
Sensors 2008, 8, 4600-4610; DOI: 10.3390/s8084600 

 

sensors 
ISSN 1424-8220 

www.mdpi.org/sensors 
Article 

Determination of Parathion and Carbaryl Pesticides in Water 
and Food Samples Using a Self Assembled Monolayer 
/Acetylcholinesterase Electrochemical Biosensor 

Valber A. Pedrosa 1,*, Josiane Caetano 2, Sergio A. S. Machado 2 and Mauro Bertotti 1  

1  Instituto de Química, USP, São Paulo, SP, Brazil 
 2  Instituto de Química de São Carlos, USP, São Carlos, SP, Brazil 

* Author to whom correspondence should be addressed; E-mail: valber.pedrosa@gmail.com; Instituto 

de Química, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil 

Received: 16 June 2008; in revised form: 15 July 2008 / Accepted: 29 July 2008 / 

Published: 5 August 2008 

 

Abstract: An acetylcholinesterase (AchE) based amperometric biosensor was developed 

by immobilisation of the enzyme onto a self assembled modified gold electrode. Cyclic 

voltammetric experiments performed with the SAM-AchE biosensor in phosphate buffer 

solutions (pH = 7.2) containing acetylthiocholine confirmed the formation of thiocholine 

and its electrochemical oxidation at Ep = 0.28 V vs Ag/AgCl. An indirect methodology 

involving the inhibition effect of parathion and carbaryl on the enzymatic reaction was 

developed and employed to measure both pesticides in spiked natural water and food 

samples without pre-treatment or pre-concentration steps. Values higher than 91-98.0% in 

recovery experiments indicated the feasibility of the proposed electroanalytical 

methodology to quantify both pesticides in water or food samples. HPLC measurements 

were also performed for comparison and confirmed the values measured amperometrically. 
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1. Introduction 

The presence of pesticide residues and metabolites in food, water and soil currently represents one 

of the major issues for environmental chemistry. Pesticides are, in fact, among the most important 

environmental pollutants because of their increasing use in agriculture. The behavior of such polluting 

compounds in the environment is strongly determined by their physicochemical properties related to 
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processes such as adsorption, leaching, vaporization and degradation [1,2]. Among the pesticides, 

organophosphate and carbamate compounds are the most widely used due to their high insecticidal 

activity and relatively low persistence [3]. These pesticides are toxic because they act as inhibitors of 

acetylcholinesterase , an enzyme that catalysis in a very efficient way the hydrolysis of the 

neurotransmitter acetylcholine. This enzyme is present in vertebrates and insects and its inhibition can 

disrupt the transmission of nerve impulses [4,5]. Therefore, the presence of residues of such pesticides 

in natural waters and in foodstuffs is of major concern for public health reasons. 

The analysis of pesticides is usually carried out by gas and liquid chromatography with a selective-

element detector [6,7]. Nevertheless, these procedures are expensive and frequently require laborious 

complex time-consuming sample treatment such as extraction of pesticides, extract cleaning, solvent 

substitution and clean-up steps. Furthermore, these approaches do not improve our understanding of 

the natural processes governing chemical species behavior, their transport, bioavailability, and their 

long-term impact on aquatic systems. The stability of samples during long-term storage is questionable, 

as they are subject to various biological, chemical and physical effects [8]. Finally, the analysis is 

usually performed in a specialized laboratory by skilled personnel and is not suitable for in situ 

application. These issues turn out to be a major problem when rapid and sensitive measurements are 

needed in order to take the necessary corrective actions in a timely approach. Accordingly, rapid, 

unfailing (sensitive and selective) and simple sensors for detecting pesticides continues to be an issue 

of interest in Electroanalytical research [9,10]. 

Biosensors for detection and quantification of pollutants have attracted extraordinary interest in 

recent years, because of the key role they play in the development of highly sensitive, selective 

chemical analysis, low cost and short analysis time associated with these devices. Biosensors based on 

the inhibition of acetylcholinesterase have been used for detection of pesticides in different samples 

[11-13] some different strategies being devised for enzyme immobilization. Self assembled monolayers 

(SAM) have been reported quite recently as another excellent choice to fabricate biosensors [14-20]. 

The properties of the SAM have been studied from electrochemical characterization by using cyclic 

voltammetry and impedance spectroscopy. The deposition of SAM does not inhibit the electron 

transfer process between the gold electrode and electrolyte [21]. Hence, in this paper a simple method 

were proposed for the determination of parathion and carbaryl in natural waters and foods samples 

using a SAM-AchE biosensor. The strategy is based on the action of some pesticides as potent 

irreversible inhibitors of cholinesterases, hence the extent of the inhibition effect can be analytically 

used to determine the pesticide concentration. The characteristic of the proposed electrochemical 

sensing system includes high sensitivity and selectivity, a wide linear range, minimal space and power 

requirements, and low-cost instrumentation. Accordingly, in this work we have demonstrated the 

analytical features of the proposed SAM-AchE biosensor for determination of parathion and carbaryl. 

2. Results and Discussion 

2.1. Water Analysis 

Environmental monitoring and food control generally require the analysis of a large number of 

samples and there is a need for low, rapid and sensitive methods of analysis. The choice of 
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cholinesterase as a biorecognition element enables the simultaneous detection of a wide group of 

related toxic compounds such as organophosphorus and carbamate pesticides. The enzymatically 

catalysed hydrolysis of acetylthiocholine was evaluated by using the fabricated SAM-AchE biosensor 

by cyclic voltammetry in 0.1 mol L-1 phosphate buffer solution (PBS) at pH = 7.2. At these 

experimental conditions thiocholine is produced and its anodic oxidation gives rise to a peak at 0.28 V 

(peak 1) as shown in Figure 1. This relatively low working potential needed for the anodic process is 

advantageous because it prevents the oxidation of possible interfering species existing in the samples 

to occur. Figure 1 shows a clear demonstration of the inhibition effect of a pesticide (carbaryl) on the 

biosensor response as current decreases with increasing the concentration of the pesticide. This peak 

was used to follow the inhibition of enzymatic reaction by pesticides and therefore this potential was 

selected as the working potential. 

Figure 1. Cyclic voltammograms recorded with the biosensor in a 2.0x10-3 mol L-1 

acetylthiocholine + 0.1 mol L-1 phosphate buffer solution pH 7.2 after addition of 

carbaryl in the different concentrations: 0 (A); 1.0 (B); 2.0 (C); 3.0 (D) and 4.0x10-6 mol 

l-1 (E), scan rate = 50 mV s-1. 

 
The pesticides were determined in spiked natural water samples without any previous extraction, 

clean-up or pre-concentration steps. The matrix effect of water samples collected from urban creeks 

(Gregorio and Monjolinho creeks, São Carlos County, Brazil) was evaluated as these natural samples 

were directly used to prepare the supporting electrolyte solution. Calibration curves were obtained for 

both pesticides with concentrations varying from 2.0 to 30.0x10-6 mol L-1 in 0.1 mol L-1 PBS 

supporting electrolyte, pH 7.2 (Figure 2). The DL obtained by using equation 1 was found to be in the 

range 9.0-10.3 µg L-1, which is close to the concentration limit of 10 µg L-1 carbaryl and parathion 

recommended by the Environment Protection Agency (EPA) [22] as the maximum contaminant level 

for waste waters. Natural water samples used in this work did not contain detectable amount of both 

pesticides, hence they were spiked with parathion and carbaryl. In such artificially contaminated 

samples, recovery experiments were performed by the standard addition technique. An initial Parathion 
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concentration of 6.0x10-6 mol L-1 was added to each sample. In the sequence, several standard 

solutions were added, altering the concentration in the amperometric cell up to 10x10-6 mol L-1
. These 

results are presented in Table 1, which shows that recovery values around 94.0-96.0% were found for 

the polluted waters. The small matrix influence on the analytical sensitivity has frequently been 

observed and related to the organic matter dissolved in natural waters, mainly humic and fulvic acids 

[23]. All values reported reflect small loses in the procedure, thus indicating the suitability of method 

proposed for analytical measurements. 

Figure 2. Analytical curves obtained by amperometry (E = 0.28 V) for parathion (A) 
and carbaryl (B) in electrolytes prepared with different pure (▲) and contaminated 

water samples point 1 (�) and point 2 (�). 

 
Figure 3 shows chromatograms for parathion and carbaryl in 0.1 mol L-1 PBS electrolyte (pH=7.2), 

well-defined peaks appearing at retention times of 4.5 and 5.4 min. respectively. In the same figure 

analytical curves for both pesticides are shown in the concentration interval 2.0 to 30.0x10-6 mol l-1. 

Water samples were analyzed by HPLC in order to validate the results obtained with the biosensor. The 

water samples were filtered before HPLC analysis only to avoid clogging problems and then spiked 

with the minimum detectable amount of parathion and carbaryl. The corresponding analytical 

parameters are presented in Table 1 together with that obtained in pure water, for comparison. As it can 

be observed from the slopes of the analytical curves, the determination of parathion and carbaryl in 

contaminated waters has a lower sensitivity when compared to pure water. Moreover, recovery 

experiments were carried out for the quantification of parathion and carbaryl in the different water 

samples following the procedure presented in the experimental section. For the samples collected at 

points 1 and 2 values around 92-95 % for both pesticides were found, respectively (Table 1). 
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Figure 3. Chromatograms of parathion (A) and carbaryl (B) standard solutions (5.0x10-5 

mol l-1 in 0.1 mol l-1 phosphate buffer, pH=7.2). Insets correspond to calibration plots 

for both pesticides. 

 

Table1. Analytical parameters for parathion and carbaryl determinations in pure and 

contaminated water samples by using amperometry with the SAM-AchE biosensor and 

HPLC. 

 Pesticide Sample r Sb (µµµµA) b 
(A/mol L-1) 

DL 
(µµµµg L-1) 

Recovery 
(%) 

 
SAM-AchE 

Paration Pure 0.994 0.017 1.9x10-4 9.3 - 

Point 1 0.989 0.014 1.8x10-4 10.3 96 ± 2 

Point 2 0.980 0.013 1.5x10-4 9.7 94 ± 1 

Carbaryl Pure 0.970 0.015 2.6x10-4 9.0 - 

Point 1 0.992 0.014 1.6x10-4 9.6 95 ± 1 

Point 2 0.990 0.013 1.7x10-4 9.8 94 ± 2 

HPLC* Parathion Pure 0.999 16.85 1.3x1010 1.1 - 

Point 1 0.997 14.30 0.2x1010 5.1 95 ± 3 

Point 2 0.994 13.90 0.1x1010 6.4 93 ± 2 

Carbaryl Pure 0.999 8.80 0.2x1010 3.1 - 

Point 1 0.998 7.90 8.0x109 8.3 94 ± 2 

Point 2 0.993 7.80 8.3x109 9.0 92 ± 1 

2.2. Fruit sample testing 

Organophosphate and carbamate are some of the most widely used insecticides in citrus fruit, 

tomato and apple cultures. Due to its permitted use in such cultures, the methodology proposed was 

applied in order to evaluate the occurrence of matrix effects in the electroanalytical determination of 

parathion and carbaryl residues directly in the samples, without pre-treatment or clean up steps. The 
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suitable performance of the electrochemical biosensor was investigated by analyzing several food 

samples to which different amounts of pesticides were added to give concentrations in the range 

between 6.0x10-6 and 5.0x10-5 mol L-1. The inhibition of AchE caused by the incubation in the spiked 

food was compared with the inhibition observed when equivalent pesticide concentrations were present 

in the buffer solution. The experiments were carried out in triplicate and pesticide concentrations were 

determined using the Equation 2. The extract of the juices was prepared according to procedures 

described in the experimental section and had their pH values adjusted to 7.2 with appropriate volumes 

of NaOH solution. 20 mL aliquots of each sample were added to the electrochemical cell for the 

recovery experiments. The concentration of pesticides in the extract was determined by amperometry 

using the standard addition method and the results obtained are presented in Table 2. 

Table 2. Recovery values for parathion and carbaryl in fruit samples. 

Sensor Sample Pesticide Concentratio
n added  

Concentratio
n 

found 

Recovery (%) 
 

 
 

SAM-AchE 

 

 

Tomato 

Parathion 6.0x10-6 5.7x10-6 95 ± 2 

5.0x10-5 4.6x10-5 92 ± 3 

Carbaryl 6.0x10-6 5.5x10-6 92 ± 3 

5.0x10-5 4.7x10-5 94 ± 3 

 
 

HPLC 

 

 

Tomato 

Parathion 6.0x10-6 5.2x10-6 87 ± 2 

5.0x10-5 4.4x10-5 8.8 ± 1 

Carbaryl 6.0x10-6 4.7x10-6 78 ± 2 

5.0x10-5 4.2x10-5 84 ± 2 

 
 

SAM-AchE 

 

 

Apple 

Parathion 6.0x10-6 6.1x10-6 101 ± 3 

5.0x10-5 4.9x10-5 98 ± 3 

Carbaryl 6.0x10-6 5.8x10-6 97 ± 2 

5.0x10-5 4.7x10-5 94 ± 2 

 
 

HPLC 

 

 

Apple 

Parathion 6.0x10-6 5.4x10-6 90 ± 1 

5.0x10-5 4.4x10-5 90 ± 2 

Carbaryl 6.0x10-6 4.6x10-6 77 ± 2 

5.0x10-5 4.3x10-5 82 ± 3 

 
 

SAM-AchE 

 

 

Orange 

 

Parathion 6.0x10-6 5.8x10-6 97 ± 3 

5.0x10-5 4.9x10-5 98 ± 2 

Carbaryl 6.0x10-6 5.6x10-6 93 ±2 

5.0x10-5 4.8x10-5 96 ± 2 

 

In order to validate the previous electroanalytical results, HPLC quantification experiments were 

carried out using 20 µL aliquots of the appropriate extract obtained from the different samples (see 

experimental section). The experiments were carried out in triplicate and the pesticides recovery 
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concentration was determined using the Equation 2 (Table 2). The obtained values ranged from 77-90 

% and were slightly higher than those obtained with the biosensor conditions (see Table 2), suggesting 

that the biosensor has the same better efficiency as compared with HPLC in fruits analysis.  

Results of parathion and carbaryl determinations in water and food samples by using the proposed 

biosensor and HPLC were in close agreement. The major advantage of the biosensor is that it allows 

the analysis of a large number of samples with no need of clean-up steps such those required in 

chromatographic methods. Frequent routine analyses can be safely carried out using this simpler and 

less expensive electroanalytical method without losses in either reliability or precision.  

3. Conclusion 

A pesticide biosensor was successfully developed and the obtained results demonstrate that its use 

as an integrated acetylchlolinesterase self assembled amperometric device accomplishes the 

requirements of precision, speed, sensitivity, simplicity and low cost. This proposed analytical tool is 

suitable to be employed for rapid judging of the quality of fruit and natural waters. The concept 

involved in the fabrication of the SAM-AchE biosensor can be extended to assemble other biological 

molecules, such as antiboby, antigen, and DNA, to the CNT surface for wide bioassay applications. 

4. Experimental Section 

4.1 Materials 

3-Mercaptopropionic (3-MPA) (Aldrich 99%), acetylcholinesterase (AchE) E.C. 3.1.1.7 Type XII-S 

from bovine erythrocytes 1.0 U /mg, acetylthiocholine iodide (ACh) (99% purity), glutaraldehyde 

(grade II, 25% aqueous solution) and N´cyclohexy-N`(2-morpholinoethyl)carbodiimide methyl-p-

toluenesulfonate (EDC) (99%) were obtained from Sigma-Aldrich. Parathion and carbaryl standards 

were obtained from Sigma-Aldrich. All the solutions were prepared by dissolving the compounds or 

diluting concentrated solutions in deionized water processed through a water purification system 

(Nanopure Infinity, Barnstead).  

4.2 Apparatus 

The electrochemical cell was constituted of a gold disc electrode (geometric area = 10 mm2) as 

working electrode, a platinum wire as auxiliary and a Ag/AgCl electrode (3.0 mol L-1 KCl solution) as 

reference. Cyclic voltammetric and amperometric experiments were carried out using a 273 EG&G 

PARC instrument. The biosensor was prepared by using a procedure described elsewhere [24]. AChE 

was immobilized onto the SAM electrode by cross-linking with glutaraldehyde. This was accomplished 

by adding 20 µL (11.8 U mg) of AChE solution (prepared in phosphate buffer solution, pH = 7.2) to 

the electrode surface and leaving for 20 minutes to form a wet film. The electrode was then treated 

with concentration glutaraldehyde 2.5% v/v solution during 1 minute. The biosensor was kept in dry 

conditions at 4º C. Acetylthiocholine iodide (Ach) was used as the AChE substrate in all experiments.  

Quantitative determinations of parathion and carbaryl were also carried out by HPLC-UV technique. 

A model. SCL-10AVP Shimadzu system equipped with a model, LC-10ATVP pumping unit and a 

spectrophotometric UV/Vis detector (SPD-10AVP) were used in these experiments. Data were 
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processed on a Shimadzu LC Work-Station Class LC-10. The HPLC conditions were: a Li-Chrosorb 

RP-18 column (250 mm, 4.6 mm, 5 mm, Merck), with a RP-18 pre-column (30 mm, 4 mm, 5 mm, 

Merck); the mobile phase was 70/30 v/v acetonitrile/water with 1% v/v acetic acid, at a flow-rate of 1.0 

ml min-1. The injection volume was 20 µL and detection was performed at a wavelength of 270 nm for 

parathion and 220 nm for carbaryl. The standard addition method was used for analytical 

determinations in real samples. 

4.3 Water Sample collection 

The water samples were evaluated by analyzing natural water samples collected in two local creeks 

at different points in the São Carlos city, namely, before (point 1, Monjolinho) and after crossing the 

town (point 2, Gregorio). Water samples were collected in glass bottles during the dry season and kept 

under refrigeration (4o C) for no longer than one week. The amount of organic matter in the water 

samples increases between point 1 and point 2, as indicated by biological (BOD) and chemical oxygen 

demand (COD) values: 6.0 and 12.0 mg L-1 (BOD) and 19.0 and 33.0 mg L-1 (COD), respectively. The 

electrolytes were prepared by dissolving the salts necessary for the phosphate buffer in either pure or 

natural waters and the measurements were performed without pretreatment of the solutions, but the pH 

was properly adjusted to the desired value in each case. As the analyzed samples did not contain both 

pesticides at detectable concentrations, recovery experiments were performed by spiking the samples 

with known amounts of each pesticide, followed by standard additions. All measurements were 

performed in triplicate. 

The standard deviation of the mean current values (SB) measured at the each pesticide reduction 

potential for ten voltammograms of the blank solution in electrolytes prepared with different water 

samples was used to determine the detection limit (DL) values accordingly to the IUPAC definitions, 

these are related by equation (1) [25].  

       
b

3S
DL B=       (1)  

where b is the slope of the analytical curve. 

All measurements were performed in triplicate. The recovery efficiencies (R%) for the different 

systems under investigation were calculated using equation (2), where the value [Pesticide] found 

refers to the concentration obtained by extrapolation of the analytical curve in the corresponding spiked 

water samples  

 

 [ ] addedpesticide

foundpesticide
R

][
100% =      (2) 

 

The precision and accuracy of methodologies were tested with different standard solutions of each 

pesticide and the relative standard deviations (RSD) were calculated using the equation (3): 

x

Sb
RSD =       (3) 
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where Sb is standard deviation of the mean current values obtained and X is the mean peak current 

value. 

4.4. Extraction step in fruits 

Sample Treatment for Electrochemical Measurements in Fruits 

40 g of tomato and apple samples were directly transferred to an electrochemical cell after triturated 

and spiked with different amounts of both pesticides. Then, the mixture was mechanically stirred and 

electrochemical measurements were performed under the conditions described in the Experimental 

Section. Orange juices were extracted from their respective fruits and 20 mL of the juice were 

transferred to an electrochemical cell and artificially contaminated with known amounts of both 

pesticides.  

Extraction for Matrix Solid-Phase Dispersion (MSPD) analysis 

Untreated fruit samples were processed as received in their unprocessed and unwashed form and 

kept in a freezer. After the sample treatment previously described they were spiked with different 

amounts of both pesticides and introduced into a 15 mL cell containing 3.0 g of anhydrous sodium 

sulfate placed over 0.5 g of silica gel. The column was prepared in the laboratory and conditioned with 

10 mL of ethyl acetate. A 10 mL round-bottomed flask was positioned below the column to collect the 

eluate. The eluate was then concentrated using a rotary vacuum evaporator (40-45 οC water bath, 

reduced pressure), and the final volume was adjusted to 1.0 mL. A 20 µL portion of the extract was 

analyzed by HPLC. 
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