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Abstract: The primary objective of this paper is the evaluation of the InSAR derived 

displacement field caused by the 07/09/1999 Athens earthquake, using as reference an 

external data source provided by terrestrial surveying along the Mornos river open 

aqueduct. To accomplish this, a processing chain to render comparable the leveling 

measurements and the interferometric derived measurements has been developed. The 

distinct steps proposed include a solution for reducing the orbital and atmospheric 

interferometric fringes and an innovative method to compute the actual InSAR estimated 

vertical ground subsidence, for direct comparison with the leveling data. Results indicate 

that the modeled deformation derived from a series of stacked interferograms, falls 

entirely within the confidence interval assessed for the terrestrial surveying data. 
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1. Introduction 
 

One of the most significant natural disasters to strike Greece in the 20th century was the September 

7, 1999, 11h 56m 50s UTC, Mw (moment magnitude) = 5.9 Athens earthquake. It claimed the lives of 

143 people, and caused the collapse of several buildings, mainly in the northwest suburbs of the Greek 

capital. The approximate location of the earthquake epicenter was 38.10oN, 23.56oE, roughly 20 km 

northwest from the center of Athens [1].  

The vertical displacement field at the surface level caused by this tectonic event was investigated 

with space born Synthetic Aperture Radar Interferometry (InSAR), using ERS-2 data. InSAR 

processing showed a significant deformation with the maximum Line Of Sight (LOS) subsidence being 

of approximately 6 cm [1]. This observation was used in earthquake modeling and fault location 

mapping [2-9] along the middle of the Parnitha mountain. However, the deformation field reported in 

[1] could not be verified at that time due to the lack of co-seismic geodetic measurements of adequate 

precision. The sole indication was provided by geologists and engineers who visited the area and 

confirmed that the damaged structures, at the substructure level, were showing a vertical movement of 

the same order of magnitude as the InSAR derived assessments.    

The region of maximum deformation coincided with the main shock epicenter. This area was very 

close to the Mornos river open aqueduct, used for water supply to Athens. The distance of the aqueduct 

pass from the earthquake epicenter was less than 2.5 km. The water supply authority in Athens 

awarded an aqueduct-leveling project to the National Technical University of Athens/Higher Geodesy 

department (NTUA/HG), which lasted for two months, from March to April 2001. Prior leveling data 

along the Mornos aqueduct had been obtained in 1984. No height data were available for the 

intermediate time interval 1984-2001; however no major seismic event had taken place in that period. 

The two co-seismic sets of leveling data were considered adequate to investigate the vertical 

displacement in the affected by the earthquake area and verify the InSAR derived observations. Figure 

1(a) illustrates the leveling path legs and the Mornos aqueduct projected onto the 1:50,000-scale map. 

Figure 1(b) shows the area where leveling data were acquired, projected onto the calculated 

interferogram. The test area extends from 38°09’N 23°31’E to 38°06’N 23°38’E.  

The scope of this paper is the evaluation of the InSAR derived displacement field caused by the 

Sept 7, 1999 Athens earthquake, using as reference an external data source provided by terrestrial 

surveying along the Mornos river open aqueduct. Research works relating to InSAR – leveling 

interoperability issues have been published in the past, focusing on either verifying the InSAR derived 

subsidence, or integrating them with the leveling data to increase the reliability of the measurement. In 

[10] a spatially dense network of leveling benchmarks was used, to integrate terrestrial measurements 

with InSAR data, and sums of Gaussian surfaces were proposed to approximate the subsidence field 

induced from oil/gas extraction activity. Moreover, in [11] a method to improve the InSAR derived 

deformation field was presented, by splitting the differences between InSAR and leveling derived 

assessments to two components: one mathematical model accounted for the mean tropospheric effects 

and orbital errors, and a second model was used to describe for the local, less correlated error sources, 

such as Digital Elevation Model (DEM) errors and local atmospheric effects. By approximating models 

with polynomials and by generating a non – mathematical model for the residuals of the 
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approximations, corrections for the InSAR derived deformations were produced for the entire SAR 

image. In [12] a study for mine subsidence monitoring using ERS-1/2 and JERS-1/2 was investigated, 

combining the resulted subsidence with ground-collected data. In [13] InSAR derived deformations 

were compared and correlated with temporally dense leveling data for settlements monitoring in the 

reclaimed land of the new Hong Kong international airport and the Fairview Park.  

 
Figure 1. (a) Plots of the Mornos aqueduct (blue) and height network (red) projected on 

1:50000-scale map and (b) onto an ERS-2 SAR image interferogram. 

 

 
(a)                                                                                     (b) 

 

This paper is structured as follows: section 2 refers to the preliminary processing of the input data, 

namely the InSAR and leveling measurements. Section 3 presents in an analytic way the distinct steps 

in rendering the two data sets compatible. Section 4 outlines the results obtained by applying the 

proposed processing chain, whilst section 5 investigates more thoroughly the physical meaning of these 

results and the applicability of the method in verifying InSAR derived subsidence on the basis of 

terrestrial surveying data.  

 
2. Input Data 
 

2.1. ERS-1/2 InSAR Data 

  

ERS-1/2 sensor images spanning the period from December 1997 to January 2001 were acquired 

and processed over the Athens Greater Area. The satellite images were provided by the European 

Space Agency in the frame of the ESA-GREECE AO project 1489OD/11-2003/72.  
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Figure 2. Set of interferometric pairs used in the study. The vertical dashed line indicates 

the date of the earthquake occurrence. 
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Interferometric calculations were done by using the CNES DIAPASON InSAR processing software, 

and the sixteen most coherent co-seismic interferograms were kept for the purposes of the study. The 

image pairs used along with their corresponding “altitude of ambiguities” are shown in Figure 2. The 

influence of the terrain relief on the interferograms was lifted out using a DEM, which was originated 

by digitizing the 20 m contour lines from the 1:50,000-scale topographic maps. The high frequency 

DEM artifacts remaining in the interferograms, were calculated as the ratio of the DEM error (~10 m) 

over the interferometric “altitude of ambiguity” (20 m–417 m) [14]. They were all estimated to be 

below the cycle level (0.3–0.02 cycles). 

 

2.2. Leveling Data Along the Mornos Aqueduct 

 

The first terrestrial surveying work on the aqueduct was done in 1984, covering its whole length of 

approximately 200 km. A special trigonometric height technique was used, providing the same level of 

accuracy as conventional leveling but being significantly faster [15]. This technique employed a highly 

accurate geodetic total station to obtain the slope distance and the vertical angle between the two points 

of interest. The use of a redundant number of stationary sets of tripods and tribranch adapters 

eliminated the need for target and instrument height measurements. Furthermore, atmospheric 

refraction effects were further eliminated by concurrent measurements at both ends of an observation 

line - leading to high accuracy observations.  

Moreover, a standard geometric leveling was realized in 2001. The total distance surveyed was 40 

km, of which 12 km were confined in the area of interest illustrated in Figure 1(b). Figure 3 shows the 

leveling path legs and the longitudinal axis of the open aqueduct, projected onto a wrapped 

interferogram.  
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The accuracy of the leveling works was estimated to be of the order of a few millimeters between 

successive height references [16]. It should be noted that the two leveling experiments conducted in 

years 1984 and 2001 used exactly the same height reference points. The height differences obtained by 

surveying the aqueduct at the two epochs indicated a significant vertical displacement induced by the 

earthquake. Taking into account the standard deviations of the geometric leveling and the 

trigonometric leveling and by applying the error propagation law, the standard deviations of the height 

differences were estimated to range from 4 mm to 8 mm. These values correspond to the relative 

heights between successive height benchmarks, depending on the length of the leveling path segments. 

 
Figure 3. Leveling path legs plot (red) and aqueduct plot (blue) projected onto a wrapped 

interferogram. For clarity purposes, only the segments connecting the height references 

are displayed. The actual leveling path follows the channel. 

 
 

3. Rendering InSAR Data Comparable to Leveling Data 
 

The differential displacement data derived by the two different techniques were incompatible and 

consequently a direct comparison was not possible. These incompatibilities may be summarized as 

follows: 

• InSAR processing provided wrapped interferograms, consequently only the fractional part 

mod2πΦ of the full phase difference Φ was known. 

• InSAR results correspond to the projection of the true vertical deformation along the LOS vector.  
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• The reference systems of the leveling data and the InSAR data were different. InSAR data were 

referring to ED 50 UTM zone 34 while the leveling data were referring to the mean sea level and 

the height reference positions to the Hellenic Geodetic Reference System 87 (HGRS 87). 

• The interferograms were “noisy” mainly due to temporal decorrelation, orbital and tropospheric 

disturbances.  
The following sections describe the procedure used to eliminate the effects of the above types of 

incompatibility, rendering the two datasets comparable. 

 

3.1. Wrapped Interferogram Filtering 

 

The wrapped interferogram underwent a simple filtering procedure. The primary objective of this 

action was to minimize the probability of phase unwrapping failure, while a secondary goal was the 

improvement of the wrapped and unwrapped interferogram appearance in order to derive qualitative 

evaluations more efficiently. The filter used was a simple 2D 3x3 space mean filter (symmetric to 
match the rectangular pixel dimensions), applied on both the real )cos( j,iψ  and imaginary )sin( j,iψ  

parts of a virtual unitary magnitude signal )sin(j)cos(e j,ij,i
j j,i ψ+ψ=ψ . The phase of this signal is the 

unfiltered interferometric phase j,iψ . In other words, the 2D space filter was applied on a unitary signal 

to which the phase of the input interferogram was projected. The phase j,i/fltψ , comprising the filtered 

interferogram, was extracted through an arctan operation from the filtered real and imaginary parts of 

the virtual signal. The filtering procedure is best defined by the following formula: 
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where k is the filter size, which equals 3. This value was considered to be an optimal one, as it 

corresponds to a satisfactory tradeoff between interferometric spatial resolution and level of smoothing. 

The criterion for choosing k was to eliminate isolated pixel noise while keeping the spatial deformation 

trend evident in the interferogram. In Figure 4, the effect of the interferogram filtering procedure is 

presented. 

Figure 4. Wrapped interferogram, before (left) and after (right) filtering. 
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3.2. Phase Unwrapping  

 

Various 2D phase unwrapping techniques have been developed for resolving the “integer 

ambiguity” problem of the interferometric phases. In this study “Quality Guided Path Following”, 

“Least Squares Without Weights”, “Weighted Least Squares”, and “Minimum LP Norm” approaches 

were implemented [17-20]. The unwrapped interferograms produced by these techniques were 

evaluated for surface discontinuities, by inspecting for the presence of breaklines (abrupt gradient 

changes) or “tears” (non – derivabilities) and measuring their length. As a result, it was inferred that 

the most effective technique, for this particular scenario, was the “Weighted Least Squares”. The 

weights were derived from the coherence map, representing the computed cross correlation between 

the master and the slave image. 

The unwrapped co-seismic interferograms were all undergone a special processing in order to 

minimize the existing orbital, tropospheric and DEM disturbances. These errors were lifted by a 

“tilting” and “shifting” operation, using a number of coherent pixels located outside the deformed area. 

According to this approach [21], the deformation on these pixels was expected to follow a well-defined 

t-student distribution around a local zero mean. Then, by forcing each local deformation mean to zero, 

the calculated interferograms were “tilted” and “sifted”. Figure 5 emphasizes the effect of this process, 

where the disposal of the orbital fringes becomes evident. 

 
Figure 5. (a) & (b) Wrapped and unwrapped versions of the same interferogram. Note the 

unrealistic fringe pattern due to inaccuracies in the orbital data used. (c) & (d) The effect 

of the “tilting” and “shifting” operation on the same interferogram; the orbital fringes are 

removed. 

 
(a) (b) 
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Figure 5. Cont. 

 
                                  (c)                                                                         (d) 

 

3.3. Incidence Angle Correction 

 

The HGRS 87 unwrapped interferogram provides the differential vertical displacements for each 
target pixel as projected to the LOS vector )N,E(LOSΦ , and not the vertical differential 

displacements )N,E(dUΦ  themselves, as is the case of leveling (Figure 6). These two quantities are 

related through the incidence angle )N,E(In : 

( ))N,E(Incos)N,E()N,E( dULOS ⋅Φ=Φ                                             (2) 

 

Figure 6. Relative geometry of the true vertical deformation and the deformation provided by InSAR. 
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In order to determine the differential vertical displacements from LOS projection displacements, the 

value of the incidence angle for each target pixel was required. The incidence angle computation 

procedure was based on satellite trajectory data and the position of the target. Initially, for every target 

pixel (i, j) the zero - Doppler position of the space born SAR sensor had to be computed. This was 

achieved through signal processing applied on the “master” (or “reference”) image. Third degree 
polynomials were fitted with Least Squares to the known satellite position vectors )t(r derived by ERS 

1/2 operational orbits provided in the header file of every SAR image. These expressions simply 

provide the satellite position vectors in the orbit’s terrestrial geocentric reference frame as a function of 

time. Three polynomials were derived, one for every coordinate X, Y and Z. Exactly the same 
procedure was applied for the satellite velocity vector )(tr&  and three additional equations were also 

obtained. Therefore, for every single target (i, j) the following procedure was followed: 

1. The map projection coordinates of the target were converted to geocentric Cartesian coordinates 

in the geodetic terrestrial reference frame in which the satellite orbits were provided (in this 

particular case from HGRS 87 map coordinates to ITRF 96 geocentric Cartesian coordinates).  

2. The mean Doppler frequency shift was computed by the CNES DIAPASON software and was 
assumed to be the same for every single pixel target. The Doppler frequency shift ( )j,if  was 

expressed as a function of the satellite position, the satellite velocity vectors and the target 
position )j,i(r , by the following equation (λ denotes the SAR sensor wavelength): 

( ) ( )
)t()j,i(

)j,i()t()j,i(2
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i

i

rr

rrr

−λ
⋅−

=
&

                                                         (3) 

3. A total of seven equations were accumulated, and an equal number of unknowns was introduced, 
three for the satellite position vector, three for the satellite velocity vector and one for the time it . 

Hence, a non linear seven-equation system was created for the estimation of the seven unknowns. 

The system was linearised with Taylor series expansion and solved iteratively.  

4. Knowing the satellite and target position vectors, the unitary LOS vector could be calculated 

simply from the following vector equation: 
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5. The target position ellipsoidal coordinates j,iϕ , j,iλ  were then calculated on the same geodetic 

terrestrial frame, which was used to express the orbits and the target coordinates in the previous 

step.  
6. Knowing the target’s latitude and longitude j,iϕ , j,iλ , the LOS vector components were 

transformed to the local geodetic reference system (delta north - DN, delta east - DE, delta up - 

DU) by means of a rotation matrix: 
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7. The third component of the LOS vector as expressed in the local geodetic reference system is 

actually the direction cosine for the “up” axis of the system, and consequently the cosine of the 

incidence angle In. Thus the incidence angle can be derived as: 

( )DUarctanIn =                                                              (6) 

 

3.4. Stacking 

 

In the framework of this study and due to the fact that reliable verification data were available 

through the leveling survey, it was possible to evaluate the advantage in using a mean stacked 

interferogram instead of using only one, that is the “highest-quality” (most coherent) interferogram. For 

this purpose the sixteen “tilted” and “shifted” unwrapped interferograms were stacked to derive a mean 
temporal deformation field. This technique produced an image ( )j,iS  defined 

as: ( ) ( ))j,i(I...),j,i(I),j,i(Imeanj,iS n21= , where n represents the number of the available 

interferograms and )j,i(I m  the unwrapped interferometric phase of the mth interferogram at pixel 

location (i,j). Consequently the produced interferogram depicting the mean deformation field, was 

released from high and intermediate frequencies [21], which corresponded to non-earthquake related 

interferometric disturbances (Figure 7).  

 
Figure 7. Spectral density of the stacked interferogram. Low frequencies prevail. 
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It should be mentioned that at this stage alternative stacking methods were implemented as well. 

They comprised of the formation of A) a weighted mean stacked interferogram, using as weights the 

pixel coherence values of each contributing interferogram, B) a maximum coherence stacked product, 

on which each phase pixel value stems from the interferogram with the highest corresponding 

coherence pixel value and C) a windowed maximum coherence stacked product; here each phase pixel 

value stems from the interferogram with the highest mean coherence value, calculated inside a 3 by 3 

pixels window, centered on the pixel of interest. As is shown in section 4, the above methods returned 

very similar results compared to the mean stacked approach.  

 

3.5. Geodetic Reference System Conversion 

 

As mentioned the unwrapped interferometric calculations were referring to a UTM map projection 

on the ED 50 Greek Datum. In contrast the coordinates of the height references were expressed in the 

HGRS 87 reference system, using the Transverse Mercator map projection on the GRS 80 ellipsoid. To 

overcome this incompatibility the initial interferograms were converted to HGRS 87 projection system 

as follows: 

1. The ED 50 UTM map coordinates (Eastings and Northings - E, N) were converted to ED 50 

ellipsoidal coordinates (latitude and longitude - φ, λ), assigning to each pixel the corresponding 

orthometric height (Η) derived from the input DEM. 

2. The orthometric heights were converted to geometric ones (h), by implementing a constant 

additive geoid undulation value (N) for the entire area of interest, since the geoid in this area is 

relatively “flat” exhibiting a very low gradient. This value was obtained by the Ohio State 

University OSU 91 Geoid Model, and was recomputed for ED 50.  

3. The ED 50 ellipsoidal coordinates were converted to ED 50 Cartesian coordinates (X, Y, Z).  

4. Subsequently, the ED 50 geocentric Cartesian coordinates were converted to HGRS 87 

geocentric ones, assuming only a parallel shift between the two systems. The latter assumption 

was expected to successfully provide the conversion due to the small size of the area of interest. 

5.  Then, the HGRS 87 geocentric Cartesian coordinates were translated to HGRS 87 ellipsoidal (φ, 

λ) coordinates.  

6. Ultimately, the HGRS 87 ellipsoidal (φ, λ) coordinates were converted to HGRS 87 Transverse 

Mercator projection coordinates (E, N). 

 

3.6. Differential Vertical Displacement Modeling 

 

Thorough examination of the unwrapped (stacked and/or “highest-quality”) interferograms, 

exhibited the presence of “local” phase anomalies in certain areas extending from one to several pixels. 

The phase values in these pixels deviated from the prevailing values in the surrounding region. These 

anomalies were survived the filtering procedure described in section 3.1. It is beyond the scope of this 

paper to explore the origin of such phase “residuals”, but it could be assumed that they stemmed from 

local temporal decorrelation. It was also observed that the areas affected by these anomalies, presented 

significantly low coherence values and therefore they should be excluded.  
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Because the tectonic deformations observed were characterized by low phase gradient and spatial 

continuity, it was decided to proceed with a phase smoothing operation, by fitting (with the Weighted 

Least Squares method) a 3D-mathematical surface to the unwrapped interferometric phases 
)N,E(dUΦ . After a series of adjustments, a successful fit according to the chi-square )( 2χ  test was 

achieved, using the value of 6 mm as a-priori standard deviation for the observations. By the 

application of the error propagation law (given the estimated model parameters and their a-posteriori 

standard deviation values), it was concluded that the 3D-mathematical surface would provide the 

vertical deformation estimate for each target pixel (E, N), with an estimated a-priori deviation not 

higher than 0.2 mm. In order to ensure that the mathematical model represents the best fit to the 

displacement pattern observed, the most general form of mth degree surface was tested: 

( )
( )

( )
( )

( )
( ) 


















++

++++

++++

−=Φ
−−−

−−−

11m
NE

2m2
NE

1m1
NE

11
EN

m
N

2
N

1
N

m
E

2
E

1
E0

dU

NEa...NEaNEa

NEaNa...NaNa

Ea...EaEaa

)N,E(

11m2m21m1

m21

m21

                        (7) 

After several runs, it was determined that a polynomial surface with degree higher than third would 

be redundant, as it was not offering any further improvement in terms of a-posteriori variance and 

measurement residuals. All higher degree coefficients were close to zero. The produced surface is 

presented in Figure 8. A Gaussian 3D surface was also tested; however this model was far less 

successful, mainly due to the absence of axial symmetry of the deformation pattern. 

 
Figure 8. Differential vertical displacement model using a third degree mathematical surface. 

 
 

4. Results 
 

Based on the 3D surface model produced, it became possible to extract a profile section of the 

InSAR vertical differential displacements along the leveling traverse. For this an origin had to be 

defined, and this was decided to be the height reference HR 65. Consequently, its displacement was set 

to zero. All other vertical displacements were provided in relevance to HR65. Profile data for InSAR 

and leveling data are presented in Figure 9. 
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Examining the profiles illustrated in Figure 9, it can be concluded that no major differences occur 

between the differential vertical displacements as obtained by InSAR and leveling. There appears to be 

an agreement between the two profiles with respect to the gradient of the vertical displacement. Also 

there is no evidence of any systematic deviation between them. Moreover the profile corresponding to 

the mean stacked interferogram shows a better agreement with the leveling data. The vertical 

displacement differences between the leveling data and the interferometric data using the “highest 

quality” interferogram range from 3 mm up to 1.8 cm. The average difference value between the two 

data sets is 9.5 mm and the standard deviation equals 5.5 mm. On the contrary, when the mean stacked 

interferogram is compared with the leveling data, the above discrepancies are reduced by a factor of 

six. Indeed, the average difference between the two data sets is reduced down to 1.5 mm, whereas the 

standard deviation is of the order of 4.8 mm. 

 

Figure 9. Differential vertical deformation profiles derived by the, (a) conventional 

terrestrial surveying, (b) single “highest quality” interferogram, (c) mean stacked 

interferogram, (d) windowed maximum coherence interferogram. HR65 indicates the 

starting point of leveling. 

 
Table 1 outlines the average vertical displacement difference between the leveling data and the 

interferometric data for the various interferometric approaches used. The study of the table shows that 

the mean stacked product is preferred against the other interferograms, as it fits precisely the leveling 

data. Also its estimation entails less computational complexity. It should be mentioned though, that 

there are no major differences between the various stacking methods. However, significant 

improvement was achieved when moving from the single most coherent interferogram to any of the 

stacked products.  
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Table 1. Average and standard deviation of the vertical displacement differences between 

the leveling data and the InSAR methods. 

 

Highest 
quality 

interferogram 

Mean stacked 
interferogram 

Weighted 
mean stacked 
interferogram 

Maximum 
coherence 
stacked 

interferogram 

Windowed 
maximum 
coherence 
stacked 

interferogram 

Average 
difference 

(m) 

-0,0096 -0,0016 -0,0030 0,0047 0,0020 

Standard 
deviation 

(m) 

0,0056 0,0048 0,0055 0,0150 0,0056 

 

5. Conclusions – Discussion 
 

This research focused on rendering compatible and comparable the InSAR derived displacements, 

related to the September 7, 1999 Athens earthquake, with leveling survey data. Towards this goal a 

processing chain was implemented, encompassing an algorithm for orbit and atmospheric disturbances 

removal, and a methodology for transforming the LOS deformation vector to the true vertical 

deformation vector. The proposed method used a mean stacked interferogram to get a more consistent 

representation of the displacement pattern. Finally, an agreement between the deformation values 

originating from InSAR data with the ones derived from leveling survey data was demonstrated. Only 

minor discrepancies were identified between the two. 

These small differences may be attributed to several types of error sources, such as 1) SAR sensor 

noise, radiometric instabilities and system aging, 2) surface subsidence model deviations, 3) remaining 

orbital phase “ramps”, 4) remaining tropospheric artifacts, 5) unwrapping errors, 6) temporal 

decorrelation effects, and 7) DEM errors. The possibility for a-seismic deformations in the period 

1984-1998 could be also considered as a possible contributor to the relative subsidence profile 

differences. However, this a-seismic tectonic deformation, if it exists, remains unaccounted for, due to 

the absence of InSAR calculations in that period. The above-mentioned factors, may contribute to the 

observed total error of the derived relative subsidence values. However, the combined influence of the 

first three factors is considered to be essentially ignorable, taking into account the orders of magnitude 

of the resulting relative vertical displacement differences. Moreover, unwrapping errors computed by 

rewrapping the unwrapped interferogram, were assessed to be to an acceptable level in the area of 

interest. Therefore factors 6 and 7 namely temporal decorrelation and DEM errors, seem to be the most 

crucial parameters resulting in InSAR subsidence profile deviations. Temporal decorrelation could not 

be computed but must be considered as the major contributor to the spatially uncorrelated component 

of the residuals arising from the Least Squares approximation of the polynomial surface.  

However as shown in Figure 9, the influence of all disturbing factors described previously, was 

effectively reduced by using a mean stacked and noise-free interferogram. Moreover the suggested 
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tilting and shifting procedure, introduced in [21], for removing orbital and tropospheric fringes has 

performed effectively. Hence, the earthquake induced subsidence pattern seemed to be successfully 

represented by the proposed model. 

As far as the terrestrial surveying derived relative subsidence profiles are concerned, the estimation 

accuracy was much simpler and more explicit. The leveling data accuracy was estimated to lie in the 

range from 4 mm to 8 mm, in relative heights between successive height benchmarks. With the above 

estimations it becomes clear that the deviation of the two relative subsidence profiles (cases (a) and (c) 

in Figure 9), fall entirely within the confidence interval defined for the leveling data. It can be also 

concluded that the simple polynomial surface modeling of the subsidence field, may be regarded as an 

effective method to overcome the remaining temporal decorrelation effects and other sources of noise, 

by exploiting the extremely high degrees of freedom associated with the Least Squares approximation 

of mathematical models. Finally, a case specific conclusion of geophysical interest can be drawn for 

the study area. This refers to the fact that no detectable significant vertical displacements have occurred 

during the period 1984-1998, for which InSAR interferometric measurements were not available. 
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