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Abstract: In this paper, an interactive technique for extractartographic features from
aerial and spatial images is presented. The mathedsentially an interactive method of
image region segmentation based on pixel grey leral texture information. The
underlying segmentation method is seeded regiomviggo The criterion for growing
regions is based on both texture and grey levekravhexture is quantified using co-
occurrence matrices. The Kullback distance issgdiwith co-occurrence matrices in order
to describe the image texture, then the Theory wfldhce is applied to merge the
information coming from texture and grey level ilmdgom the RGB bands. Several results
from aerial and spatial images that support thiertieie are presented

Keywords:. Interactive technigues, Region growing, Texturalltkack distance, Theory of
Evidence

1. Introduction

In order to use the huge amount of information laléeé from high-resolution satellite and aerial
images more efficiently in cartography, it will Imecessary to find methods that detect objects like
streets, houses, vegetation and other cartogrdphatares in a fully automatic manner. If this were
possible, a lot of work could be done faster and more efficient way. Generally, to detect an obje
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in a digital image, the first step is segmentatibrwas quickly recognised that cartographic featur
extraction is an issue of high complexity, and lumbw, there has not been any generally satisfactor
solution [1]. Each type of cartographic object seetm require its own specific information that
discriminates it from other objects. Some typesntdges discriminate better than others in terms of
specific objects; infrared, for example, can bedusedetect vegetation, and radar for detectingervat
In this paper, however, we will deal specificallylypwith RGB colour images.

The broad utilisation and evolution of Geograpméofmation Systems (GIS) has increased the
need for more rapid update of the cartography fagerwhich these are built. Today, most of the cost
of developing a GIS comes from the constructioiiofayers, as the work in obtaining vectorial lsye
is done through digitisation (i.e., drawing manyalh orthophotos.) Thus, there is an increasingl nee
for semiautomatic algorithms that would assist wtitis time-consuming task, and this is the focus of
this paper.

In most cases, prior to extracting cartographituiess from aerial or space images, the image must
be segmented into homogenous regions, which ame ierged into higher levels to obtain the
cartographic features from which the map can bevidrd he work presented in this paper is confined
to the very first step of segmenting the image teven the whole image, but just a region thataoul
represent a specific cartographic feature or phd oartographic feature; for example, a lake in an
aerial image. The only information that is otheevmovided in the process is the seed point, wisich
given, for example, by clicking with the computepouse on any pixel inside the region of interest.
Since the objective is to find only the region tethto the seed pixel — i.e., the clicked pixeljchh
represents the connected component — the algordhm be based on recursive region-growing
technique. Another important issue is to decidemédagixel is inside or outside the studied region.

Subsequently, the Theory of Evidence (ToE) wasiegph merging information coming from
colour and texture. It was also necessary to thegarameters, given the uncertainty of each sairce
information. In this way, different regions can detected by the user in an interactive manner. The
region detected also needed some further refineroenediting with the use of mathematical
morphology, and some of the results are showndwsase the potential of the method as a whole.

Using semantic networks or rules, the context ctnédstudied and changes could be made on the
regions as produced by the algorithm presented Been though the algorithm presented in this paper
is the very first step of a larger process, it Yasie in itself as an interactive procedure, a®iild be
used in a productive cartographic environment atene experimental validation of the accuracy and
efficacy of the method.

The algorithm is applied to different images toambtresults and to study the potential of the
method for feature extraction. Figure 1 shows asrvew of the algorithm.

2. Thresholding with Kullback distance

Segmentation classically refers to the partitiorofighe support of an image into subsets in which
the texture is homogeneous and this can be achigwéaresholding. Global thresholding is generally
unsatisfactory for several reasons, including presef shadows, non-uniform illumination, and noise

This has motivated the development of hundreds ethods for image segmentation and several
proposed taxonomies. In thresholding, the algorithies to get a set of threshold3,{T,,T;,....T, },
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such that all pixels with grey values in the ra[ﬁ'g,é’iﬂ), i=0,1, 2,.., k constitute the i-th regioneyp

(To and k+1are taken as minimum and maximum grey values ofrtiage, respectively.) Thresholds
may be detected based on histogram informationpatiad information. Otsu [2] presented the
minimizing within-group variance for thresholdinghere each threshaiddetermines a variance for
the group of values that are less than or equiland a variance for the group of values greater tha
The definition for the best threshold, as suggebte®tsu, is the threshold for which the weightechs
of group variances is minimized. The weights ame phobabilities of the respective groups. In this
paper, we have supposed that the observations romea mixture of Gaussian distributions, and we
have determined the threshdlgwhich minimizes the Kullback-directed divergerican the observed
histogram to the unknown mixture distribution.

Figure 1. Algorithm.

Perform histogram thresholding with
the Kullback distance
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Use co-occurrence matrices to descrjbe
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previous ste
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different information (such as coloyr
and texture). Calculate the B vector for
each pixel

v

Use the Theory of Evidence orthogonal
sum to combine the information in the
B vector to determine (i) which pixel
are inside the region and (ii) when the
algorithm should stop

[72)

The different structures of histograms reveal thatinformation in the histograms alone does not
allow one to segment an image into different regiohwo completely different images can have the
same or similar histograms, but in order to usehte®gram for segmentation, it is necessary taged
the 256 possible grey values to only a few levelsabels. To provide for this reduction, we must
determine thresholds that produce labels withasinp significant information about the regions. The
choice of thresholds is an important factor inflcieg the quality of the resulting segmentation.
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In what follows, the method for minimizing Kullbackstance is outlined. We have extended it to
consider three thresholds (i.e. four normal distidns), instead of one (i.e. two normal distribag)
as is commonly used. Even though, in general, fauéi thresholding could be considered less rediabl
than its single-threshold counterpart [3], in aeiactive environment the user can see the histogfa
the feature to be extracted and decide whethesg¢mune or more thresholds, depending in the shiape o
the histogram.

Let P(1),...,P(I) represent the histogram values; they are calaulatth the use of the observed

grey value frequency, where | is the number ofteldevels. Lett; be the thresholds arg the sum

given by the following equations:

15
6= P@ =1
i=1
ll
q, = ZP(i) ,j>10j<N (1)
i=t; 4+1
|
v = ZP(i) JJ=N,
i=ty g+l
where j O[1,N] N is the number of Gaussian distributions

Let us suppose that the observations come fronxeurai of two Gaussian distributions, i.e. where
the case N=2. Kullback defined a divergence digametween distributions, which Li and Lee [4]
subsequently used by minimizing to find the righteshold. They determined the threshblthat
results in the respective means and variav(upgsff) and( ,uz,a§), and respective suntg andg, in
order to minimize the Kullback-directed divergentefrom the observed histogram(1),...,P(1) to
the unknown mixture distributiorf , wherel is defined by:

Lo Pl
J= 2 P(I)|Og{%ig] 2)

To understand the meaning df, let H, be the hypothesis that the observed outcomeswfollo
probability distributionP, and letH, be the hypothesis that the observed outcomesafglobability
distributionf . Let i designate the value of the outcome; thimidsx us to an interpretation for
P(i)/ f (i) of the information in the outcome i, for discriration in favour ofH, rather thanH, .
The parameters of the mixture distribution can seneated by minimizing) . We can rewrite] in
the following manner:

2= Pl)iogP()- Y. P(ogt ) ©

i=1
Since the first term does not depend upon unknoanameters, only the second term must be
minimized; hence, we minimize the information meadd (t) where

|
H(t)=->P(i)log f (i) (4)
i=1
Equation (4) can be expanded to equation (5), mbeaseen in [5]:

1+log2n 1
H(t)= 29 —qllogql—qzlong+§(qllogaf+qzlogr7§) (5)
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We have extended this idea to the possibility Waimay find several thresholds for more than two
Gaussian distributions. In this case, the respectiveans and variances becm(mq,ajz) and

( ,ujﬂ,afﬂ) , and respective proportiorgg and(q,,, .

1+log2n 1
H{t) === - q,logg, - ~q, logq, +3 (a,l0ga? +---+q logar) )

When t is the threshold that separates the modes, then raed variance estimated from
P(1),--,P(t,) will be close to the true mean and variance of appropriate first distribution.

Likewise, the mean and variance estimated fna(nj +1) ,P(tj+1) will be similar to the true mean

and variance of the following distributions. The ane and variance estimated from
P(ty.,*+1),--,P(1) will be close to the true mean and variance ofldise distributions. At this point,

the t value combination, which minimize{t), is the best combination.

When we look closer at equation (4), we are remdnafethe definition of entropy. This is why the
Kullback distance is also known as the relativerggyt. In the tests using the Kullback distance, it
seems that this method tries to find the best bimids in the histogram with which to merge the fExe
in order to minimize the disorder in the image.

A label image with four grey values, calculated amdimized using the Kullback distance with the
histogram, is shown in figure 2. The threshold Iever this example result in the grey values of 56
87, and 121.

The disadvantage in using this method is that, wé&bh new threshold, the computational process
increases exponentially 2%5wvhere N, as said above, is the number of Gaustsaributions (or N-1
is the number of thresholds). On the other handjateavicz [6] observed experimentally that eight
grey levels are adequate to represent black anig whcroscopic textures.

3. Texture

Texture is an important characteristic for the gsial of many types of images. There are many
possibilities for examining macroscopic or micrgscotexture. Gagalowicz [6] uses both types of
texture separately to generate synthetic textur@crivbcopic texture — for example, a brick wall — is
described by the spatial arrangement of bricksm(sies). In microscopic texture, primitives are
reduced to the lowest level of grey values, i.e fhixel. In our method, we examined only the
microscopic texture. Textures were studied using@mrrence matrices that are calculated out from
the label image obtained with the Kullback distaotéhe previous section. The texture was described
with a defined window (for example five by five pis) using, in our case, only one layer of the RGB
image. Levels of grey for this layer are calculaisthg the Kullback distance; the layer has onfigva
grey values by which we can calculate texture. Ha&§7] described the method using co-occurrence
matrices, as well as its effectiveness in reprasgniexture; they differentiate between fine teggir
where the distribution changes only slightly witlstdnce — and coarse textures where the distributio
changes rapidly with distance. To calculate textuve used the label image calculated with the
Kullback distance, as outlined in the previousisectThis means there are only four labels to bupd
the matrices for texture; when using only four lsy& makes sense to examine coarse texture.



Sensors 2008, 8 4791

Figure 2. The upper left image is a pansharpened Ikonosemuige upper right figure
represents its histogram for the colour red bartte Kullback distance found three
threshold levels: 56, 87, and 121. The lower imagthe thresholding with the found
levels.
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Four matrices were calculated for each of the flitections: 0°, 45° 90° and 135°. The different
directions describe the spatial relationship (atuee) in the different angular relationships. Tdrey
level co-occurrence can be specified in a matrixetdtive frequencie$, , where two neighbouring
pixels separated by the distand@appen to occur on the image, with one having resl i and the
other grey levelj. Such co-occurrence matrices of spatial grey lelglendence frequencies are
symmetric and a function of the angular relatiopshetween the neighbouring pixels, as well as a
function of the distance between them. Beyond angle to 135° more directions need not to be
considered due to the symmetry of the co-occurremateix. With this matrix, we obtained quite a few
possibilities in calculating features regarding tbeture in the area of interest, including vadatof
direction and distance. To tackle the computatidnaiden in texture analysis, some features are
frequently extracted from the co-occurrence matHaralick et al. [8] presented eight of the most
common features computed from co-occurrence matridehigh number of possible co-occurrence
features make it necessary to decide which settobgve the best results. There are several mkeas
to how to find the most significant feature. Zuck@};, for example, suggested using only the distanc
that maximizes a chi-square statistic Bf.Wezskaet al. [10] show the superiority for terrain
classification of co-occurrence over other methsuish as digital transforms. We have used entropy
and contrast for k=1 and =1 (being k and | constém be chosen by the user):

Entropy

- IZ]: Rj log Pij 7)
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We have not found sufficient improvement in theoalilhm using more Haralick features than the
two proposed here to justify the additional compatel burden; neither could we state that these
features are better or worse than the others, auket small differences observed in the segmented
image when other features are employed, dependinigeoimage studied.

4. Information vector B

Since the information considered most relevantegnsenting the images must be obtained, let us
examine how all the different kinds of informatia@re amalgamated to establish a decision criterion
for segmenting regions. A straightforward way tassify mixed data is to form for each pixel a vecto
B, by stacking together the individual informatidrat describes the various spectral and non-spectral
data for this pixel. This stacked vector will bethe form of:

B=[x,... %] )
where M is the total number of individual data s@sr with corresponding date,...,X,, . The data

sources and information used by the algorithm apéaned in the following. The only “hard and fast”
rule is in finding an area that has similar arearabteristics; it can be used only with the gresele
data. The goal we were trying to achieve was td tiriteria that described a region in a significant
way. First of all, we have information from thre&ting, by minimizing the Kullback distance. This
variable was calculated from the intensity of oohe colour layer. One of the three colour layeesl(r
green or blue) can be selected by the user atehebeginning of processing the algorithm, depegdin
on which layer is the most convenient for the objcinterest.x, is assigned a label (for example,
[0,3]), depending upon which interval between tesholds the intensity can be founded. In several
tests with images, this criterion frequently desed the regions in a meaningful way, x,,x, are the
intensities of the colour layers red, green ana blihe variablex, is the entropy for the co-occurrence

matrix for texture of the chosen layer and it ispaited from equation (7). The co-occurrence marice
were calculated for each of the 0°, 45°, 90°, 8% Angular directions, and the distamicg was set
for one pixel. Under these conditions, four entrepiues were calculated. The variaklethen, was
the sum of all four entropy values. Further augnmgnthe distance was not found to be justifiedhmy t
additional computational burder,: represents the contrast in texture given by eguaiB). The
calculation is similar to that of entropyx().The four variablesx,, x;,X,,%,, are computed by the

Euclidian distance between the texture of the glagl sp, which is set by the user (the start lpié
be discussed more in the next section). The apixal ap is the pixel for the calculatd#vector at the
moment of executing the algorithm. The equatiorttierEuclidian distance d is:

N N

d=)">"|E(GP) +CHCP) - E(CF) - CH(CP) (10)

j=0i=0
C*® is the co-occurrence matrix calculated for thetgixel andC® is the co-occurrence matrix for
the actual pixel;, E and Ct are the entropy and restit as defined in equations (8) and (10)
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respectively. The Euclidian distance is calculatedthe four co-occurrence matrices (0°, 45°, 90°,
135°) and the results are in the four variakjes,, X,, X,,. The B vector is normalised.

5. Theory of Evidence (TOE)

To reach a decision about which pixels are insideutside the region, we used the ToE [11]. For
example, the values of the B vector can be consitifpieces of evidence” for recognizing the studied
region. Like Bayesian methods and Fuzzy Theoryuseof the ToE is another method by which one
can combine multiple sources of data. The mathealafioE is a field in which data sources are
treated separately and their contributions are @oeah to provide a joint inference concerning the
correct label for the pixel.

The essence of the technique in using the ToEeiss$lsignment of a so-called “mass of evidence” p
for various labelling propositions for a pixel. Ttegal mass of evidence available for the allocatd
candidate labels for the pixel is unity. For thégppr we have only two cases: 1. to belong to th®me
w and 2 not to belong to regiao; there is also uncertain®y. The power of ToE lies in a binary
operator called orthogonal sum that has associatidecommutative properties. Suppose we have two
sources wpand | of information for classifying a pixel x, theseutd be, for example, the Kulback
layer and the entropy feature.

[t (@), (@), 116)], (1), 14, (@), 12,(6)]
and let Qg be any binary product of the form:

S = 4(A)* 1,(B); where  ABOO (11)
where @ is the decision framework [12], the following indis calculated for normalisation:
S = AZ‘;,SAB - (Sww + Sww) (12)

the three new evidences for orthogonal sum wilfjiven by the following calculations:

S.,*tS,+S, . _S,*tS,*+S, . _S
= S‘:" o (w0 w,)@)= S‘j”r" . (O ﬂz)(ﬁ)—f (13)
Let us clarify how this is done, by way of a cléisation example. In our case, we want to know if a
pixel is inside or outside a region, so let uststath x , the Kullback variable of image data. The

(14 O 1,)()

variable x, labels pixels as belonging to one of two class&giside) or w(outside) . Suppose the first
value in the B-difference vector is 0.3, which meahat there is a small difference in thevalue

between the seed and the actual pixel, whereadua wh 1 would mean that the pixel values are
completely different. However, suppose we aretke lithcertain about the labelling process or ehen t
quality of the data itself, so that we are onlylwg to commit ourselves to classifying the pixatwa
90% level of confidence. Thus, we are about 10%euam of the labelling. Using the symbolism of
the ToE, the distribution of the unit mass of ewicke over the two possible labels and our unceytaint
regarding the labelling are expressed in the fahgwvay:

((w.@.6,))=(063,027,01) (14)

where the symbod, is used to signify the uncertainty in the labgliThus, the mass of evidence

assigned to labeb as being correct for the pixel is 0.63.
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Let see how the ToE is able to cope with the probdé multi-source data. Suppose a second data
source is available for our example: the secondevaf our B-difference vectox,, has the value 0.8.
And now we are about 25% uncertain of the labelliflgis means that for any particular pixel, we
should suppose the mass of evidence after analifsgngecond data is

t\(w.@.6,))=(015 06,025 (15)
Thus, the second analysis seems to be favoudngs the correct label for the pixel would signify

that the pixel is outside of the region. The ToRvradlows the two mass distributions to be merged, i
order to combine the evidence and thus come up avittbel that is jointly preferred by both sources
together, and for which the overall uncertaintyldtidoe reduced. This is done through the mechanism
of the orthogonal sum, equation (13). The orthofsnan can also be represented intuitively by the
following rectangle (Figure 3), where the evideedber for or against a certain label are founthat
sides. If there is evidence for belonging to thgiae from both source one and source two, the
evidences are multiplied.

Figure 3. Orthogonal sum of the Theory of Evidence.

10 0 0 X1
1) ) )
@ 0} @

X2

In order that the final mass distribution sums ity a normalising denominator is computed. This
denominator is the sum of the areas of all thearggles with some value (see figure 3). For our
example, this factor is 0.458. The following eqoasi describe the calculation of the orthogonal sum,
under the example we are demonstrating:

(14,0 11,)(w) = (0.094 + 0.015 + 0.099) / 0.458 = 0.455
(4, O, )@) = (0.097 + 0.06 + 0.067) / 0.458 = 0.490 (16)
(14,0 1,)(6) = 0.025 / 0.458 = 0.054
After the calculation of the resulting (i.e., coméd evidence) mass distribution, the class
(outside) is seen to be recommended. Nonethelesslecision is quite difficult. If the uncertainty
class two were a little bit higher, the decisionndobe different.
For cases using more than two sources (such azas®), the orthogonal sum can be applied
repetitively, since the orthogonal sum is both cartative and associative, as said above.
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After the orthogonal sum has been applied, thesdetias to whether the pixel is insideor
outsideaw can be made by comparing the values that come tinenfinal orthogonal sum. Uncertainty
is another parameter of the algorithm that showddsbkt by the user. Note that uncertainty as a
quantitative value is always less than 1; therefarBen uncertainly is multiplied, the results are
smaller than both multipliers. This means thatrdsilts have a smaller uncertainty than the sources
which makes sense, since there is more informatiche result than in either of the sources taken
independently.

6. Region growing and results

There are many image segmentation approaches,asuclustering, boundary detection level-set
methods and active contour, region growing, et@ dlstering or characteristic feature threshoke, |
the popular k-means algorithm, usually does notsiclan spatial information. Boundary detection
achieves good results for simple noise-free imabastheir weak point is that they produce noisy,
complex images. Edge detection often produces ngssdges and even extra edges, which cause
detected boundaries to not necessarily form afsgibsed, connected curves that surround connected
regions. Region growing has the advantage of etipdpispatial information and guarantees the
formation of closed, connected regions (due twety principle).

However, region growing is not without its problemthe main ones being the difficulty in finding
the right point to start (i.e., the “seed pointfjdain knowing when the region growing process sthoul
be terminated. As a result of the latter, in pattic, what is generated could be under- or over-
segmented. There are several papers that try @ sbése problems in region growing, where the
researchers worked with several regions that grotheasame time, and then they merged all similar
regions together. Tilton [13] has done some researthis field; he has also investigated hierazahi
image segmentation [13]. The problem with hierarghimage segmentation is in making selections
from the hierarchical set. Recently, it has beewppsed that the conditions for region growing be
independent of the seed point; such a scenaridéas termed “symmetry region growing” [14]. In
other cases, algorithms find automatically the geadts [15]. The main disadvantage with methods,
in practice, is the number of parameters and fipdire right settings for them. As a result of these
problems, the applications are mainly semi-automiatinature and the user must resort to trial-and-
error to achieve satisfactory results.

What is presented in this paper is the developnoéné region growing algorithm to detect
cartographic objects, using only information fromedmage. This means using only information such
as grey values or texture. To segment an aresg,important to have significant differences between
the area being examined and the surround it. h slifferences are not available, it is quite difficto
segment the area using only information from thagen The algorithm used for region growing is of a
recursive type. Figure 4 a) shows a 3x3 windowyadothe pixel been examined, as well as a number
of neighbouring pixels.

Let P be any property of the image — for examlat the grey level is less than 150. The algorithm
could be described by the following procedure:
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procedure growing(P);
for all the neighbours of P if B(P)<B(neighbourtRg¢n growing (neighbour P)

Figure 4. Searching directions of the recursive region gngwalgorithm around the
actual pixel. The numbers show how the recursigerdhm steps forward, scan the
region, on the image.
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Next, we will highlight some of the results. Figlreshows a result using uncertainty. The problem
occurs with detecting the building region (i.e ttentre of the circle in image a) represents &gl s
point). Even though where the area characterigliwsnot have any strong differences with the
neighbouring regions, consider image c). Even whth naked eye, it is difficult to say which pixels
belong to the house and which ones belong to thengr The blue layer was used for the co-
occurrence matrices. In image b), uncertaintiesevget to 0.1, while in image d) the uncertainty was
set to 0.01. Therefore, by tuning the uncertaititg, detected region could be better refined. Thps ga
inside the region could be closed afterwards wiittation and erosion algorithms.

The next example shows the result calculated omrasparpened lkonos image with a ground
resolution of 1 m. The red layer was used for thilewation of the co-occurrence matrices. The road
was detected as a region, but the algorithm diddete#ct the road loop because of the shadow (Figure
6). By tuning the uncertainty parameter, it is flgesto detect a region with some specific progsrin
terms of colour and texture. The algorithm coulduseful in cartographic feature extraction, using
aerial and space imagery.

Some cartographic objects would be more diffichiétrt others to discern in the extraction process,
depending on the stability of colour and texturéha region of interest. For example, the method at
hand would detect only the roof part of a buildimdnich has a homogenous area characteristic of the
seed pixel. If one is interested only in detectidra specific object (i.e. target detection); imstbase,
the B vector could optimize the search for thistgb object.

There could be some risk of facing heavy computaliolemands due to the recursive nature of the
method; however, this turned out not to be truel, thie developed algorithm worked properly in this
capacity. It took only a few seconds (on a onelgggz Pentium PC with a 500 M RAM) to obtain the
regions in the images shown in Figures 5 and 6. sfaek capacity needed only to be augmented for
the case of recognition in large regions.
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Figure 5. (a) Aerial image, with the seed point describedh®ycentre of the circle; (b)
Result with 0.1 uncertainty; (c) Street and houstethe pixel level, it can be observed
how difficult is to differentiate between both aagtaphic features; and (d) Result for
uncertainty 0.01.

, et

7. Conclusions and future work

A new technique for extracting cartographic feadufeom aerial and spatial images has been
presented. The ToE has been shown to be an effigiethod to fuse information coming from grey
level and texture, in order to discriminate whethgrixel is inside or outside a specific regionvedal
results from real images support the technique.aunal click in an interior point of a region segtsen
the region presented as a binary image. Algoritfonscartographic feature extraction present one
important problem; namely, the parameters to bs@h@nd how to perform its tuning. In our case, the
parameters have been the number of thresholdssities of the window, distance and number of
directions in the co-occurrence matrices; the ahoicco-occurrence matrix features, and finallg th
choice of features to form the vector B in Sectthnmakes the algorithm an “ad hoc” method;
however, experiment have shown that the only olevaet to the final segmentation is the choice of
vector B.

Future work will attempt to quantitatively evaludte performance of the proposed algorithm. One
or more references or "ground truth" data setshelheeded (containing the "true" segmentatiohef t
aerial/satellite scenes) so that the performancehef proposed and competing methods can be
evaluated. Even though the others are difficultempare, since they use different kinds of source
information, for example LIDAR and multispectral6]1 while in our work, we have used only grey
level form a colour band component and texture. dligerithm presented here calculates only a region
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around a seed pixel chosen by hand. It would berasting to develop the method so that it can
segment an image in its entirety and automaticdiose the seed points.

This algorithm could be used in today's interacémgironments for cartographic feature extraction,
although more work should be performed, focussingtlee post-processing steps to improve the
usefulness of the algorithm's output.

Figure 6. Ikonos image region growing. The shadow on thel no@vents the process
from going into the road loop found in the loweghi portion of the picture.
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