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Abstract: Rate of perceived exertion (RPE) is a clinically convenient indicator for 

monitoring exercise intensity in cardiopulmonary rehabilitation. It might not be sensitive 

enough for clinicians to determine the patients’ physiological status because its association 

with the cardiovascular system and local muscle factors is unknown. This study used the 

electromyographic sensor to detect the local muscle fatigue and stabilization of patella, and 

analyzed the relationship between various local muscle and cardiovascular factors and the 

increase of RPE during stepping exercise, a common exercise program provided in 

cardiopulmonary rehabilitation. Ten healthy adults (4 males and 6 females) participated in 

this study. Each subject used their right bare foot to step up onto a 23-cm-high step at a 

constant speed until the RPE score reached 20. The RPE, heart rate (HR), and surface EMG 

of the rectus femoris (RF), vastus medialis, and vastus lateralis were recorded at 1-minute 

intervals during the stepping exercise. The generalized estimating equations (GEE) analysis 

indicated that the increase in RPE significantly correlated with the increase in HR, and 
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decrease in median frequency (MF) of the EMG power spectrum of the RF. Experimental 

results suggest that the increase in RPE during stepping exercise was influenced by the 

cardiovascular status, localized muscle fatigue in the lower extremities. The weighting of 

the local muscle factors was more than half of the weighting of the cardiovascular factor. 

Keywords: Fatigue, stepping, electromyogram (EMG), heart rate, rating of perceived 

exertion, GEE model 

 

1. Introduction  

Stepping exercise is widely used to increase or maintain physical fitness, as it is convenient, private, 

low cost, and requires no special motor skills. Research has demonstrated that stepping effectively 

improves cardiovascular fitness [9,22,34,38], decreases body fat [22], and increases lower limb 

strength [38].  

Clinically, finding a sensitive and convenient indicator for exercise intensity is important to achieve 

optimal training effects from stepping exercise without inducing substantial fatigue. The Borg’s rate of 

perceived exertion (RPE) consists of numbers ranging from 6–20 that individuals use to rate their 

levels of exertion. The RPE has been utilized as a subjective indicator of exercise intensity by both 

young adults [21] and aged persons [50]. The RPE gauges physical sensations a person experiencing 

during physical activity. 

Studies have shown that RPE has a strong linear correlation with heart rate (HR) and aerobic power 

in healthy individuals [30] and patients with cardiac diseases [31]. However, in some cases, such as in 

sedentary subjects [54] or during isometric exercises [48], changes in RPE are not proportional to 

changes in HR. Carton et. al. argued that at low levels of exertion, muscle input is more important than 

central input in sensing efforts[12]. Since the RPE does not always have a strong linear relationship 

with HR, utilizing the RPE to monitor the patients’ cardiopulmonary rehabilitation without knowing 

the weighting of the cardiovascular and other factors, such as local muscle factors might be dangerous. 

 Quadriceps femoris, which comprises the rectus femoris (RF), vastus medialis (VM), vastus 

lateralis (VL), and vastus intermedius, is a primary muscle group that is activated during stepping 

exercise. The RF is a two joint muscle whereas the VM and VL are single joint muscles. The balance 

between VM and VL is important in maintaining stability of the patellar during dynamic tasks 

[11,14,18,19,28,29,40,46,49]. Quadriceps femoris can be fatigued during stepping exercise. Therefore, 

physical effort may be increased as additional motor units are recruited to compensate for the fatigue-

related force drop. Additionally, fatigue-related metabolic accumulation can stimulate 

mechanoreceptors and nociceptors through group III, IV afferents [15,26,27], thus inhibiting the spinal 

circuit, causing discomfort and increase in RPE. 

Surface electromyography (EMG) is a non-invasive method of examining muscle function in vivo 

(e.g., activation level and fatigue). The median frequency of the EMG power spectrum has been 

demonstrated to be an effective indicator of fatigue as it is has been reported to be reduced during 

neuromuscular fatigue and is related to metabolic accumulation [3,5,6,7,16,17]. The intensity of EMG 
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was reported to be associated with both fatigue and changes in muscle activation level [17]. This study 

utilized the EMG of RF, VM, and VL to monitor local muscle factors during stepping exercise. 

Effort perception is a complicated notion. Establishing appropriate RPE weights for the contribution 

of HR and local muscle factors during stepping exercise is important for clinicians to determine a 

patient’s physiological status and, thus, to appropriately implement a rehabilitation program. This study 

attempts to use the electromyographic sensor to detect the physiology status of the local muscle status 

and to determine appropriate weights for HR and local muscle factors for RPE during stepping 

exercise.  

2. Methods 

2.1. Participants 

Ten (4 males and 6 females, aged 20–30 years old) young adults with no physical disability 

participated. Each subject provided informed consent. None of the subjects had previous history of 

neuromuscular or skeletal diseases. 

 

2.2. Experimental Procedure 

 

The EMG signals from the RF, VM, and VL were recorded using a bipolar surface electrode with a 

fixed interelectrode distance of 2 cm (B&L Engineering, Canada). Following skin abrasion with an 

alcohol-soaked cotton pad, electrodes were placed on the muscle bellies. For the RF, electrodes were 

placed at about 6 cm proximal to the superior border of the patella parallel with the long axis of the 

muscle. The VM and VL electrodes were located half-way between the muscle belly and the distal 

tendinous insertion of the respective muscle when the quadriceps were isometrically contracted and 

parallel to muscle fibers. The relative positions were based on those utilized in a previous study [19]. 

Electrodes were then secured with adhesive tape. The reference electrode was placed over the bony 

surface of the tibial bone. The EMG activity was on-site pre-amplified by a factor of 350 and further 

amplified at the mainframe amplifier. The mainframe amplifier had an input impedance >10 MΩ, a 

common mode rejection ratio of 100dB at 60Hz, and a gain range of 0.5–100,000 times (Gould Inc., 

Valley View, OH, USA). The EMG activity was monitored on an oscilloscope and digitized using a 

12-bit resolution analog-to-digital converter (Metrabyte DAS 1600) at 1000 Hz. 

Each subject sat on a chair with the knee joint flexed at 60° and performed two maximal voluntary 

contractions (MVCs), each for 5 seconds. The force and the EMG during MVCs were recorded for 

normalization purpose. The subject then used their right bare foot to step up onto a 23-cm-high step at 

a constant speed until the RPE score reached 20. Stepping speed was controlled with a metronome. 

During stepping, subjects wore an ankle-foot orthosis on their left foot to prevent plantar flexion and to 

ensure that all stepping effort was made by the right leg. Heart rate was monitored with a heart rate 

monitor (Polar-Electro, Kempele, Finland). The HR, and EMG of RF, VM, and VL were recorded 

continuously during stepping, whereas the RPE was reported by the subject at 1-minute intervals 

during stepping. 
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2.3. Data Analysis 

The root-mean-square EMG (rEMG) amplitude of RF, VL, and VM were derived for the entire 

ascending phase of each step cycle and were normalized to that during MVCs. Although both VM and 

VL muscles are innervated by femoral nerve, the fiber type composition and the best activation knee 

angle are different. The change in the ratio of VM and VL (VM:VL ratio) may contribute to patella 

instability and knee pain, and thus possibly increase the RPE. Therefore, we also computed the ratio of 

VM and VL to represent the patella stabilization. This ratio was calculated by dividing the normalized 

rEMG of VM by that of VL. A fast Fourier transform was performed on the raw EMG of RF and the 

median frequency was calculated from the transformed signal. We did not calculate the median 

frequency of VM and VL because RF, VM, and VL are synergists in generating knee extensor torque. 

To simplify the model, we use only RF to represent the status of knee extensor torques generated. The 

HR, normalized rEMG of RF (EMG-RF), VM:VL ratio, and median frequencies (MF-RF) were 

applied for further statistical analyses. 

 Liang and Zeger (1986) and Zeger and Liang (1986) introduced generalized estimating 

equations (GEEs) to account for the correlation between observations in generalized linear regression 

models [37,55]. The GEE model is utilized in this study to determine the relationship between RPE 

and different independent variables. Since data are collected for the same individual across successive 

time points, these repeat observations are correlated over time. If this correlation is not considered, 

then the standard errors of the parameter estimates will be invalid and hypothesis testing results will be 

nonreplicable. GEE model can be described by equation (1). 
Let itY  are observations for subject i  at time t , 

∑
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0β  is the intercept, ijtX  is the independent variable j  for subject i  at time t , j1β  is the regression 

coefficient for independent variable Jj,  is the number of independent variables, t  is time, 2β  is the 

regression coefficient for time, and itε  is the ‘error’ for subject i  at time t . Here we assume that 

observations on different subjects are independent, although we allow for association between 
outcomes observed for the same subject. If there is a quadratic linear trend between itY  and time, the 

GEE model can be expressed as  
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3. Results and Discussion Experimental Section 

During stepping exercise, the HR, rEMG of RF, MF of RF, and VM:VL ratio showed different 

patterns during stepping. RPE and HR increased during stepping exercise (Figure 1A, 2). The MF of 

RF decreased initially and later was inconsistent (Figure 3). The rEMG had a tendency of increasing 

during stepping (Figure 4). The VM:VL ratio was initially close to 1.0 and was inconsistent near the 

end of the exercise (Figure 5) . 

Table 1 presents the result of GEE analysis based on equation (2). Time, Time2, MF of RF and HR 

were significant explanatory variables for RPE; specifically, each increase in 1 unit for HR and MF of 
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RF led to an increase of 3.827 unit and resulted in a decrease of 2.6306 unit of RPE, respectively, after 

adjusting for time and other variables. However, rEMG and VM:VL ratio are insignificant explanatory 

variables for RPE (Table 1). Additionally, the analytical results indicate that a curve linear trend exists 
between RPE and time after adjusting for other variables. This implies [∂(RPE) / ∂(Time)] =-

0.1174*Time+1.5629 which the rate change in RPE with respect to time is a linear function. The rate 

change of RPE is -0.1178 unit per minute (Figure 1B). 

 

Figure 1. The group average and standard error of RPE during stepping exercise (A). 

The rate of RPE changes during stepping exercise (B). 
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Figure 2. The group average and standard error of HR during stepping exercise. 
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Figure 3. The group average and standard error of MF of RF during stepping exercise. 

The MF is represented as the percentage of the MF before stepping exercise. 
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Figure 4. The group average and standard error of rEMG of RF during stepping 

exercise. The rEMG is represented as the percentage of the rEMG before stepping 

exercise. 
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Figure 5. The group average and standard error of VMO / VL ratio during stepping exercise. 
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Table 1. Analysis of GEE Parameter Estimates. 

 
Parameter Estimate Standard 

Error 

95% Confidence 

Limits 

Z P 

Intercept 6.0983 2.8901 0.4339 11.7627 2.11 0.0349 

Time 1.5629 0.2134 1.1446 1.9813 7.32 <.0001 

Time2 -0.0587 0.0132 -0.0847 -0.0328 -4.43 <.0001 

rEMG of RF -0.7789 0.9227 -2.5873 1.0296 -0.84 0.3986 

MF of RF -2.6306 1.0238 -4.6372 -0.6240 -2.57 0.0102 

VM:VL Ratio 0.5146 0.6947 -0.8471 1.8763 0.74 0.4589 

HR 3.8270 1.7014 0.4922 7.1617 2.25 0.0245 

 

4. Discussion 

The major finding of this study was that the increase in RPE during stepping exercise was related to 

both the cardiovascular status, HR, and the local muscle factors, including the MF of RF. Furthermore, 

as was the case with all other factors in the model, the rEMG of RF and VM:VL ratio were not 

significantly associated with RPE.  

 Stamford demonstrated a linear relationship between RPE and HR during progressively 

increasing workloads and submaximal constant load, obtaining correlations ranging from r = 0.71 to 

0.91 [52]. Similarly, in our study, as shown in the Table 1, the GEE model suggested a significant 

linear relationship between RPE and HR after adjusting for other variables. Borg suggested that a high 

correlation exists between a person’s RPE × 10 and actual HR during physical activity and, thus, a 

person’s RPE may provide a good estimate of actual HR during exercise. However, Garcin et al. 

assessed the relationship between RPE and HR under three loads during exhausting exercises, arguing 

that the equation HR= 10 × RPE was invalid for exercise at constant load until exhaustion [25]. In our 

study, the subjects stepped at the same rate until exhaustion. As seen in figure 6, HR and RPE × 10 

were similar at the beginning (< 3 minutes) and the equation appeared to be appropriate. Nevertheless, 

after that, RPE × 10 separated from HR and became higher than HR throughout stepping exercise, 

indicating that the equation was invalid (Figure 6) during constant workload and supporting that 

weighting of other factors, such as local muscular factors, should be considered. 

According to the GEE model in this study, the MF of RF was negatively correlated with RPE during 

stepping exercise when other factors were controlled. The reduction in median frequency of the EMG 

power spectrum has been typically considered as an indicator of fatigue as it has been noted during 

fatigue by maximum and submaximum voluntary contractions [4,8,16,17]. The shift in the EMG power 

spectrum is considered to be associated with motor units recruitment [7,8], fatigue-induced metabolic 
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accumulation[26], change in intracellular PH [36], and reduction in muscle fiber conduction velocity 

[1,4,6,53]. In this study, decrease to MF during stepping exercise indicated that stepping exercise did 

produce local muscle fatigue. Increase of RPE might reflect the need for compensating the reduction of 

force generation caused by muscle fatigue. Furthermore, increased RPE is also likely needed to 

overcome discomfort and peripheral neural circuit inhibition arising from group III and IV afferent 

stimulated by fatigue-induced metabolic accumulation [26]. 

The averaged rEMG of RF showed a trend to increase during stepping (Figure 4), however, the GEE 

analysis results demonstrated that the rEMG of RF was not significantly correlated with the RPE when 

other factors were controlled. The amplitude of rEMG was associated with the sum of motor unit 

action potential [41] and the amplitude is likely affected by fatigue and recruitment. When fatigue is 

induced by submaximal task, the amplitude of EMG increases; this increase has been attributed to 

recruitment of additional motor units [2] and/or increased firing rates. Simultaneously, the amplitude of 

motor unit action potential of previously recruited motor units can decrease due to fatigue-related 

neuromuscular transmission failure [23,24]. As the change in rEMG during fatigue induced by 

submaximal exercise is complicated and stepping exercise in this study is submaximal, that the rEMG 

was not significant in the GEE model is not surprising. The VM and VL are believed to balance the 

patella during dynamic exercise. Some studies determined that the VM:VL ratio is correlated with the 

patella-femoral syndrome [10,40,42,46,51] and contraction of hip adductors [19,32,39], although 

results were contradictory [13,33,45,49,]. Changes in the VM:VL ratio during stepping exercise likely 

indicates that effort is required to balance the patella or change stepping strategies, such as activating 

hip adductors, and thus would increase the RPE. Change in VM:VL ratio is also likely associated with 

varying amounts of fatigue in VM and VL. Edgerton et al. reported [20] a greater proportion of type-I 

fiber in the vastus medialis compared that in the VL. However, other studies reported that the diameter 

of type-I fibers were not significantly different between VM and VL [35,44]. In our study, the VM:VL 

ratio was insignificantly related to RPE change when other factors were controlled, indicating that the 

the stabilization of the patella remained unchanged during stepping until exhaustion.  

 

5. Conclusion and Clinical Application 

This study used EMG sensors to detect muscle status and indicated that the increase to RPE during 

stepping exercise is affected by localized muscle factors in addition to the conventionally known 

cardiovascular exertion. The relationships among these contributing factors were determined by the 

GEE model. This study provides an approach using a model to differentiate and quantify contributory 

factors to exercise tolerance during stepping. Based on our model, the weighting of HR was more than 

that of the local muscle factor, suggesting that the cardiovascular response is the major limiting factor 

to exercise tolerance. However, the weighting of the local muscle factor was more than half of the 

weighting of the cardiovascular factor, indicating this factor is also important. With our model as a 

reference, we can test patient groups with the protocol used in this study to identify the limiting factors 

of exercise tolerance during stepping. This is especially useful when we attempt to determine the 

limiting factors for patients with comorbidities, such as coronary heart disease coexisted with 

neuromuscular disease. After establishing a model for the patient group, we can identify the primary 

factor limiting exercise performance and set up training regimen accordingly. For example, when the 
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weighting of local muscle is less than half of HR, clinicians should focus on cardiopulmonary 

endurance training. In contrast, muscle strengthening/endurance training should be emphasized. In this 

way, we can set up clinical treatment guidelines for different patient groups.  

The limitation is that this model might be unable to directly fit patient population. Future studies for 

establishing models for patients with cardiovascular diseases, neuromuscular diseases, and patella-

femoral syndrome, etc are suggested. 

 
Figure 6. The group average and standard error of HR (black line) and RPEX10 (gray 

line) during stepping exercise. 
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