
Sensors 2008, 8, 4582-4599; DOI: 10.3390/s8084582 

 

sensors 
ISSN 1424-8220 

www.mdpi.org/sensors 
Article 

Water Quality Monitoring for Lake Constance with a Physically 
Based Algorithm for MERIS Data 

Daniel Odermatt 1,*, Thomas Heege 2, Jens Nieke 1,3, Mathias Kneubühler 1 and Klaus Itten 1 

1 Remote Sensing Laboratories (RSL), UZH, Winterthurerstr. 190, CH-8050 Zurich, Switzerland  

2 EOMAP GmbH & Co. KG, Sonderflughafen Oberpfaffenhofen, D-82205 Gilching, Germany 

3 ESA/ESTEC, 2000AG Noordwijk, The Netherlands 

* Author to whom correspondence should be addressed; E-mail: daniel.odermatt@geo.uzh.ch 

Received: 11 June 2008; in revised form: 30 July 2008 / Accepted: 31 July 2008 / 

Published: 5 August 2008 

 

Abstract: A physically based algorithm is used for automatic processing of MERIS level 

1B full resolution data. The algorithm is originally used with input variables for 

optimization with different sensors (i.e. channel recalibration and weighting), aquatic 

regions (i.e. specific inherent optical properties) or atmospheric conditions (i.e. aerosol 

models). For operational use, however, a lake-specific parameterization is required, 

representing an approximation of the spatio-temporal variation in atmospheric and hydro-

optic conditions, and accounting for sensor properties. The algorithm performs atmospheric 

correction with a LUT for at-sensor radiance, and a downhill simplex inversion of chl-a, sm 

and y from subsurface irradiance reflectance. These outputs are enhanced by a selective 

filter, which makes use of the retrieval residuals. Regular chl-a sampling measurements by 

the Lake’s protection authority coinciding with MERIS acquisitions were used for 

parameterization, training and validation.  
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1. Introduction 

Monitoring of water quality in lakes is an integral part of water resource management. It ensures the 

sustainable use of water and allows tracking the effects of anthropogenic influences. Water quality 

monitoring of the large fluviglacial Swiss lakes was established in the 1950s and 1960s. A broad range 

of water quality parameters is sampled at decent temporal resolutions, but very limited in the spatial 

dimension. In the early 1990s, analytical methods applied to high spectral resolution airborne scanner 
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data were found to bear the potential to overcome these limitations. But neither did these studies lead 

to operational algorithms, nor was an adequate space borne sensor for monitoring purposes available at 

the time [1]. The latest generation of medium resolution Earth observation sensors (i.e. Moderate 

Resolution Imaging Spectroradiometer MODIS, Medium Resolution Imaging Spectrometer MERIS) 

provide a nominal revisit time of 2-3 days at mid latitudes and could therefore be an effective means to 

provide spatial measurements. A recent MERIS algorithm based on neural networks [2] improved the 

applicability of remote sensing data to optically complex waters (i.e. case II), and validation 

experiments confirmed the potential of satellite remote sensing for inland water quality monitoring, but 

at the same time revealed shortcomings concerning especially atmospheric correction [3].  

MIP (Modular Inversion and Processing System) is an alternative algorithm based on the 

minimization of the difference between satellite measured and modeled spectra. It was developed for 

use with airborne sensors, where changing image acquisition conditions require higher flexibility [4, 

5]. MIP was originally designed for Lake Constance, but has been used for different industrial and 

research applications in several marine (e.g. coast of Western Australia, Indonesia) and limnic (e.g. 

Lake Sevan/Armenia, Mekong/Vietnam, Lake Starnberg and Lake Waging-Taching/Germany) 

environments. The aim of this work is to make MIP applicable for automatic processing by optimizing 

a single, lake specific parameterisation for MERIS data of Lake Constance. 

Lake Constance is the second largest lake in Western Europe, covering an area of 535 km2 shared by 

Austria, Germany and Switzerland. It is located at 395 m a.s.l., its average and maximum depth are 101 

m and 253 m, respectively. 15% of its area is shallow water of less than 10 m depth. The Alpenrhein 

River is its main feeder, accounting for 62% of the total inflow. Originally oligotrophic, the 

eutrophication of Lake Constance reached a peak in the late 1970s, mainly due to nutrient influxes, 

followed by 20 years of steady reoligotrophication [6, 7]. Bi-weekly water quality monitoring 

measurements are carried out by IfS, on behalf of IGKB. Total phosphorous concentrations are still 

decreasing, e. g. from 10 mg/m3 in spring 2003 to 8 mg/m3 in spring 2005. Highest chlorophyll-a 

concentrations are reached during spring blooms, with a maximum of 11.8 µg/l in the top 10 m layer 

on 19 March 2002, but possibly higher concentrations at the water surface. Apart from 2002, spring 

blooms occurred earlier and at a smaller extent in recent years. In 2005, it started in late March and 

reached its peak in mid April, two weeks earlier than in 2003 [8]. Other than that, seasonal variations 

of chlorophyll-a concentrations are between 1 µg/l in winter and 3-5 µg/l in summer and autumn [7]. 

2. Data 

2.1. Satellite data 

51 MERIS level 1B full resolution datasets [9] of Lake Constance with coinciding IGKB water 

quality measurements are used in total. Both 2241 square pixel scenes and 1153 square pixel quarter 

scenes (“imagettes”) are processed. MERIS data consist of 15 spectral channels as described in Table 
1, at a ground resolution of about 300 m, and metadata, including geolocation, geometry and quality 

flag layers. Smile correction was not applied. 

 



Sensors 2008, 8                            

 

 

4584

Table 1. Operational MERIS band set [9]. 

Band 
Wavelength 

[nm] 
Width  
[nm] 

Potential Applications 

1 412.5 10 Yellow substance, turbidity 
2 442.5 10 Chlorophyll absorption maximum 
3 490 10 Chlorophyll, other pigments 
4 510 10 Turbidity, suspended sediment, red tides 
5 560 10 Chlorophyll reference, suspended sediment 

6 620 10 Suspended sediment 
7 665 10 Chlorophyll absorption 
8 681.25 7.5 Chlorophyll fluorescence 
9 705 10 Atmospheric correction, red edge 
10 753.75 7.5 Oxygen absorption reference 
11 760 2.5 Oxygen absorption R-branch 
12 775 15 Aerosols, vegetation 
13 865 20 Aerosols corrections over ocean 
14 890 10 Water vapor absorption reference 
15 900 10 Water vapor absorption, vegetation 

 

In pre processing, MERIS geolocation metadata is searched for the center coordinates of Lake 

Constance. A 501 to 301 pixels subset of all channels is extracted where these coordinates are found 

(Figure 1). The clippings include scaled radiances of all channels and are saved in BIL (Band 

Interleaved by Line) format. Meta data such as observation date, time and geometry, geolocation data 

and pixel quality flags are added for use in MIP modules and post processing. Georeferencing is not 

performed. 

Figure 1. MERIS true color composite of Lake Constance, acquired 20 April 2007. 

Fischbach-Uttwil (FU) and the measurement sites A to C are located in the main basin 

called Obersee, with the finger-shaped Lake Überlingen in the top left corner of the 

image and the separated Untersee below. Geometric correction was not applied; the 

scale is averaged for the lake surface. 
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Among the total 51 images processed, a total of 18 images could not be further used in this study 

(Table 2). The data were excluded due to 3 different reasons:  

(1) Sun glint occurs for certain observation geometries and rough water surfaces (i.e. high wind 

speed). It increases reflected NIR radiance, and thus causes errors in atmospheric correction. MERIS 

sun glint warning flags aren’t set for inland waters, and wind speed metadata is not applicable over 

land. However, in the summer half-year, even 1 m/s wind speed on Lake Constance causes 1% sun 

glitter reflection at 20° eastward viewing zenith angle [10]. Eight erroneously processed images 

acquired at more than 20° eastward zenith in the summer half-year were therefore considered to be 

affected by sun glint. 

(2) Cirrus clouds or contrails are visible in 6 images, although they are not identified by the MERIS 

bright pixel flags. 

(3) MIP’s atmospheric correction module is unable to process 4 images, in which aerosol optical 

thicknesses (AOT) is overestimated and reflectances in channels 1, 2, 6, 7 and 8 become zero [11].  

Table 2: Overview of MERIS datasets used in this study. 

Year 
Initial 

set 
Sun 
glint 

Cirrus or 
contrails 

MIP 
error  

Working 
set 

Purpose 

2003 11 1 1 1 8 Training 
2004 10 2 2 1 5 Training 
2005 12 3 0 1 8 Training 
2006 16 2 2 1 11 IGKB Validation 
2007 2 0 1 0 1 Field validation 
Total 51 8 6 4 33  

 

2.2. Field campaign data 

On 20 April 2007, up- and downwelling irradiances Eu and Ed, were measured in situ during MERIS 

overpass, R- was calculated through Equation 1. The measurements with two RAMSES AAC 

instruments [12] onboard a research vessel of IfS were taken in the 4 sites depicted in Figure 1. Each 

dataset is an average of more than 20 5 s sampling intervals. The data is spectrally binned to 70 

channels between 350 and 700 nm, at uniform intervals of 5 nm. Measurements were taken about 20 

cm below the water surface and at 1 m depth. The relatively higher variations in the water column 

above the instrument during the 20 cm measurements caused generally smaller standard deviations 

than the low signal level at 1 m depth, the 20 cm data was thus preferred for further analysis (Figure 
2). However, some instrument noise persists, even after manual removal of outliers, especially at 600-

700 nm in the data of site B.  

 R− = Eu
− /Ed

−
 (1) 

Reference measurements of constituents are taken from water samples. Suspended matter (sm) is 

measured as sum of organic and inorganic matter not passing a 1 µm glass fiber filter [5]. Gelbstoff (y) 

is filtered through a 0.2 µm filter and measured in a laboratory spectrometer [13]. However, the results 

are strongly inconsistent with one another, we can therefore only compare the y concentrations of 
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MERIS and RAMSES inversion. Chlorophyll-a (chl-a) was measured with a fluorometer probe, which 

is cross-calibrated with HPLC (High Performance Liquid Chromatography) measurements by IfS.  

Figure 2. RAMSES data acquired in the sites FU and A-C (Figure 1) at a depth of 20 

cm, on 20 April 2007. 

 

2.3. Water quality monitoring data 

In situ chl-a measurements carried out by IfS as part of the water quality monitoring by IGKB are 

used for training and validation of MERIS processing results. The data were sampled at the site 

Fischbach-Uttwil (FU, Figure 1, 47.62N / 9.37E), in approximately bi-weekly intervals. FU is located 

in the lake’s deepest area and was chosen for comparison with satellite data because the disturbance by 

adjacency effects occurring in MERIS data is minimal in the pelagic [11]. The method used for chl-a 

determination is HPLC [14, 15]. 103 in situ measurements are available for the investigation period 

2003-2006. Concurring measurements are available for 47 MERIS images; 4 dates in 2006 were 

interpolated from consecutive IGKB measurements with only small variation. 

The chl-a concentrations measured by IfS represent an integral of the top 20 m layer, whereas the 

estimate from MERIS data represents only the top layer from which the signal originates. In Lake 
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Constance, the top 2 (blue, red) to 8 m (green light) account for 90% of the reflected radiance, when 

the water is very clear. But in turbid waters, the same part of reflected radiance may be from only 1 and 

2 m, respectively [5]. This means that vertical variations in water constituent concentrations, which are 

included in the 20 m column samples, will not be represented by estimates from remote sensing. 

However, the analysis of more than 350 profiles for both chl-a and sm in Lake Überlingen revealed a 

strong vertical correlation between the top layer at 0.5-1.5 m and the layers below [5, 16]. 

3. Methods 

3.1. Algorithm description 

The MERIS level 1B FR data are processed with two MIP modules [4, 5]. The first MIP module 

performs image based aerosol retrieval and atmospheric correction on at-sensor radiance data. It uses a 

look up table (LUT), which was simulated with a coupled, plane-parallel atmosphere-water model and 

the finite element method [17]. The module relates at-sensor radiances Ls to AOT of either continental, 

maritime or rural aerosol type, observation geometry, wavelength and the subsurface radiance 

reflectance RL
-, which is mainly due to backscattering on suspended matter (sm) at large wavelengths. 

The resulting AOT map is used to retrieve the angularly dependent subsurface radiance reflectance RL
- 

for channels 1-8 from the same LUT. Another LUT is used to account for the directionality of the 

underwater light field, thus to convert RL
- to the angularly independent subsurface irradiance 

reflectances R-. It consists of Q-factors for varying wavelengths, observation geometries and water 

constituent concentrations, and is applied to RL
- according to Equation 2.  

 R− = RL
− (∆φ,θobs,θsun)π /Q(∆φ,θobs,θsun) (2) 

The inherent optical properties (IOP) of water are related to R- through Equation 3 [18], where f is 

parameterized as a function of µ [19], and µ is calculated for z = 0 m as a function of a, b, and the 

mean cosine of the incident light field [20]. 

 R− = f bb /(a+ bb)  (3) 

The coefficients xi for absorption (x=a), scattering (x=b) and backscattering (x=bb) of pure water 

(i=w), chlorophyll-a (i=chl-a), suspended matter (i=sm), and gelbstoff absorption (i=y) are calculated 

by Equation 4, whereas asm, bchl-a and by can be neglected for Lake Constance [4, 5]. 

 x = xw + xchl−achl − a+ xsmsm+ xyy (4) 

The inversion of subsurface irradiance reflectance R- to the coefficients xi is accomplished by 

another MIP module. It adjusts modeled and input image spectra after atmospheric correction by means 

of a downhill simplex algorithm [21]. The algorithm starts with a set of initial concentrations. The 

spectrum modeled for these concentrations is linearly scaled to fit the input spectrum, leading to a first 

guess of concentrations, which is then optimized by two iterations of Q-factor correction and water 

constituent retrieval. The full processing scheme is illustrated in  
Figure 3. 
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Figure 3. Flow chart of the automatic data processing chain. The mission DB contains 

the LUTs for atmospheric and Q-factor correction, for the data specifications defined in 

the mission extraction. The tabular output contains concentration and retrieval quality 

parameters for FU and lake means. 

 
 

MIP generates maps of chl-a and sm concentration, y absorption (400 nm) and AOT (550 nm). 

Furthermore, residuals of image and model spectra fits are calculated as a retrieval quality indicator. 

Occasional over- and underestimation of AOT by the atmospheric correction module may cause zero 

reflectances in red bands or a shift of the reflectance peak towards the blue bands, respectively. This 

may force the constituent retrieval algorithm to approximate irregular spectral shapes, leading to high 

variations between neighboring pixels, and in places the algorithm reaches its threshold of 20 mg/m3 

(Figure 4). Such aberrations can be reduced by a low pass filter on input imagery [22], as SNR in 

MERIS channels 1-8 of reduced resolution (RR) data decreases from about 1:1100 to 1:500, but is very 

close to 4 times lower in FR data [23, personal communication]. In order to use the retrieval residual as 

an indicator of whether the atmospherically corrected R- are valid water spectra reproducible by the 

model, we combined such spatial smoothing with a selective filter, which replaces each output 

concentration pixel by the average of the concentrations of the 3 pixels fitted at the lowest residual 

within a 5x5 neighborhood. Figure 4 and Figure 5 show chl-a outputs for the field campaign date 20 

April 2007 prior to and after filtering, respectively. This image is affected by the presence of cirrus 

clouds and thus suboptimal atmospheric conditions. This leads to a high variation in the atmospheric 

correction output and consequently to high chl-a variations, which are removed by selective filtering. 

The images also show two regional limitations of the data processing: (1) narrow Lake Überlingen is 

frequently excluded from processing due to the influence of adjacency effects, and (2) Untersee results 

are often missing or reaching the algorithm threshold, due to large shallow water areas and possibly 

bad representation by the SIOP (specific inherent optical properties) optimized for Obersee.  
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Figure 4. Chl-a map for 20 April 2007, prior to filtering. 

 
Figure 5. Chl-a, sm and y map for 20 April 2007, after application of the selective filter. 

 

 

3.2. Algorithm parameterization 
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MIP is originally used with input variables for individual optimization with sensors (i.e. channel 

weighting), aquatic regions (i.e. SIOP) or atmospheric conditions (i.e. aerosol models). For operational 

use, a lake-specific parameterization for best performance with all datasets is required, approximating 

the spatio-temporal variation of hydro-optic conditions. Iterative, image-based optimization is applied 

to determine aerosol model, AOT estimation channel and sm a priori assumption. Largest differences 

are found for different aerosol types, with continental aerosols leading to an underestimation of 

reflectances in short wavelength channels and finally to an overestimation of chl-a and low sm. 

Channel 14 (Table 1) measures in between the water vapor absorption bands, and has therefore 

performed best in the estimation of AOT with this algorithm [10]. The optimization of SIOP is done 

with the RAMSES measurements of 20 April 2007 and previous projects in Lake Constance [4, 24]. 

Measured R- is inverted with absorption and scattering coefficients known from literature (Table 3). 

For bb, sm, we started iterations with a known exponential function [25], and adjusted the constants in 

factor and exponent, for a constant bb/b ratio of 0.0019 [4], which leads to a generally good agreement 

of modeled and measured RAMSES spectra (Figure 6). Reference spectra with high sm concentrations 

(i.e. Alpenrhein plume) are modeled less adequately than others, but an improved agreement for these 

sites can only be achieved by reducing the spectral exponent S [26] of y to 0.012 or by introducing an 

absorbing part of sm with S=0.012. The reason for this could be a significant portion of detritus 

absorption, which is not the case in other parts Lake Constance. In order not to decrease the model 

quality for the typical range of conditions, we neglected this change in SIOP. Iterations within certain 

thresholds are started with initial values (Table 4) unless values of adjacent pixels are available. 

Table 3. Parameters used for analysis of Lake Constance (1). 

Process Parameter Value 

Atmospheric Correction 
(LS to RL

-) 

Aerosol model Maritime [10] 
AOT estimation MERIS channel 14 [10] 
sm assumption 1.5 g/m3 [10] 

Water Constituent Retrieval 
(RL

- to chl-a, sm, y) 

aw Buiteveld et al. [27] 
achl-a Heege [5]*0.75 
ay  S=0.014 [28] 
bw Smith and Baker [29] 

bb, sm 
0.014(λ/400)n 
n=-0.8(λ/400)1.2 

bb/b=0.019 [5] 

Table 4. Parameters used for analysis of Lake Constance (2, values from [5]). 

Constituent Initial value Min. threshold Max. threshold 
chl-a [mg/m3] 3 0.3 20 
sm [g/m3] 1.5 0.2 10 
y [m-1 (440 nm)] 0.2 0.1 0.35 
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Figure 6. MERIS and RAMSES irradiance reflectance spectra for the sites FU and A-C 

(Figure 1) on 20 April 2007, with corresponding model spectra as resulting from 

inversion iterations. The concentrations calculated for inversion results are in Table 5. 

 

Table 5. 20 April 2007 reference measurements (lab) sampled at 0.5 to 1 m depth, 

inversion results for RAMSES (ram, Figure 2) and MERIS (mer). MERIS acquisition 

time was at 9:46 UTC. MERIS pixel results are after filtering, results may thus vary 

slightly from the spectra in Figure 6. 

Site UTC 
ram 

chl-a [mg/m3] sm [g/m3] y [m-1] (400 nm) 

situ ram mer situ ram mer ram mer 
FU 8:20 0.8 1.1 1.4 0.6 0.6 0.8 0.25 0.11 

A 9:25 1.1 1.9 1.1 0.8 0.7 0.7 0.21 0.10 

B 10:20 1.1 1.3 0.9 1.0 0.9 0.7 0.22 0.10 

C 11:05 3.6 4.9 3.2 2.3 3.9 1.7 0.20 0.12 

 

The chl-a concentrations of RAMSES and MERIS inversion and fluorometer measurements reveal 

an overestimation by RAMSES in sites A-C. In FU, the RAMSES inversion produced higher y 
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absorption than in the other sites, but outputs a relatively low chl-a concentration. These two 

parameters can act as substitutes in the inversion and therefore cause certain discrepancies. Another 

uncertainty lies in the high spatio-temporal variation on the border of the plume in the center of the 

main basin, which is visible in Figure 1 and might have changed during the 3 hours of reference data 

acquisition. The sm concentrations agree better, with only the RAMSES estimate of site C revealing a 

larger offset. Y estimates by MERIS are impossible due to low reliability of the calculated R- in 

channels 1 and 2, especially with difficult atmospheric conditions such as on 20 April 2007. 

3.3. Inversion parameterization 

Figure 6 displays a good agreement of RAMSES and MERIS in channels 5-8 for FU, A and B. 

Channels 1-4 are overestimated, possibly due to the thin cirrus clouds observed on that day, which are 

not accounted for in the atmospheric correction. The inversion algorithm enables individual weighting 

to account for systematic differences in the channels’ reliability. In site C, AOT is overestimated 

because of significantly higher sm than assumed a priori. However, similar offsets occur also in most 

data with low sm, when using MERIS’ original calibration. Empirical recalibration factors were thus 

applied to compensate for the bias found between calibrated radiances and model calculations. This 

adjustment was found necessary in previous work [22, personal communication], but only processing 

other sensors or lakes will reveal to what extent this is due to inaccuracy of model or calibration.  

21 pairs of concurring chl-a measurements and MERIS images in 2003-2005 are used as training 

data. They are processed with varying weightings of channels 1-8 in the water constituent retrieval 

module, and with varying empirical recalibration factors for channel 1, 2, 3 (water constituents) and 14 

(atmospheric correction). The optimization is started with channel 14, whose original radiance values 

lead to frequent overestimations of AOT, and thus to zero subsurface reflectance in channels 1, 2, 6-8. 

The datasets are processed in iterations with channel 14 lowered in intervals of 0.5%, which changes 

AOT only by few percent, but has a distinctive impact on short wavelength channel reflectances. Water 

constituent retrieval was performed for each AOT estimate, and chl-a outputs were compared to IGKB 

values. The best agreement was found for 0.97. Similar but multivariate optimization iterations are 

performed with the channels used by the water constituent module, using correlation coefficients as 

optimization measure. Channel 1 is excluded from the retrieval, since it displays random offsets from 

model results. Similar problems are encountered with channels 2 and 3, but reduction in weighting and 

individual recalibration leads to better results than their exclusion. The lowest R- used is normally 

channel 8, which is thus the first to become zero when AOT is overestimated. Channel 8’s weighting 

was therefore also slightly reduced. Table 6 is an overview of the weighting and recalibration values. 

Table 6. Weighting and recalibration factors for MERIS bands 1-8 and 14 (Table 1), 

which were used for water constituents and AOT retrieval, respectively. 

Channel 1 2 3 4 5 6 7 8 14 

Recalibration - 0.975 0.98 - - - - - 0.97 

Weighting - 

 

0.2 0.5 1 1 1 1 0.8 0.97 
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4. Results 

4.1. Training of empirical recalibration 

The training data that were used in the recalibration reveal relatively low concentrations in 2003 and 

2004, but high concentrations in 2005 (Figure 7). They contain data pairs for each spring bloom, but 

according to Lake Constance’s natural variation, most data pairs represent chl-a concentrations 

between 1-4 mg/m3. The largest relative differences between satellite and sampling results are found 

for the datasets of 29 March 2004 and 15 April 2005. MERIS image of 29 March 2004 outputs high 

concentrations, while the corresponding IGKB measurement on 30 March 2004 is exceptionally low. 

However, a simultaneous probe profile reveals much higher values, and sample measurements acquired 

two weeks earlier and later confirm the spring bloom seen by MERIS. On 18 April 2005, IGKB 

measurements reach the spring bloom maximum of 6.4 mg/m3, while the corresponding estimate of 

MERIS for the sampling station FU on 15 April 2005 is remarkably low. However, MERIS derived 

concentrations are up to 5 mg/m3 in the eastern part of the main basin (Figure 8). A possible 

explanation could therefore be the spatio-temporal variation of algae, which can lead to significant 

differences for this data pair, where MERIS and IGKB acquisition lie 3 days apart (Figure 7, right). 

For the total 21 chl-a training data pairs, a correlation coefficient of 0.79 is achieved by iterative 

optimization of weighting and recalibration. If the images of 29 March 2004 and 15 April 2005 are 

excluded, the correlation coefficient increases to 0.94.  

Figure 7. 21 chl-a data pairs for the site FU, 2003-2005. The number of days between 

data acquisition are indicated in the figure on the right. MERIS values are filtered 

outputs, as shown in Figure 5. 

 

 



Sensors 2008, 8                            

 

 

4594

Figure 8. Chl-a concentration map for 15 April 2005. 

 

4.2. Validation 

11 datasets acquired in 2006 were processed with the weighting and recalibration optimized for 

2003-2005 data. The agreement with IGKB data is good for the first 8 datasets from March to August, 

correlating at a coefficient of 0.89, and representing the spring bloom, low chl-a in summer and an 

increase in August. However, an extraordinary increase in autumn is found in IGKB data, which is not 

found in MERIS imagery, leading to a low overall correlation (Figure 9).  

Figure 9. 11 chl-a data pairs for validation of IGKB and MERIS measurements, for the 

site FU, 2006. Number of days between in situ sampling and satellite overpass are 

indicated in the figure on the right. 

  
 

On 22 September 2006, 1-3 mg/m3 chl-a are calculated for the cloud free area around FU (Figure 
10), thus a fairly good agreement with IGKB data. However, spatial variation is high, and the filtered 

FU geolocation pixel happens to output a significantly lower concentration value. The results for 2 

November 2006 depict a more general explanation for the large differences in late 2006 data. The 

image based AOT retrieval is about 0.05 only, leading to inadequate atmospheric correction, and 
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subsequently to erroneous water constituent output (Figure 11). In the IGKB measurements on 7 

November 2006, Secchi depth of 8.3 m at FU is slightly above average, while chl-a samples reveal the 

maximum annual concentrations of 4.5 mg/m3 and 5.1 mg/m3 in the same week. However, high chl-a 

concentrations in the pelagic of Lake Constance normally lead to increased extinction and therefore 

low Secchi depth. A significant change in SIOP could therefore be a possible explanation for both the 

unexpected combination of high chl-a and high Secchi depth and the error in AOT estimation. 

Figure 10. Chl-a concentration map for 22 September 2006. Grey color indicates bright 

pixel flags in MERIS data, white pixels within the shoreline are considered clouds by 

MIPs own masking algorithm. 

 

Figure 11. Chl-a and sm concentration maps for 2 November 2006. Pink and dark blue 

color represent threshold concentrations allowed by the algorithm, which indicates 

erroneous processing. 
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5. Conclusions and Discussion 

This study confirms the general applicability of MIP for automatic, operational processing by 

applying a lake specific parameterization. The correlation of chl-a estimates from MERIS with in situ 

water quality monitoring is sufficient, considering differences in methodology and spatial 

representation. MERIS processing results are most reliable, when satellite estimates are validated by 

concurring in situ measurements, and applied for their additional spatial significance. Alternatively, 

MERIS chl-a results can be used as additional estimates, and thus improve the temporal resolution of 

current water quality monitoring. However, this approach requires the analysis of unvalidated MIP 

results, which are occasionally affected by processing errors. Expert knowledge is thus required in the 

interpretation of unvalidated outputs.  

We distinguish three potential error sources introduced by the present processor, i.e. atmospheric 

correction, bio-optical parameterization and filtering. Atmospheric correction is the most fragile part. 

Errors in this module may be due to insufficient assumptions for atmospheric correction parameters 

(i.e. fixed aerosol model, sm a priori assumption). Adjacency effects are another source of atmospheric 

correction error and suspect of making most results of Lake Überlingen inadequate. Radiances in 

channel 14 thereby continuously increase towards the shore, leading to similarly increasing AOT 

estimates. This again leads to an underestimation of atmospherically corrected reflectances, especially 

in channels with high atmospheric scattering (1, 2) or low water reflectivity (6, 7, 8), where output 

reflectances can drop even to zero. The respective output concentrations are then either missing or 

equaling one of the threshold parameters, which are frequently found in areas within up to 5 pixels 

from the coastline [11]. Existing adjacency effect correction methods are currently considered for 

implementation [30, 31]. When large areas of the lake are unavailable in output, the reasons are either 

thin clouds ignored by MERIS quality flags or exceptionally high channel 14 radiances that cannot be 

accounted for with a constant sm backscattering assumption. A solution for the latter is the 

implementation of a more complex atmospheric correction module, which is iteratively coupled to the 

water constituent retrieval [22]. Neglecting MERIS’ smile error could be another potential source of 

errors, although no camera border artifacts or correlation with observation zenith angle was found in 

the results.  

The water constituent retrieval produces chl-a output that agrees well with FU sampling data, apart 

from the exceptional phytoplankton bloom in late 2006, where a change in SIOP seems to cause 

erroneous processing, with the simplified empirical parameterization being only a limited 

representation of the bio-optical complexity of the lake. However, the physical constitution enables 

arbitrary modifications to any single parameter where such problems occur, which could eventually 

lead to an alternative set of parameters to be specified for certain events that are known to lie out of 

range of the original parameterization.  

The residual weighted filter improves the results significantly, by reducing aberrations by the 

algorithm due to atmospheric correction inaccuracies and at the same time performing spatial 

averaging to address the relatively low SNR in FR data. Moreover, the gap between spatially discrete 

laboratory samples and the complex representation of a spatially averaged, depth dependent estimate 

by remote sensing is hard to bridge. A conversion formula based on depth resolved profile 

measurements in Lake Überlingen [5] suggests that remote sensing generally underestimates sample 
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measurements. This is not the case with our results, thus no conversion calculation was performed. 

However, the optimization of the channel recalibration with original IGKB data can be excluded as 

reason for this discrepancy, since it leads to large modifications in the processing of certain images, but 

not to a general scaling of the results. 

An empirical recalibration of level 1B radiances was found necessary for the processing of MERIS 

data, with a majority of datasets producing erroneous or unreasonable output with the original 

calibration. The exact significance of this recalibration will only clarify with further investigation. It is 

expected that the processing chain can be applied to other large, prealpine lakes with the same 

recalibration, and individually optimized parameterizations only. Other than that, we consider the 

complementary use of and adjustment for MODIS data, whereof experience is available from previous 

work with MIP. 
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