, some other locations such as the
hospitals contribute some kind of pollutants, iddhg the sulphide and nitride. On the right most of
Figure 11, a yellow cloud covering a main road frigth to L10 contains high density of SONO, and
Os. The pollution pattern is very similar to the jeatt at the factory and hospital areas, but notlaimi
to the pattern on the other main road (from A6 ttOK We investigated this area and found that, a
brook flows along this area in the near east afatt@ry area locates on the opposite side of thekor
which is beyond the scope of this map. This carlagxpvhy the pollution patterns are different on
these two main roads.

7. Conclusions

In this paper, we have provided an overview of dhgan air pollution analysis within MoDisNet
project, describing the network framework, the G@S3ensor technology, the mobile sensor grid
architecture and the distributed data mining atgari The system can achieve a high performance
based on the high quality mobile sensing capabidityGUSTO sensor unit which can measure
pollutants at very short intervals. Besides, wigspect to the distribution of the sensors withia th
large area of urban environments and the dataratieg requirements during the transmission and
analysis, the well designed e-Science Grid architecand distributed data mining algorithm are
essential for this scenario.

We are currently researching on the data fusionamgugiegation technique [35, 36, 37] to improve
the system performance when large amount of dat@alected and transferred, especially when the
third part data (including the traffic data and thea data) are imported. As discussed in secti8r2 3.
the Grid architecture and multi-hop routing capapbinable the MoDisNet system to implement the
data fusion and aggregation. It can save the conuation cost, reduce the power consumption of the
sensor units, and increase the available bandwitithe wireless channels. One attempt is to design
the fusion and aggregation algorithms with thegragon of novel routing protocols; another wayas
analyze the pollution data collected in differemtdtions to find the redundancy of the data, stoas
decrease the number of active sensors or proloagséimple intervals. Beside, when the mobility
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pattern of the vehicles is taking into consideratithe data communication and analysis may face new
challenges, such as noise reducing, positionindpilendata collecting and identifying, etc.

As UK has obligations as a member of the Unitedidwat Economic Commission for Europe
(UNECE) regarding transboundary pollutants thatseduarm to the environment, reducing the impact
of road traffic on the environment is vital to tigevernment and individuals. Of all emissions
contributed mainly by road transport, monitoring 8Mnd NQ are currently most desired, with
expectations that finer detection (e.g. BMwill be needed in the future and also a neednfore
detailed monitoring of noise levels. As addressgigbal warming becomes more important in
government policy however, local authorities aieelly to be increasingly required to monitor and
reduce greenhouse gas emissions in their regiaofmmation on greenhouse gases is therefore also
needed for long term monitoring purposes with samilinkages to traffic and weather data to
understand the contribution of traffic to enviromta conditions.
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