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Abstract: In this work a new gap-fill technique entitled projection transformation has been 
developed and used for filling missing parts of remotely sensed imagery. In general 
techniques for filling missing areas of an image break down into three main categories: 
first multi-source techniques that take advantages of other data sources (e.g. using cloud 
free images to fabricate the cloudy areas of other images); the second ones that fabricate 
the gap areas using non-gapped parts of an image itself, this group of techniques are 
referred to as single-source gap-fill procedures; and the third group which applies methods 
that are a combination of both mentioned techniques, therefore they are called hybrid gap-
fill procedures. Here a new developed multi-source methodology called “projection 
transformation for filling a simulated gapped area in Landsat7/ETM+ imagery” is 
introduced. The auxiliary imagery for filling the gaps is an earlier obtained L7/ETM+ 
imagery. Quality of the technique was evaluated from three points of view: statistical 
accuracy measuring, visual comparison, and post classification accuracy assessment. These 
evaluation indicators are compared to the results obtained from a commonly used 
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technique by the USGS, the Local Linear Histogram Matching (LLHM) [1]. Results show 
the superiority of our technique over LLHM in almost all aspects of accuracy. 

Keywords: remote sensing; gap-fill; data combination; Principal Component 
Transformation (PCT).  

 

1. Introduction  

Gapping is a typical phenomenon with remote sensing imagery. (As this occurrence could have 
dynamic and diverse characteristics thus there are a variety of techniques that could be applied). 
Construction of gapped areas from satellite imagery is of high interest for visual image interpretation 
and digital image classification purposes. Imagery gaps can have several reasons, e.g., cloud coverage 
for optical imagery, shadowed area for SAR data sets, or instrumentation errors e.g. SLC-off problem 
[1] and line striping [2]; such areas are referred to in this paper as gap areas i.e. the pixels are set to 
zero (Fig. 2). Gap areas can have different sizes, dimensions, and locations. For instance the striping 
problem may affect just one column and/or row of pixels while the cloudy area in an image could be 
more than 50% of a satellite imagery scene [3].  

In the literature many methodologies have been proposed for construction of gapped pixels. 
Generally the applied procedures are categorized into three main groups: (i) multi-source; (ii) single-
source; and (iii) hybrid [4]. In the first category gap areas are constructed using other useful sources. 
For instance [1] used non-gapped images (hereafter referred as fill image) (Fig. 2) for fabricating 
gapped area. The Local Linear Histogram Matching (LLHM) technique was developed for their 
procedure. Based on the obtained results if images have specific criteria like minimum temporal shifts, 
seasonal differences, and land cover changes the filled gaps are reliable and effective. But the problem 
will be appear when there are sharp differences in target radiances due to land cover changes, 
atmospheric effects, or sun glint changes [1].  

The second category mostly are based on within image pixel similarities/dissimilarity rules (e.g. 
geostatistical techniques) where gapped areas are constructed using non-gapped areas (Fig. 2) in the 
image itself. In this category the simplest case is based on the replacement of missing pixel with the 
values of the neighboring pixels [5]. Geostatistics-based methodologies are other type of the single-
source gap-fill procedures, for example [6] using ordinary kriging for reconstructing the gapped area in 
Landsat/ETM+SLC-off imagery which obtained results that are promising and reliable.  

The third category in which the attempt is in synergetic usage of two above mentioned 
methodologies. Therefore gapped areas are filled using non-gapped areas in the image itself while the 
interpolation process is restricted to the object borders that came from other data sets. For example [6] 
adapted a standardized ordinary co-kriging which is particularly useful when samples of the variable to 
be predicted are sparse. [7] used a multi-scale segment-based approach which utilizes the obtained 
information from other sources in order to keep the interpolation routine within land surface object 
bounds; they indicated their technique is useful for applications in regional scales e.g. general land 
cover and crop-specific mapping, but for the applications that require per-pixel accuracy such as urban 
characterization or impervious surface mapping, is not a strongly recommended approach.  
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The objective of this study is to evaluate the capability of a newly developed multispectral 
projection transformation i.e. PCT gap-fill algorithm in comparison to the commonly used LLHM 
technique [1]. These two routines are applied and evaluated over a Landsat/ETM+ imagery from 
Lorestan (Iran) (Fig. 1). The results from the techniques were considered for the statistical and visual 
properties of the reconstructed area in comparison to the original data. Consequently a statistical 
indicator as Universal Image Quality Index (UIQI) was used, followed by a post classification 
accuracy assessment and a visual inspection.  

2. Satellite Images  

Enhanced Thematic Mapper Plus (ETM+) onboard the Landsat 7 remotely sensor satellite was 
launched on 15 April 1999. It has one panchromatic (520-900 nm), six VNIR/SWIR (450-2350 nm) 
multispectral, and one thermal (2090-2350 nm) spectral channels. The spatial resolutions of 
instruments are namely 15m for panchromatic, 30m for six VNIR/SWIR, and 60m for thermal bands. 
ETM+ as the successor and advanced version of Landsats 4 and 5 was offering valuable data sets to 
the community of remote sensing and environmental scientists and final users of remote sensing 
imagery till the malfunctioning of the SLC on May 31, 2003 which interrupted this valuable source of 
space-borne imagery. 

In this work the evaluated data sets are two Landast/7 ETM+ imagery: path 165 row 037, acquired 
July 07th, 1999 (fill image) and path 166 row 037, acquired May 29th, 2000 (gap image). The study 
area is located approximately 20 km south-east of Borujerd, Lorestan (Iran). The image of this area is 
comprised of 390*390 pixels which are dominated by the typical Zagros sparse oak forests; dry 
agricultural land; mountain bed rocks and bare soils; a river and sedimentary materials (Fig. 1). 

Figure 1. Landsat/ETM+ Satellite images. (a) image from path 166 row 037, acquired 
may 29, 2000; (b) the simulated SLC-off phenomenon by artificial gap lines in (a); and 
(c) path 165 row 037, acquired July 07, 1999 (fill image FI). 

 

 
 

2.1. Data preprocessing 

For the purpose of topographic distortion reduction [8] the Digital Elevation Model (DEM) with 90 
meter spatial resolution (i.e. SRTM topographic data) was used. DEM was resampled to 28.5 meter in 
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order to make it compatible to the ETM+ image. With a RMSE less than one pixel, both data sets 
have been orthogeo-registered. Therefore, expectedly these data will have the same spatial accuracy 
required for data combination. Rich and valuable knowledge and information are in [9 and 10]. 

As an elementary step in data combination and gap-fill procedures a precise knowledge of which 
pixels are valid in an image and which are to be filled is necessary. Therefore data sets must have the 
highest possible spectral, temporal, radiometric, and spatial consistency. With a view to the fact of 
temporal changes and differences in the geometry of imaging, absolute radiometric correction as a 
vital preprocessing step for data fusion and combination processes were carried out. In this regard two 
steps of data conversion were executed: Quantized DN values to at-sensor radiance transformation 
[11] and at-sensor radiance to Top-Of-Atmosphere (TOA) reflectance conversion [12]. These two 
transformations are strongly recommended which will put data from different times and sources into a 
common radiometric scale. Details of these are provided in [12-14]. 

3. Methodology 

3.1 Projection transformation  

The multidimensionality of remotely sensed imagery provides the possibility of spectral 
transformations [15]. These spectral projection transformations will make new representative data sets 
(e.g. components in PCT). The new data set will show an alternative description of the original to 
which it is related via a mostly linear operation [5]. In the literature exists a branch of spectral 
projection transformations, like Principal Component Transformation (PCT); Gram-Schmidt; Hue, 
Saturation, Intensity (HSI); etc. These routines are evaluated for remote sensing image analysis for 
different applications. For instance reducing data dimensions [16]; improving the visual displaying of 
imagery; reducing the costs for transmission and storage of data via data compression [17]; and data 
fusion [18]. For the purpose of this work, PCT as a mathematically lossless and rigorous invertible 
transformation is selected.  

PCT is a mathematically orthogonalizing linear transformation which transforms a multivariate data 
set to a new coordinate system [2]. A brief description of PCT is outlined and detailed discussion can 
be found in, for example [16 and 19]. The very simple expression of PCT is 

ODS*TMTDS =  (1) 

Where TDS is the Transferred Data Set or new components; TM is the Transformation Matrix; and 
ODS denotes the Original Data Set [16].  The transformation coefficients are found as eigenvectors of 
the correlation or covariance matrices [2] for the selected bands. In this way the nth principal 
component is computed as: 

)nMnDNnnm...2DN2nm1DN1nm(nSFnPC +++= +  (2) 

Where PCn denotes the PC number n; mnn denotes the matrix of transformation coefficients. DNn is 
the Digital Number of image n; SFn is the adaptable Scale Factor used to distribute the principal 
components; and Mn indicates the adjustable Mean value of principal component n. Over the obtained 
new components, if inverting transformation be carried out, the original data sets can be recovered 
with no loss. 
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3.2 PCT-based gap-fill procedure 

The basic idea behind the PCT-gap-fill methodology is to fill gap areas in multispectral images by 
the help of valuable pixels from the fill images. For the purpose of illustration let FI and VA be the Fill 
Image and the Valuable Area for fill gaps; GA and NGA be the Gapped Area and Non-Gapped Area 
from the Gap Image GI (Fig. 2). As shown in Fig. 3 the PCT-gap-fill procedure is based on fore- and 
backward principal component transformation, the procedure of which will follow the next steps: 

 
(i) pixels in VA numerically adaptation to pixels in NGA; 
(ii) using NGAs for calculation the needed statistics for Inverted PCT (IPCT), e.i. the empirical 

mean, correlation matrix and Eigenvalues; 
(iii) VAs conversion to Transformed VAs (TVAs) using the principal component transformation; 
(iv) inversely transformation of the TVAs using the obtained statistics from step (ii) to make the 

New VAs (NVAs); and 
(v) replacing the NVAs to the GA to form a Reconstructed Image (RI). 

Figure 2.  Simulation Landsat/ETM+SLC-off phenomenon. 
 

 
 
While the first step is always recommended it can be ignored for those cases in which the data sets 

are radiometrically and atmospherically corrected. For the second step, as the NGA has a very crucial 
role in the whole process, it must be very carefully selected. Consequently the needed transformation 
statistics could be obtained from the whole NGA area or some selected samples of it (i.e. the area with 
minimum differences between two data sets). Generally the selected samples must be the real 
representative of the physical phenomena from the land surface. The minimum needed pixels for 
calculation must be provided [5].  

Figure 3. Principal component transformation gap-fill procedure. FI and GI denote the 
Fill and Gapped Images; VA is the Valuable Area; TVA is the Transformed VA; FPCT 
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and IPCT are the Forward and Inverted Principal Component Transformations; NVA is 
the New VA; and NGA is the Non-Gap Area (Fig. 2). 

 
 

 
 
For the purpose of VA injection into gapped area, VA pixels must be within the same numerical 
range (min and max) as NGA pixel values. Therefore this adaptation based on [20] was applied by 
  

MinNGA)MinVAMaxVA(
)MinNGAMaxNGA)(MinVAVA(AVA

+−
−−

=  (3) 

 
Where AVA is Adapted Valuable Area to the Non Gapped Area (NGA) (Fig. 2); VA is Valuable 

Area; and Min and Max are the minimum and maximum values in both data sets, respectively. 
As the obtained statistics from the NGAs are the main parameters of this transformation they must 

have some necessary characteristics: 
 
(i) they must be the real representative of the physical phenomena, e.g. radimetrically and 

atmospherically rectified; 
(ii) anomaly pixels (e.g. extremely bright or very dark pixels) must be moderated or eliminated; 

and 
(iii) selected NGAs must be similar to the missed pixels as much as possible. 
 
As a consequence, presence of uncommon land covers (e.g. clouds or snows) will shift the 

calculated statistics (i.e. empirical mean, correlation matrix, and Eigenvalues [5]). In such a situation 
the calculated NVAs will be more biased to the uncommon land covers classes than the real land cover 
classes. Accordingly, from the final reconstructed image the NVAs will be brighter or darker than their 
surrounding pixels.  

4. Results and Discussion 

The selected study area is used to evaluate and compare the results of the PCT and LLHM gap-fill 
procedures. The used data set is composed of diverse landscapes: the typical Zagros sparse oak forests; 
dry agricultural land; mountain bed rocks and bare soils; a river and sedimentary materials. The data 
set from 1999 was used as fill image and the one from 2000 as gap image (which was artificially 
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gapped). Using LLHM and PCT the gapped areas were filled and results were evaluated. From the 
quality assessment point of view and based on the theory of data fusion the fabricated images can be 
evaluated visually, spectrally, and spatially. As the GI and FI both have the same spatial resolution (i.e. 
28.5 m) spatial comparison is negligible. Accordingly the next three kinds of comparisons were carried 
out: post classification accuracy assessments; statistical image quality evaluation; and visual 
investigation [21].  

These evaluations are conducted by comparing the fabricated pixels with the original pixel values 
artificially removed in the SLC-off phenomenon simulation. 

One of the main purposes of the gap fill process is filling the gapped satellite imagery to classify 
land surface classes. Therefore the fabricated data were evaluated from a post classification accuracy 
point of view. Maximum likelihood classification as the most common supervised classification 
method [2] was carried out to classify the reconstructed image. Using the confusion matrix [15], kappa 
coefficient and overall classification accuracy (as the measures of techniques performance [5]) were 
adapted (Fig. 4 and Table 1). As can be seen the two classified results are almost the same for the 
almost unchanged land covers (central parts). But the superiority of PCT is obvious in the areas with 
high changes in land covers, for example in the lower left parts as agricultural fields and upper right 
parts as forest area. The fact that the filled lines are seeable in both (Fig. 4(b and c)) but the striping 
problem has slightly more been alleviated in PCT gap-fill procedure. Also the statistical measurements 
of the post classification show the superiority of the PCT over LLHM (Table 1). 

Figure 4. Maximum likelihood classification. (a) original (2000 data set); (b and c) 
reconstructed data set by PCT and HM method, respectively. 

 

 

 

 

 

 

Table 1. Post classification accuracy assessment. 
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Kappa coefficient  Overall accuracy 
(percent)  

Technique  

0.7021  73.6729  PCT  
0.5618  61.1466  LLHM  

 
 

Using Universal Image Quality Index (UIQI) [22] the performance of the techniques with respect to 
the spectral information contents of the fabricated pixels in comparison to the original pixel values 
were measured. This indicator provides a measure of the closeness between fabricated and original 
areas by utilizing the differences in the statistical distributions of DNs. 
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Where, UIQI is the measure of similarity between the Fabricated (F) and the Original (O) pixels in 

the gapped area. FOδ , 2
Fδ  and

2
Oδ  are the covariance and variances of F and O, respectively. Fμ  and Oμ are 

the means of F and O, respectively. This index was developed by modeling all possible distortions of 
an image. It is a combination of three important factors of image impairments including loss of 
correlation, luminance distortion, and contrast distortion [22]. As most applied gap-fill techniques are 
performing well in the un-changed areas the high performance of a technique will be apparent in the 
areas with the highest degrees of changes. Thus using this indicator all possible distortions are 
evaluated: overall UIQI; UIQI in almost unchanged land surface classes (e.g. soil); and UIQI in the 
most changed land surface classes (e.g. agricultural fields). 

For the purpose of the first evaluation the whole fabricated areas (i.e. 44516 pixels) and for the 
second one only soil and agricultural land surface classes with 644 pixels and 1042 pixels , 
respectively, are evaluated. 

As can be seen (Table 2), except for bands number 5 and 7 where the differences are slight, in all 
other bands the results from PCT is remarkably better than LLHM.  

For illustrative purposes the differences (or divergence) between evaluations are calculated through 
subtraction the UIQI values of LLHM from those of PCT (Table 2(d)). Consequently the positive 
higher values indicate the superiority of the PCT over LLHM while the negative values indicate the 
better performance of LLHM. Also the graphical representation of the differences in figure 5 shows 
that in almost all cases PCT has done better than LLHM. Remarkably, PCT has done better in the 
visible bands (i.e. 1, 2, 3, 4 bands), but in the shortwave infrared bands (5 and 7) in general both 
techniques have gotten almost the same accuracies (Table 2(d) and Fig. 5). 
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Table 2.  Universal Image Quality Index obtained from the comparison of the original 
and fabricated multispectral images. (a) the UIQI for PCT and LLHM techniques 
through all reconstructed areas; (b) the UIQI for LLHM for soil and agricultural areas as 
the lowest and highest changed land cover classes, respectively; (c) the same as (b) for 
the PCT gap-fill procedure; and (d) the differences between PCT and LLHM in the 
three earlier evaluations, given as D=PCT-LLHM. The positive and higher values show 
the superiority of PCT over LLHM. B columns indicate the band numbers. Note: 
numbers are 3 decimal rounded. 

(a)                                  (b)                (c)      (d) 

B PCT LLHM 

1 0.85 0.72 

2 0.86 0.84 

3 0.86 0.86 

4 0.87 0.82 

5 0.88 0.87 

7 0.87 0.87  

B Soil      Agr. 

1 0.76 0.65 

2 0.79 0.76 

3 0.83 0.77 

4 0.89 0.67 

5 0.89 0.72 

7 0.87 0.74  

B Soil Agr. 

1 0.86 0.78 

2 0.90 0.78 

3 0.89 0.77 

4 0.91 0.75 

5 0.90 0.73 

7 0.87 0.74  

B Overall Soil Agr. 

1 0.13 0.10 0.13 

2 0.02 0.10 0.02 

3 0.00 0.06 0.00 

4 0.05 0.02 0.08 

5 0.01 0.01 0.01 

7 -0.00 0.00 -0.00  

Figure 5.  Difference (divergence) between UIQIs for PCT and LLHM. Note: the 
values are based on the difference: PCT-LLHM, therefore the positive and higher 
values mean the superiority of PCT over LLHM. 

 

 

In the visual inspection (Fig. 6), in comparison to the original image, the obtained results mostly 
support the findings from two above mentioned evaluations. In the fabricated data sets the areas with 
lowest spectral changes (e.g. soil and bedrocks) appear approximately the same for both techniques. 
Therefore, the fabricated gap lines generally look like the original data set. But for the area with sharp 
differences in the spectral properties of surface materials e.g. agricultural and forest areas the 
superiority of PCT over LLHM is noticeable.  

In figure 6 the fill image (b) color  in the upper right parts (forest area) is blue while in the gapped 
image (a) these areas are green. From the visual comparison points of view the reconstructed lines by 
the PCT (c) are greener and more similar to their surrounding pixels, while those fabricated by LLHM 
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are more similar to the fill image therefore the inconsistency is more visible. Also in another parts of 
the images constructed by LLHM the influence of the fill image is more visible than in those 
constructed by PCT. 

Figure 6. RGB color composite (bands: 7, 3, 2) of the original and fabricated images. 
(a) original data set (2000); (b) auxiliary (i.e. fill image) data set (1999); (c) fabricated 
by PCT; and (d) the results of LLHM gap-fill technique. 

 

 

 

 

5. Conclusion  
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In this paper PCT-based gap-fill approach for filling the gaps in a simulated Landsat/ETM+SLC-off 
image was presented. This approach uses a fore- and backward principal component transformation 
over auxiliary imagery to fill the gapped area while the needed statistics for these transformations 
came from non-gap areas. Obtained results determine that the PCT-gap-fill method, in general, can 
preserve the radiometric characteristics of multispectral data sets to a higher extent than the LLHM-
gap-fill procedure. Further superiority of this techniques is in the areas with sharp radiometric changes 
e.g. in areas with vegetation land cover, for which the spectral preservation is higher than that of 
LLHM. The results from the classified data indicate that this technique will be useful for land surface 
classification and land cover mapping (e.g. forest, soil) although the gap lines are still visible in areas 
with sharp radiometric differences. Therefore, for applications that require per-pixel accuracy and also 
for areas with highly dynamic properties e.g. agricultural fields and urban areas, this technique must be 
used carefully. Finally it must kept in mind that this procedure is sensitive to very high and low pixel 
values (e.g. cloud covers and water bodies) in the gapped image. Those values will affect the whole 
process and consequently cause bias of the reconstructed area to very high or low radiometric values. 
However, if the selected pixels (i.e. NGAs for statistical parameters calculation) are radiometrically 
and atmospherically corrected and the sharply different pixels are removed, the PCT will provide a 
very good accuracy and performance.  
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