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Abstract: A flood mapping procedure based on a fuzzy setsryhleas been developed.
The method is based on the integration of Synthigberture Radar (SAR) measurements
with additional data on the inundated area, such lasd cover map and a digital elevation
model (DEM). The information on land cover has ko us to account for both specular
reflection, typical of open water, and double baubackscattering, typical of forested and
urban areas. DEM has been exploited to include Isirhpdraulic considerations on the
dependence of inundation probability on surfacerattaristics. Contextual information
has been taken into account too. The proposed itigothas been tested on a flood
occurred in Italy on November 1994. A pair of ER$8¥lages, collected before and after
(three days later) the flood, has been used. Thdtsehave been compared with the data
provided by a ground survey carried out when tbedlreached its maximum extension.
Despite the temporal mismatch between the surveytlaa post-inundation SAR image,
the comparison has yielded encouraging resultd) wie 87% of the pixels correctly
classified as inundated.
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1. Introduction

Mapping the extension of an inundation is fundamalefdr relief organization and to assess the
damages. Remote sensing data are useful toolssirigld, especially for events occurring in remote
regions or in areas characterized by lack of rangg stations, where hydrological information are
difficult to be gathered. Among remote sensing sesSynthetic Aperture Radar (SAR) offers the
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advantage of getting high spatial resolution imaigealmost all-weather conditions, as opposed to
passive instruments operating at infrared and idands. This feature is particularly attractinel @n
most cases essential, since flooded areas are offiscured by heavy cloud coverage. The change
detection potential of SAR, based on variationghef backscattering coefficierf (i.e., the image
intensity), or decrease of coherence derived fré&fR 8nage pairs (i.e., the interferometric phasaj c
be successfully exploited to remotely map inundetifl-3]. For instance, the Mississippi flood of
1993 [4], the 1996 and 1997 inundations in the Rear Valley [5-7], the Elbe event of mid-August
2002 in Germany [8], the Oder River inundation 897 [9] and the Yangtze River flooding occurred
in China in summer 1998 [1] were monitored by uss#R images.

The effect of an inundation may produce differdmdrges in the SAR image, depending on the type
of underlying terrain. Flooded bare soils have lowackscattering with respect to the surrounding
non-inundated areas, since a smooth water surfetselike a specular reflector [2], and the flood
detection is generally carried out by applying sti@ds on a SAR image recorded after the event [10]
Note that wind roughening increases the backsaagtérom the inundated surface, thus lowering the
contrast between flooded and non-flooded areasth®ncontrary, inundated forest areas generally
produce a large radar return, caused by a douhledaobackscattering mechanism between the water
surface and the trunks [11-12]. In this case, tifferdnce between two SAR images, recorded before
and after the event, is analyzed to identify anehere an increase af occurs. The double bounce
mechanism may produce a significant radar returnundated urban areas too.

Methods based on thresholds applied to a SAR image widely adopted in past investigations.
Henry et al. [8] determined the thresholds by ariaty the histograms of both Envisat ASAR and
ERS-2 observations of the Elbe river flood occuiire@002. Cunjian et al. [13] applied a threshald t
a RADARSAT image concerning an event occurred imn&hn 1998, and used a digital elevation
model (DEM) to distinguish the dark shadow dueeitef from water. Good results were achieved by
using a SAR polarimetric system. For instance, aisten tree based on thresholds applied to
multipolarization L-band and C-band SIR-C data ewning Amazonia was developed by Hess et al.
[14] to discriminate five types of land cover, inded water and flooded forest.

Algorithms founded on sophisticated segmentatichrigues were also developed to delineate the
boundaries of a flooded area. An example is the@eacbntour model, adopted by Horritt et al. [2]. |
their study, the segmentation was applied to an-ER®age and to a coherence map built by
employing two ERS-1 images collected before aner dfte flood of the river Thames in 1992. Better
results were obtained by using other data, su@hdigital terrain model (DTM) derived from airborne
laser altimeters (Lidar), together with SAR dat&][For the events of the River Alzette floodplaim
2003 and the River Mosel on 1997, SAR flood extmd a high-resolution floodplain DEM were
joined to compute flood depths [16].

Our concern is that the shortcoming of most prooesius represented by the simplistic image
processing methods that are used, generally baseiiked thresholds, which do not account for
complications in SAR imagery due to the presenceegletation or urban areas. On the other hand,
advanced image processing procedures do not in@iepany prior information on the physics of
surface scattering. Horrit et al. [2] stated thatimprovement of the flood maps accuracy can be
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expected through the adoption of a more model bappdoach, rather than a heuristic segmentation
method.

In this paper, we propose the application of thezyutheory [17] for flood boundary delineation
from SAR images. The fuzzy sets basically repreaangxtension of the classical notion of set. While
in classical set theory an element either belomgioes not belong to the set, elements of a fuety s
have degrees of membership. These degrees arébgesioy a membership function whose values are
real numbers in the interval [0, 1]. The fuzzydheis suitable for representing the sets for whila
definition of a membership criterion is a difficaiéisk. This is the case of the set of flooded gixel
SAR images. Even though the fuzzy logic has beelelywiused in the past for image elaboration and
segmentation (e.g., [18-19]), to our knowledge thithe first attempt to apply such a method food
mapping.

Since the imaging of the water surface is compddiy factors such as wind roughening and the
presence of vegetation [2], as previously discussexkral pieces of information should be inclusted
the classification algorithm to improve the religpiof inundated area maps. The use of a fuzzyebas
method has also allowed us to integrate in thesiflegtion procedure prior information (e.g., DEM o
the involved area, land cover map), simple hydcactinsiderations which are generally neglected in
flood mapping methods (e.g. the dependence of miom probability on surface characteristics), and
contextual information.

We have considered a case study concerning a @ioodrred in the Alessandria district (Northern
Italy) on November 5th-6th 1994. A pair of ERS iraagcollected before (October 3rd) and after
(November 9th) the inundation has been used, tegeitih a DEM of the area and a land cover map
(CORINE land cover). The result of our proceduneffood boundary delineation has been compared
to a ground survey that refers to the maximum esitenof the flood, whilst the post-flood SAR image
has been collected few days later. Despite ofdiigulty, the flood map derived using the propdse
procedure seems to be able to identify the preseficeater, better than a simple thresholding
procedure.

In Section 2 a preliminary analysis of the avaiatiata is described, whereas Section 3 depicts the
adopted fuzzy approach. In Section 4, the restltsuo procedure are discussed and Section 5 draws
the main conclusions.

2. Dataset analysis

In November 1994, because of heavy rainfall, theafa River flooded the town of Alessandria, in
Northern Italy, and the neighboring areas. The teansed a great deal of damage, with a loss of 70
lives [20]. The peak of the event occurred on Novenbth-6th. Such a disaster has been studied in
the past by Boni et al. [21] through a multisenapalysis particularly focused on rain rate retrieve
from passive microwave radiometric measurementsaempt to map the extension of the flood by
ERS has been carried out in [20] by means of a mmaixi likelihood classifier, developed for non-
forested areas only.

We have used a pair of ERS-1 intensity images celtebefore (October 3rd) and after (November
9th) the inundation. The two images, whose resmiuis 12.5 m both in ground range and in azimuth,
have been recorded in descending orbits. The alidive look Precision Images (PRI) provided by
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ESA have been filtered to reduce the speckle byguaiFrost adaptive filter [22], and georeferenced.
They are shown in Figure 1 (pre-inundation: lefhglapost-inundation: right panel). In the postigve
SAR image (November 9th), some dark areas candaglglobserved. They indicate the presence of
water surfaces even three days after the pealeahtimdation.

Figure 1. Pre (left panel) and post-flood (right panel) Sisiages of the Alessandria area.

(a) | (b)

Figure 2. Land cover map of the area derived by CORINE detabEight main classes
are distinguished. Industrial and commercial ar@alse); cultivations (magenta);
grassland (aguamarine); road and rail networksloy@ sowable lands (green);
continuous urban (white); discontinuous urban {radodland/shrub (sea green). Black
areas are unclassified.

The orography of the Alessandria district has befesracterized by a DEM with a resolution of
40%x40 m furnished by Piedmont region (to which Alhessandria district belongs). The DEM has been
resampled at 12.5 m pixel-spacing through a biglinaterpolation to be co-registered with the SAR
images. As for land use and land cover, we havsidered the data available through the CORINE
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database. These data have been derived from Lahldsatatic Mapper images acquired in 1991-1992
and are shown in Figure 2. It can be observed it of the territory (about 71%) is covered by
sowable land (green). This implies the prevalentcéfarward) specular reflection from the water
surface, thus explaining the presence of large degéis in the post-inundation image (Figure 1b).

The dataset has been integrated by a ground pudkided by the local authorities, indicating the
maximum extension of the flood. Unfortunately, &naot be directly compared with the post-
inundation SAR image which has been collected theges later. However, it has yielded some useful
indications for validating the results.

To study the scattering behavior of different coekrsses when the land is inundated, we have
performed a preliminary analysis of the dataset.NA%e derived the histogram and the mean value of
A for each different type of land cover, both foodtled and non-flooded areas, distinguished
according to the ground truth. Figure 3 shows tistograms for the classes of sowable lands (left
panel) and grassland (right panel). The mode ofhikgrams related to the post-inundation image
(blue solid lines) is almost at the same valuegd{0.02 nf/m?). The same occurs for the class of
cultivations (not shown). This means that, wherdewaurfaces act as specular reflectors, the pre-
existent land cover does not influence the value’of

Figure 3. Histograms ofd® before and after the inundation. Left panel: sdevdénds;
right panel: grassland. Red and blue lines conpeerflood and post-flooded images,
respectively.
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Figure 4 shows the difference between the mearesaific® extracted from pre-floods(pre)] and
post-flood [o°(pos)] images. The classes of urban areas (continusdisiscontinuous urban), rail and
road networks, grassland and transitional woodiEmwdb present an increase in
meanp’(pos)]-meanf®(pre)]. While this increase could be expected for waadl and urban areas
because of the enhanced double bounce effectsurgising for grassland. After a deeper analyses,
have found the presence in both SAR images of seeng bright pixels in the areas labeled as



Sensors008, 8 4156

grassland (outside the range of abscissas in F@juréhis may imply that manmade structures were
located in this area at the time of SAR overpassesthe increase af’ could be ascribed to double
bounce backscatteringt is worth reminding that, whilst the SAR obsergat regard 1994, the
CORINE database has been derived from data cafleictel991-1992, so that such a temporal
mismatch may have caused the missing of new urbtilersents in the land cover map. Moreover, it
must be considered that part of the areas labsl@iadated by the ground survey were probably non-
flooded at the time of the second SAR observatidrerefore, we guess that the increase shown in
Figure 4 is underestimated.

Figure 4. Difference between the mean values/dmeasured after and before the flood
in the area near the town of Alessandria. Note ithcustrial areas are neglected since
they were not involved in the flood, accordinghe ground truth.

B Non-flooded O Flooded ‘

Mean [¢°(post)] - Mean[g (pre)]

3. Methodology

The procedure for flood boundary delineation hasnbdesigned to account for physics of the
scattering mechanisms, hydraulic considerationspaimat information on land cover and topography.
The requirement to avoid noisy maps with isolateohi{s has been pursued as well, by introducing the
contextual information. The fuzzy approach has ataa a very valuable tool to integrate these
different pieces of information.

3.1. The fuzzy sets

We have followed a method based on standard mehipeienctions. Pal et al. [18] proposed a
function for pixel intensity, named standard S tisit and shown in Figure 5a (upper left panel)s It
characterized by three parametard andc, with usuallyb = (c+a)/2. According to the standard S
function, the higher the intensity of the pixele thigher is its degree of membership. We have adopt
the S function to assess the membership to theldi@reas having’(pos)>d°(pre), i.e., urban and
forested areas. As for the choice of the paramédbehsis been computed, for each land cover class
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exhibiting a rise o&°, as the mean increase in inundated zones, defrivedthe analysis presented in
Figure 4. Subsequently, farandc, a variation equal to 25% with respecbtbas been supposed.

To define the membership of a pixel to the setpdrowater surfaces, i.e., flooded areas having low
d’(pos), we have selected the function Z=1-S (standafdnZtion). In this case, the parametehas
been chosen in correspondence to the mode of theghams related to the post-inundation image,
which have revealed independent on land cover (Ei@) blue lines), whilst corresponds to the
intersection between the histograms of pre- anttipasidation images for sowable lands (Figure 3).

Figure 5. Membership functions used in this work.

(a) )
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Figure 6. Portion of the post-inundation SAR image. A DEMntaur line is
superimposed (in red).

We have accounted for the information providedhsy DEM too. Figure 6 shows a portion of the
post-inundation image on which a DEM contour lisesuperimposed (in red). It can be clearly
observed that the boundary of the dark area (fldaame) exactly follows the red line, as it could b
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expected from very simple hydraulic consideratiohshigh probability of flood occurrence in low-
altitude areas has been therefore supposed anéuzkg set of the low-altitude pixels has been
introduced. We have also considered that the pififyatf finding inundated surfaces is large in low
slope areas and in concave areas. DEM has beeespsatto compute slope and concavity, the latter
being derived from DEM Laplacian. Correspondingither two fuzzy sets have been defined. The
shape of the functions representing the degreeeofilmership of the fuzzy sets introduced above is the
same and is shown in Figure 5b (upper right paitely. a piecewise linear function characterized by
two parameterse(andf). For the fuzzy set of low-altitude pixels,andf have been set equal to the
minimum (80 m) and maximum (110 m) values of thiglhts in the area observed by SAR, whilst for
the slopes we have chosen 0° and 10.3° and fdraplacian —0.01 and 0.01.

3.2. The fuzzy-based method

The block diagram of our fuzzy-based procedureh@ms in Figure 7. From the fuzzy sets of the
pixels with low d®(pos) (whose membership degree, assessed by the siahdiamction, isdl) and of
the pixels with highd®(pos)- d°(pre) (membership degred?, defined by the standard S function), a
new set has been derived by means of the fuzzyhuthat is, by assigning to each element the larges
degree of membership betwedh andd2, i.e., maxd1,d2). This new set has been combined with the
three ones obtained by exploiting the DEM inforrmat{membership degree8, d4, d5) for producing
the first fuzzy set of pixels classified as inurathtTo do this, a weighted average of nddd2), d3,
d4 andd5 has been accomplished, giving a larger weigktieédirst one, i.e. that derived from the SAR
measurements, with respect to those extracted thherDEM features.

The following step of our procedure aimed at takingp account some contextual information.
Simply speaking, for each pixel, a correction basedhe statistics of the degree of membershipef t
neighbors has been performed. This second parhefatgorithm is founded on the following
considerations: (i) the probability of the present®ne isolated flooded pixel inside an area aif-no
flooded ones (or vice versa) is low; (ii) the prbility of the presence of a non-inundated pixebkel®o
inundated ones located at higher altitude is loiy; the probability of the presence of an inundhte
pixel close to non-inundated ones located at laitéude is low.

The degree of membership of the pixels has beeeftite modified according to its neighbors. To
account for condition (i), for each pixel we havemputed the mean valum and the standard
deviations of the degrees of membership to the class of iatatpixels in a 5x5 window around the
pixel itself (whose membership degree is denoted®yThen, the quantity=(d0-m)(1-s) has been
calculated and, fod, a new membership function has been defined.sihasvn in Figure 5c (lower left
panel) and its parameters are-0.3,h=-0.1,k=0.1,n=0.3. Through this function, we have assigned
the window mean degrem to a pixel surrounded by a uniform backgrounds(tinnpliess~0) and
having dO considerably different froom. For the opposite situation (background far froming
uniform, i.e.,s~1 that impliesd~0), we have retained the original degree of mesthedO.

To account for condition (ii), we have computedthivi a 3x3 window, the degree of membership
dM of the pixels located at higher altitude with regpto the central one, having degd€e Then, the
membership function shown in Figure 5d (lower righnel), has been applied d6—-dM, choosing
p=—0.2,0=0.0,z0=d0 andz1=dM. In this way the degree of a pixel surrounded &gimbors located at
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higher altitude with a larger degree (probably dled) has been increased. A similar procedure has
been used to consider condition (iii). Indicatingdm the degree of membership of the pixels located
at lower altitude with respect to the central aie, function shown in Figure 5d has been applied to
dO0-dm choosingx=0.0,0=0.2,z20=dmandz1=d0. In this case we have aimed at decreasing theedegr
of membership of a pixel surrounded by neighborated at lower altitude with a smaller degree
(probably non-flooded).

Figure 7. Block diagram of the fuzzy algorithm.
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From the three fuzzy sets created to take into wadcoontextual information and from the first
fuzzy set of pixels classified as inundated, thmlfiset of pixels classified as inundated has been
produced (see Figure 7). A weighted average has lbpelied giving the largest weight to the
membership to the first fuzzy set of inundated lsixdhe resulting fuzzy set has been finally
transformed in the flooded area map by markinghasdated every pixel having membership degree
greater than 0.5 (the so called defuzzificationcpss to transform a fuzzy number into a crisp
number).



Sensors008, 8 4160

4. Reaults

The final result of the procedure is shown in Feg8r Blue regions correspond to the flooded areas
according to the ground survey, whereas white regiepresent the flood retrieved by our fuzzy
procedure. It is worth underlining that the laljee areas not covered by white ones in Figure 7 do
not imply that our algorithm underestimates thenatation. They are due to the temporal mismatch
between ground survey and post-flood SAR obsemvatio other words, because of the late SAR
acquisition, only commissioning errors (false alpoan be quantified.

Among the 771610 pixels of the SAR image, the dligor has detected about 76000 pixels as
flooded, the 87% of which are in agreement with gh@und truth classification. The commissioning
error is in the order of 5%, whereas the residial &rresponds to rivers. The false alarms are
represented in Figure 8 by white pixels surrounidgdblack ones. It is worth noting that in the lower
part of the map they are aligned along the Borndeer (affluent of Tanaro), which overflowed as
well, so that we suspect that they have been nsisiflead or skipped during the ground survey. Other
commissioning errors are due to pixels which hawe tadar backscattering in the post-flood SAR
image, probably associated to agricultural fieldgipularly flat or small water basins.

Figure 8. Map of the flooded area (white regions) deriveairfrthe fuzzy algorithm.
The blue areas represent the inundation accordingrdund survey (maximum flood
extension).

It is interesting to analyze the impact of someha fuzzy rules introduced in the procedure. As
discussed in the introduction, a simple threshgldacthnique, assuming that the water surface ads a
specular reflector, fails where the water surfaclkaaces the double bounce mechanism. This is the
case of an urban area. Figure 9 shows a littlaqrodf the image derived by computing the diffeleenc
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between post-flood and pre-flood SAR data. Thigiporconcerns the city of Alessandria. For the sake
of figure clarity, the areas classified as inundatg our algorithm are contoured in magenta. Bright
pixels correspond ta’(pos) considerably larger thaof(pre) because of the enhancement of the
double bounce backscattering. It can be seen that af these bright pixels are detected as flodned
the fuzzy classifier. They would have been congiders non-inundated using a thresholding method,
or any method not accounting for such a scattarieghanism, while the ground truth agrees with our
classification. Note that the grey pixels contoubgdnagenta lines correspond to the Tanaro river.

Figure 9. Portion, regarding the city of Alessandria, & tmage derived by calculating
&’(pos)-d°(pre). Magenta contours correspond to areas classifiethundated by our
algorithm.

Figure 10. Effect of the inclusion of the DEM information ithe classification
procedure. Flood maps obtained by either includipadygons filled with magenta lines)
or discarding (white pixels) this information a@pared.
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Being the Alessandria district a plain region, vem @xpect that the information provided by the
DEM has a small impact on the classification resMivertheless, we believe that a map of flooded
areas should account for hydraulic consideratitmsiathe surface orography. In Figure 10, we show a
portion of the map, concerning a flooded area atingrto ground truth, in which the effect of
including the DEM information in the classificatigmocedure can be evaluated. The polygons filled
with magenta lines represent the zones classifeflomded if the DEM information is taken into
account. White pixels correspond to the resultseaeldl by neglecting the DEM. It can be observed
that the consideration of the DEM widens the regitassified as flooded. Although this widening is
small, it produces a better agreement with thermptdruth.

5. Conclusions

A method based on a fuzzy classification approaat been applied to the problem of flood
mapping from SAR imagery. The method accountstierdurface characteristics of the area involved
in the inundation, exploiting the information extied from a Digital Elevation Model. The type of
land cover is also taken into account by considetimo different scattering mechanisms, i.e., the
specular reflection, occurring in open water, amel double bounce effect, occurring in flooded urban
and forested areas. Contextual analyses on thenbwrigg pixels are also introduced to avoid
producing noisy maps. The algorithm has been twareti tested on the inundation occurred in the
Alessandria district (Northern Italy) on Novemb®&®04. Although the accuracy of the final map cannot
be assessed, since the SAR post-inundation agqniséfers to 3 days after the ground survey, while
the latter regards the peak of the inundation,résellts seems to be encouraging, with the 87% of
pixels correctly classified as flooded and a 5%atde alarm. Due to the mentioned unavailability of
ground truth at the time of the SAR overpass, likisly the procedure may require some better winin
of the parameters of the membership functions. Hewethe proposed scheme based on the fuzzy
approach can represent a useful tool to integritereht sources of information and classification
rules within an operational system for disaster agament.
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